Wasserstein Adversarially Regularized Graph Autoencoder

•Application of Wasserstein distance under graph settings.•Using Wasserstein distance for node embedding regularization.•Applying weight clipping and gradient penalty approaches for Lipschitz continuity.•Comparison of regularization against KL divergence and adversarial methods.•Detailed experiment...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 541; s. 126235
Hlavní autori: Liang, Huidong, Gao, Junbin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 07.07.2023
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Application of Wasserstein distance under graph settings.•Using Wasserstein distance for node embedding regularization.•Applying weight clipping and gradient penalty approaches for Lipschitz continuity.•Comparison of regularization against KL divergence and adversarial methods.•Detailed experiment on link prediction, node clustering and embedding visualization. This paper introduces Wasserstein Adversarially Regularized Graph Autoencoder (WARGA), an implicit generative algorithm that directly regularizes the latent distribution of node embedding to a target distribution via the Wasserstein metric. To ensure the Lipschitz continuity, we propose two approaches: WARGA-WC that uses weight clipping method and WARGA-GP that uses gradient penalty method. The proposed models have been validated by link prediction and node clustering on real-world graphs with visualizations of node embeddings, in which WARGA generally outperforms other state-of-the-art models based on Kullback–Leibler (KL) divergence and typical adversarial framework.
AbstractList •Application of Wasserstein distance under graph settings.•Using Wasserstein distance for node embedding regularization.•Applying weight clipping and gradient penalty approaches for Lipschitz continuity.•Comparison of regularization against KL divergence and adversarial methods.•Detailed experiment on link prediction, node clustering and embedding visualization. This paper introduces Wasserstein Adversarially Regularized Graph Autoencoder (WARGA), an implicit generative algorithm that directly regularizes the latent distribution of node embedding to a target distribution via the Wasserstein metric. To ensure the Lipschitz continuity, we propose two approaches: WARGA-WC that uses weight clipping method and WARGA-GP that uses gradient penalty method. The proposed models have been validated by link prediction and node clustering on real-world graphs with visualizations of node embeddings, in which WARGA generally outperforms other state-of-the-art models based on Kullback–Leibler (KL) divergence and typical adversarial framework.
ArticleNumber 126235
Author Liang, Huidong
Gao, Junbin
Author_xml – sequence: 1
  givenname: Huidong
  surname: Liang
  fullname: Liang, Huidong
  email: hlia0714@uni.sydney.edu.au
– sequence: 2
  givenname: Junbin
  surname: Gao
  fullname: Gao, Junbin
  email: junbin.gao@sydney.edu.au
BookMark eNqFkMFKAzEURYNUsK3-gYv5gRmTl5kk40IoRatQEERxGWLyqinTmZKkhfr1nTKuXOjq3bc4F-6ZkFHbtUjINaMFo0zcrIsWd7bbFECBFwwE8OqMjJmSkCtQYkTGtIYqB87ggkxiXFPKJIN6TOS7iRFDTOjbbOb2fTTBm6Y5ZC_4uWv65xtdtghm-5XNdqnD1nYOwyU5X5km4tXPnZK3h_vX-WO-fF48zWfL3HIqUl4q-cFKKUWl6qpcAVeOmRq4o44ahrWizHBBHQoAIZ0UTKLkViCUqjZc8im5HXpt6GIMuNLWJ5N816ZgfKMZ1ScFeq0HBfqkQA8Kerj8BW-D35hw-A-7GzDsh-09Bh2t73ej8wFt0q7zfxccAew8eO0
CitedBy_id crossref_primary_10_1109_TKDE_2025_3543378
crossref_primary_10_1016_j_neucom_2024_127992
Cites_doi 10.24963/ijcai.2018/362
10.1609/aimag.v29i3.2157
10.1109/MC.2009.263
10.1109/TNNLS.2020.2978386
10.1101/189787
10.1145/3308558.3313488
10.1145/2939672.2939754
10.1007/s10618-010-0210-x
10.1145/2623330.2623732
10.1145/1935826.1935914
10.1016/j.aiopen.2021.01.001
10.24963/ijcai.2020/380
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2023.126235
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
ExternalDocumentID 10_1016_j_neucom_2023_126235
S0925231223003582
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-487b1477658954f238d1a923d0d0a1e9801a360de62267d7617e73c6e2489a373
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001033555400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:11:06 EST 2025
Tue Nov 18 22:23:56 EST 2025
Fri Feb 23 02:35:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Variational autoencoder
Wasserstein distance
Graph neural networks
Adversarial training
00–01
99–00
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-487b1477658954f238d1a923d0d0a1e9801a360de62267d7617e73c6e2489a373
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2023_126235
crossref_primary_10_1016_j_neucom_2023_126235
elsevier_sciencedirect_doi_10_1016_j_neucom_2023_126235
PublicationCentury 2000
PublicationDate 2023-07-07
PublicationDateYYYYMMDD 2023-07-07
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-07
  day: 07
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Van der Maaten, Hinton (b0175) 2008; 9
M. Arjovsky, L. Bottou, Towards principled methods for training generative adversarial networks, in: International Conference on Learning Representations, 2017.
