Wasserstein Adversarially Regularized Graph Autoencoder
•Application of Wasserstein distance under graph settings.•Using Wasserstein distance for node embedding regularization.•Applying weight clipping and gradient penalty approaches for Lipschitz continuity.•Comparison of regularization against KL divergence and adversarial methods.•Detailed experiment...
Uložené v:
| Vydané v: | Neurocomputing (Amsterdam) Ročník 541; s. 126235 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
07.07.2023
|
| Predmet: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Application of Wasserstein distance under graph settings.•Using Wasserstein distance for node embedding regularization.•Applying weight clipping and gradient penalty approaches for Lipschitz continuity.•Comparison of regularization against KL divergence and adversarial methods.•Detailed experiment on link prediction, node clustering and embedding visualization.
This paper introduces Wasserstein Adversarially Regularized Graph Autoencoder (WARGA), an implicit generative algorithm that directly regularizes the latent distribution of node embedding to a target distribution via the Wasserstein metric. To ensure the Lipschitz continuity, we propose two approaches: WARGA-WC that uses weight clipping method and WARGA-GP that uses gradient penalty method. The proposed models have been validated by link prediction and node clustering on real-world graphs with visualizations of node embeddings, in which WARGA generally outperforms other state-of-the-art models based on Kullback–Leibler (KL) divergence and typical adversarial framework. |
|---|---|
| AbstractList | •Application of Wasserstein distance under graph settings.•Using Wasserstein distance for node embedding regularization.•Applying weight clipping and gradient penalty approaches for Lipschitz continuity.•Comparison of regularization against KL divergence and adversarial methods.•Detailed experiment on link prediction, node clustering and embedding visualization.
This paper introduces Wasserstein Adversarially Regularized Graph Autoencoder (WARGA), an implicit generative algorithm that directly regularizes the latent distribution of node embedding to a target distribution via the Wasserstein metric. To ensure the Lipschitz continuity, we propose two approaches: WARGA-WC that uses weight clipping method and WARGA-GP that uses gradient penalty method. The proposed models have been validated by link prediction and node clustering on real-world graphs with visualizations of node embeddings, in which WARGA generally outperforms other state-of-the-art models based on Kullback–Leibler (KL) divergence and typical adversarial framework. |
| ArticleNumber | 126235 |
| Author | Liang, Huidong Gao, Junbin |
| Author_xml | – sequence: 1 givenname: Huidong surname: Liang fullname: Liang, Huidong email: hlia0714@uni.sydney.edu.au – sequence: 2 givenname: Junbin surname: Gao fullname: Gao, Junbin email: junbin.gao@sydney.edu.au |
| BookMark | eNqFkMFKAzEURYNUsK3-gYv5gRmTl5kk40IoRatQEERxGWLyqinTmZKkhfr1nTKuXOjq3bc4F-6ZkFHbtUjINaMFo0zcrIsWd7bbFECBFwwE8OqMjJmSkCtQYkTGtIYqB87ggkxiXFPKJIN6TOS7iRFDTOjbbOb2fTTBm6Y5ZC_4uWv65xtdtghm-5XNdqnD1nYOwyU5X5km4tXPnZK3h_vX-WO-fF48zWfL3HIqUl4q-cFKKUWl6qpcAVeOmRq4o44ahrWizHBBHQoAIZ0UTKLkViCUqjZc8im5HXpt6GIMuNLWJ5N816ZgfKMZ1ScFeq0HBfqkQA8Kerj8BW-D35hw-A-7GzDsh-09Bh2t73ej8wFt0q7zfxccAew8eO0 |
| CitedBy_id | crossref_primary_10_1109_TKDE_2025_3543378 crossref_primary_10_1016_j_neucom_2024_127992 |
| Cites_doi | 10.24963/ijcai.2018/362 10.1609/aimag.v29i3.2157 10.1109/MC.2009.263 10.1109/TNNLS.2020.2978386 10.1101/189787 10.1145/3308558.3313488 10.1145/2939672.2939754 10.1007/s10618-010-0210-x 10.1145/2623330.2623732 10.1145/1935826.1935914 10.1016/j.aiopen.2021.01.001 10.24963/ijcai.2020/380 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2023.126235 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| ExternalDocumentID | 10_1016_j_neucom_2023_126235 S0925231223003582 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-487b1477658954f238d1a923d0d0a1e9801a360de62267d7617e73c6e2489a373 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001033555400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 07:11:06 EST 2025 Tue Nov 18 22:23:56 EST 2025 Fri Feb 23 02:35:48 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Variational autoencoder Wasserstein distance Graph neural networks Adversarial training 00–01 99–00 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-487b1477658954f238d1a923d0d0a1e9801a360de62267d7617e73c6e2489a373 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2023_126235 crossref_primary_10_1016_j_neucom_2023_126235 elsevier_sciencedirect_doi_10_1016_j_neucom_2023_126235 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-07 |