D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: International Conference on Learning Representations, 2014.
Koren, Bell, Volinsky (b0020) 2009; 42
Salehi, Davulcu (b0120) 2020
T. Miyato, T. Kataoka, M. Koyama, Y. Yoshida, Spectral normalization for generative adversarial networks, in: International Conference on Learning Representations, 2018.
P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention networks, in: International Conference on Learning Representations, 2018.
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b0080) 2014; 27
Arjovsky, Chintala, Bottou (b0095) 2017
X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the 13rd International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, 2010, pp. 249–256.
Wu, Pan, Chen, Long, Zhang, Philip (b0040) 2020; 32
Villani (b0115) 2003
Sen, Namata, Bilgic, Getoor, Galligher, Eliassi-Rad (b0150) 2008; 29
Tanielian, Biau (b0145) 2021
Mrabah, Bouguessa, Touati, Ksantini (b0170) 2021; arXiv:2107.08562
M. Agrawal, M. Zitnik, J. Leskovec, Large-scale analysis of disease pathways in the human interactome, in: Proceedings of the Pacific Symposium on Biocomputing, World Scientific, 2018, pp. 111–122.
T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in: International Conference on Learning Representations, 2017.
B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social representations, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 701–710.
T.N. Kipf, M. Welling, Variational graph auto-encoders, arXiv:1611.07308 (2016).
Tang, Liu (b0015) 2011; 23
W.L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on large graphs, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 1025–1035.
W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, D. Yin, Graph neural networks for social recommendation, in: The World Wide Web Conference, 2019, pp. 417–426.
J.E. Cohen, T. Huster, R. Cohen, Universal lipschitz approximation in bounded depth neural networks, arXiv preprint arXiv:1904.04861 (2019).
I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of wasserstein gans, in: International Conference on Neural Information Processing Systems, 2017, pp. 5769–5779.
T.R. Davidson, L. Falorsi, N. De Cao, T. Kipf, J.M. Tomczak, Hyperspherical variational auto-encoders, in: Conference on Uncertainty in Artificial Intelligence, Association For Uncertainty in Artificial Intelligence (AUAI), 2018, pp. 856–865.
Anil, Lucas, Grosse (b0135) 2019
I. Tolstikhin, O. Bousquet, S. Gelly, B. Schoelkopf, Wasserstein auto-encoders, in: International Conference on Learning Representations, 2018.
L. Backstrom, J. Leskovec, Supervised random walks: predicting and recommending links in social networks, in: Proceedings of the 4th ACM International Conference on Web Search and Data Mining, 2011, pp. 635–644.
X. Lin, Z. Quan, Z.-J. Wang, T. Ma, X. Zeng, Kgnn: Knowledge graph neural network for drug-drug interaction prediction., in: IJCAI, Vol. 380, 2020, pp. 2739–2745.
S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, C. Zhang, Adversarially regularized graph autoencoder for graph embedding, in: International Joint Conference on Artificial Intelligence, 2018.
Rubner, Tomasi, Guibas (b0090) 1998
Zhou, Cui, Hu, Zhang, Yang, Liu, Wang, Li, Sun (b0005) 2020; 1
D.P. Kingma, M. Welling, Auto-encoding variational Bayes, in: International Conference on Learning Representations, 2014.
J. MacQueen, et al., Some methods for classification and analysis of multivariate observations, in: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol. 1, Oakland, CA, USA, 1967, pp. 281–297.
A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 855–864.
10.1016/j.neucom.2023.126235_b0160
10.1016/j.neucom.2023.126235_b0060
10.1016/j.neucom.2023.126235_b0085
10.1016/j.neucom.2023.126235_b0140
10.1016/j.neucom.2023.126235_b0065
10.1016/j.neucom.2023.126235_b0045
10.1016/j.neucom.2023.126235_b0100
Mrabah (10.1016/j.neucom.2023.126235_b0170) 2021; arXiv:2107.08562
10.1016/j.neucom.2023.126235_b0165
10.1016/j.neucom.2023.126235_b0025
Arjovsky (10.1016/j.neucom.2023.126235_b0095) 2017
Sen (10.1016/j.neucom.2023.126235_b0150) 2008; 29
10.1016/j.neucom.2023.126235_b0125
10.1016/j.neucom.2023.126235_b0105
Wu (10.1016/j.neucom.2023.126235_b0040) 2020; 32
Van der Maaten (10.1016/j.neucom.2023.126235_b0175) 2008; 9
Tanielian (10.1016/j.neucom.2023.126235_b0145) 2021
10.1016/j.neucom.2023.126235_b0070
10.1016/j.neucom.2023.126235_b0050
10.1016/j.neucom.2023.126235_b0030
10.1016/j.neucom.2023.126235_b0010
10.1016/j.neucom.2023.126235_b0075
10.1016/j.neucom.2023.126235_b0130
10.1016/j.neucom.2023.126235_b0155
10.1016/j.neucom.2023.126235_b0055
10.1016/j.neucom.2023.126235_b0110
10.1016/j.neucom.2023.126235_b0035
Zhou (10.1016/j.neucom.2023.126235_b0005) 2020; 1
Villani (10.1016/j.neucom.2023.126235_b0115) 2003
Tang (10.1016/j.neucom.2023.126235_b0015) 2011; 23
Koren (10.1016/j.neucom.2023.126235_b0020) 2009; 42
Goodfellow (10.1016/j.neucom.2023.126235_b0080) 2014; 27
Salehi (10.1016/j.neucom.2023.126235_b0120) 2020
Anil (10.1016/j.neucom.2023.126235_b0135) 2019
Rubner (10.1016/j.neucom.2023.126235_b0090) 1998
References_xml – reference: W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, D. Yin, Graph neural networks for social recommendation, in: The World Wide Web Conference, 2019, pp. 417–426.
– reference: A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 855–864.
– reference: B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social representations, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 701–710.
– volume: arXiv:2107.08562
  year: 2021
  ident: b0170
  publication-title: Rethinking graph autoencoder models for attributed graph clustering
– reference: M. Arjovsky, L. Bottou, Towards principled methods for training generative adversarial networks, in: International Conference on Learning Representations, 2017.
– year: 2003
  ident: b0115
  article-title: Topics in Optimal Transportation
– reference: I. Tolstikhin, O. Bousquet, S. Gelly, B. Schoelkopf, Wasserstein auto-encoders, in: International Conference on Learning Representations, 2018.
– reference: W.L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on large graphs, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 1025–1035.
– reference: J.E. Cohen, T. Huster, R. Cohen, Universal lipschitz approximation in bounded depth neural networks, arXiv preprint arXiv:1904.04861 (2019).
– reference: M. Agrawal, M. Zitnik, J. Leskovec, Large-scale analysis of disease pathways in the human interactome, in: Proceedings of the Pacific Symposium on Biocomputing, World Scientific, 2018, pp. 111–122.
– start-page: 291
  year: 2019
  end-page: 301
  ident: b0135
  article-title: Sorting out lipschitz function approximation
  publication-title: International Conference on Machine Learning
– reference: D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: International Conference on Learning Representations, 2014.
– reference: L. Backstrom, J. Leskovec, Supervised random walks: predicting and recommending links in social networks, in: Proceedings of the 4th ACM International Conference on Web Search and Data Mining, 2011, pp. 635–644.
– volume: 27
  year: 2014
  ident: b0080
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inform. Process. Syst.
– start-page: 214
  year: 2017
  end-page: 223
  ident: b0095
  article-title: Wasserstein generative adversarial networks
  publication-title: International Conference on Machine Learning
– reference: T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in: International Conference on Learning Representations, 2017.
– volume: 1
  start-page: 57
  year: 2020
  end-page: 81
  ident: b0005
  article-title: Graph neural networks: A review of methods and applications
  publication-title: AI Open
– volume: 32
  start-page: 4
  year: 2020
  end-page: 24
  ident: b0040
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: X. Lin, Z. Quan, Z.-J. Wang, T. Ma, X. Zeng, Kgnn: Knowledge graph neural network for drug-drug interaction prediction., in: IJCAI, Vol. 380, 2020, pp. 2739–2745.