| PublicationDateYYYYMMDD | 2023-07-07 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Van der Maaten, Hinton (b0175) 2008; 9 M. Arjovsky, L. Bottou, Towards principled methods for training generative adversarial networks, in: International Conference on Learning Representations, 2017. D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: International Conference on Learning Representations, 2014. Koren, Bell, Volinsky (b0020) 2009; 42 Salehi, Davulcu (b0120) 2020 T. Miyato, T. Kataoka, M. Koyama, Y. Yoshida, Spectral normalization for generative adversarial networks, in: International Conference on Learning Representations, 2018. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention networks, in: International Conference on Learning Representations, 2018. Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b0080) 2014; 27 Arjovsky, Chintala, Bottou (b0095) 2017 X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the 13rd International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, 2010, pp. 249–256. Wu, Pan, Chen, Long, Zhang, Philip (b0040) 2020; 32 Villani (b0115) 2003 Sen, Namata, Bilgic, Getoor, Galligher, Eliassi-Rad (b0150) 2008; 29 Tanielian, Biau (b0145) 2021 Mrabah, Bouguessa, Touati, Ksantini (b0170) 2021; arXiv:2107.08562 M. Agrawal, M. Zitnik, J. Leskovec, Large-scale analysis of disease pathways in the human interactome, in: Proceedings of the Pacific Symposium on Biocomputing, World Scientific, 2018, pp. 111–122. T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in: International Conference on Learning Representations, 2017. B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social representations, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 701–710. T.N. Kipf, M. Welling, Variational graph auto-encoders, arXiv:1611.07308 (2016). Tang, Liu (b0015) 2011; 23 W.L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on large graphs, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 1025–1035. W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, D. Yin, Graph neural networks for social recommendation, in: The World Wide Web Conference, 2019, pp. 417–426. J.E. Cohen, T. Huster, R. Cohen, Universal lipschitz approximation in bounded depth neural networks, arXiv preprint arXiv:1904.04861 (2019). I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of wasserstein gans, in: International Conference on Neural Information Processing Systems, 2017, pp. 5769–5779. T.R. Davidson, L. Falorsi, N. De Cao, T. Kipf, J.M. Tomczak, Hyperspherical variational auto-encoders, in: Conference on Uncertainty in Artificial Intelligence, Association For Uncertainty in Artificial Intelligence (AUAI), 2018, pp. 856–865. Anil, Lucas, Grosse (b0135) 2019 I. Tolstikhin, O. Bousquet, S. Gelly, B. Schoelkopf, Wasserstein auto-encoders, in: International Conference on Learning Representations, 2018. L. Backstrom, J. Leskovec, Supervised random walks: predicting and recommending links in social networks, in: Proceedings of the 4th ACM International Conference on Web Search and Data Mining, 2011, pp. 635–644. X. Lin, Z. Quan, Z.-J. Wang, T. Ma, X. Zeng, Kgnn: Knowledge graph neural network for drug-drug interaction prediction., in: IJCAI, Vol. 380, 2020, pp. 2739–2745. S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, C. Zhang, Adversarially regularized graph autoencoder for graph embedding, in: International Joint Conference on Artificial Intelligence, 2018. Rubner, Tomasi, Guibas (b0090) 1998 Zhou, Cui, Hu, Zhang, Yang, Liu, Wang, Li, Sun (b0005) 2020; 1 D.P. Kingma, M. Welling, Auto-encoding variational Bayes, in: International Conference on Learning Representations, 2014. J. MacQueen, et al., Some methods for classification and analysis of multivariate observations, in: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol. 1, Oakland, CA, USA, 1967, pp. 281–297. A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 855–864. 10.1016/j.neucom.2023.126235_b0160 10.1016/j.neucom.2023.126235_b0060 10.1016/j.neucom.2023.126235_b0085 10.1016/j.neucom.2023.126235_b0140 10.1016/j.neucom.2023.126235_b0065 10.1016/j.neucom.2023.126235_b0045 10.1016/j.neucom.2023.126235_b0100 Mrabah (10.1016/j.neucom.2023.126235_b0170) 2021; arXiv:2107.08562 10.1016/j.neucom.2023.126235_b0165 10.1016/j.neucom.2023.126235_b0025 Arjovsky (10.1016/j.neucom.2023.126235_b0095) 2017 Sen (10.1016/j.neucom.2023.126235_b0150) 2008; 29 10.1016/j.neucom.2023.126235_b0125 10.1016/j.neucom.2023.126235_b0105 Wu (10.1016/j.neucom.2023.126235_b0040) 2020; 32 Van der Maaten (10.1016/j.neucom.2023.126235_b0175) 2008; 9 Tanielian (10.1016/j.neucom.2023.126235_b0145) 2021 10.1016/j.neucom.2023.126235_b0070 10.1016/j.neucom.2023.126235_b0050 10.1016/j.neucom.2023.126235_b0030 10.1016/j.neucom.2023.126235_b0010 10.1016/j.neucom.2023.126235_b0075 10.1016/j.neucom.2023.126235_b0130 10.1016/j.neucom.2023.126235_b0155 10.1016/j.neucom.2023.126235_b0055 10.1016/j.neucom.2023.126235_b0110 10.1016/j.neucom.2023.126235_b0035 Zhou (10.1016/j.neucom.2023.126235_b0005) 2020; 1 Villani (10.1016/j.neucom.2023.126235_b0115) 2003 Tang (10.1016/j.neucom.2023.126235_b0015) 2011; 23 Koren (10.1016/j.neucom.2023.126235_b0020) 2009; 42 Goodfellow (10.1016/j.neucom.2023.