– reference: I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of wasserstein gans, in: International Conference on Neural Information Processing Systems, 2017, pp. 5769–5779.
– reference: D.P. Kingma, M. Welling, Auto-encoding variational Bayes, in: International Conference on Learning Representations, 2014.
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b0175
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– volume: 29
  year: 2008
  ident: b0150
  article-title: Collective classification in network data
  publication-title: AI magazine
– reference: S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, C. Zhang, Adversarially regularized graph autoencoder for graph embedding, in: International Joint Conference on Artificial Intelligence, 2018.
– start-page: 989
  year: 2020
  end-page: 996
  ident: b0120
  article-title: Graph attention auto-encoders
  publication-title: IEEE International Conference on Tools with Artificial Intelligence
– volume: 23
  start-page: 447
  year: 2011
  end-page: 478
  ident: b0015
  article-title: Leveraging social media networks for classification
  publication-title: Data Min. Knowl. Disc.
– reference: T.N. Kipf, M. Welling, Variational graph auto-encoders, arXiv:1611.07308 (2016).
– reference: T. Miyato, T. Kataoka, M. Koyama, Y. Yoshida, Spectral normalization for generative adversarial networks, in: International Conference on Learning Representations, 2018.
– reference: T.R. Davidson, L. Falorsi, N. De Cao, T. Kipf, J.M. Tomczak, Hyperspherical variational auto-encoders, in: Conference on Uncertainty in Artificial Intelligence, Association For Uncertainty in Artificial Intelligence (AUAI), 2018, pp. 856–865.
– volume: 42
  start-page: 30
  year: 2009
  end-page: 37
  ident: b0020
  article-title: Matrix factorization techniques for recommender systems
  publication-title: Computer
– reference: J. MacQueen, et al., Some methods for classification and analysis of multivariate observations, in: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol. 1, Oakland, CA, USA, 1967, pp. 281–297.
– reference: X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the 13rd International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, 2010, pp. 249–256.
– reference: P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention networks, in: International Conference on Learning Representations, 2018.
– start-page: 442
  year: 2021
  end-page: 450
  ident: b0145
  article-title: Approximating lipschitz continuous functions with groupsort neural networks
  publication-title: International Conference on Artificial Intelligence and Statistics
– start-page: 59
  year: 1998
  end-page: 66
  ident: b0090
  article-title: A metric for distributions with applications to image databases
  publication-title: International Conference on Computer Vision
– start-page: 291
  year: 2019
  ident: 10.1016/j.neucom.2023.126235_b0135
  article-title: Sorting out lipschitz function approximation
– ident: 10.1016/j.neucom.2023.126235_b0070
– ident: 10.1016/j.neucom.2023.126235_b0075
  doi: 10.24963/ijcai.2018/362
– volume: 29
  issue: 3
  year: 2008
  ident: 10.1016/j.neucom.2023.126235_b0150
  article-title: Collective classification in network data
  publication-title: AI magazine
  doi: 10.1609/aimag.v29i3.2157
– volume: 42
  start-page: 30
  issue: 8
  year: 2009
  ident: 10.1016/j.neucom.2023.126235_b0020
  article-title: Matrix factorization techniques for recommender systems
  publication-title: Computer
  doi: 10.1109/MC.2009.263
– ident: 10.1016/j.neucom.2023.126235_b0110
– volume: 32
  start-page: 4
  issue: 1
  year: 2020
  ident: 10.1016/j.neucom.2023.126235_b0040
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.2978386
– volume: 27
  year: 2014
  ident: 10.1016/j.neucom.2023.126235_b0080
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inform. Process. Syst.
– ident: 10.1016/j.neucom.2023.126235_b0030
  doi: 10.1101/189787
– ident: 10.1016/j.neucom.2023.126235_b0055
– ident: 10.1016/j.neucom.2023.126235_b0065
– ident: 10.1016/j.neucom.2023.126235_b0025
  doi: 10.1145/3308558.3313488
– start-page: 214
  year: 2017
  ident: 10.1016/j.neucom.2023.126235_b0095
  article-title: Wasserstein generative adversarial networks
– start-page: 989
  year: 2020
  ident: 10.1016/j.neucom.2023.126235_b0120
  article-title: Graph attention auto-encoders
– ident: 10.1016/j.neucom.2023.126235_b0160
– ident: 10.1016/j.neucom.2023.126235_b0155
– ident: 10.1016/j.neucom.2023.126235_b0105
– ident: 10.1016/j.neucom.2023.126235_b0130
– ident: 10.1016/j.neucom.2023.126235_b0050
  doi: 10.1145/2939672.2939754
– year: 2003
  ident: 10.1016/j.neucom.2023.126235_b0115
– start-page: 442
  year: 2021
  ident: 10.1016/j.neucom.2023.126235_b0145
  article-title: Approximating lipschitz continuous functions with groupsort neural networks
– volume: 23
  start-page: 447
  issue: 3
  year: 2011
  ident: 10.1016/j.neucom.2023.126235_b0015
  article-title: Leveraging social media networks for classification
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1007/s10618-010-0210-x
– ident: 10.1016/j.neucom.2023.126235_b0045
  doi: 10.1145/2623330.2623732
– start-page: 59
  year: 1998
  ident: 10.1016/j.neucom.2023.126235_b0090
  article-title: A metric for distributions with applications to image databases
– ident: 10.1016/j.neucom.2023.126235_b0010
  doi: 10.1145/1935826.1935914
– ident: 10.1016/j.neucom.2023.126235_b0060
– volume: 1
  start-page: 57
  year: 2020
  ident: 10.1016/j.neucom.2023.126235_b0005
  article-title: Graph neural networks: A review of methods and applications
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.01.001
– ident: 10.1016/j.neucom.2023.126235_b0165
– ident: 10.1016/j.neucom.2023.126235_b0035
  doi: 10.24963/ijcai.2020/380
– ident: 10.1016/j.neucom.2023.126235_b0085
– ident: 10.1016/j.neucom.2023.126235_b0100
– ident: 10.1016/j.neucom.2023.126235_b0140
– volume: arXiv:2107.08562
  year: 2021
  ident: 10.1016/j.neucom.2023.126235_b0170
  publication-title: Rethinking graph autoencoder models for attributed graph clustering
– volume: 9
  start-page: 2579
  issue: 86
  year: 2008
  ident: 10.1016/j.neucom.2023.126235_b0175
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.neucom.2023.126235_b0125
SSID ssj0017129
Score 2.4150672
Snippet •Application of Wasserstein distance under graph settings.•Using Wasserstein distance for node embedding regularization.•Applying weight clipping and gradient...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126235
SubjectTerms Adversarial training
Graph neural networks
Variational autoencoder
Wasserstein distance
Title Wasserstein Adversarially Regularized Graph Autoencoder
URI https://dx.doi.org/10.1016/j.neucom.2023.126235
Volume 541
WOSCitedRecordID wos001033555400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF5Sp4de8mpLkiZBh96KgqSVtNJRlAQnhBCIS30T-zKVSWRjSyX012dGu5IVXJomkIswwusR861nvxnNg5CvodRpqALh-mHE0UERrqA6cidCwvkluaKy6a5_xa6vk_E4vbETBZfNOAFWlsnDQzp_U6jhHoCNpbMvgLv7UbgBnwF0uALscP0v4H_ypoISp1iacctLjlLvkGzj3PlF8UdjEIrPf33L6mqGnSyVzdGdtr2cajjXmnkPNpKQ3WNDBYW7p4scXBU21jysCzWzJyCm8nDzNqcuhW3rbaMKAW0yUNkq1LVW7mJihkHkAiE05lMbi5mwoKlF75vUyDSzWjPPJlIwPS11jbk6KPjUD4CBRavjqEsSvEVxKA28JA8Let-RzYBFaTIgm9nF2fiye1vE_MD0VLSP15ZINnl867L-TkF6tGK0Q7asP-BkBsddsqHLPbLdztpwrOn9SFgPVucJrE4PVqeB1enB-on8OD8bfR-6duiFK8F7q1xwIIUfMgbMMI3CCTAq5XNg4cpTHvd1CoyC09hTOgbizBQDBqoZlbEOwiTllNHPZFDOSr1PHCG8iYhpLIUvwLFNRBgJj3ENnBT-oTE7ILTVQy5tR3gcTHKXt6l_09xoL0ft5UZ7B8TtVs1NR5Rnvs9aFeeW1Rm2lsOu-OfKw1ev_EI-rDb1ERlUi1ofk_fyd1UsFyd2-zwCHBhxFQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wasserstein+Adversarially+Regularized+Graph+Autoencoder&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Liang%2C+Huidong&rft.au=Gao%2C+Junbin&rft.date=2023-07-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=541&rft_id=info:doi/10.1016%2Fj.neucom.2023.126235&rft.externalDocID=S0925231223003582
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon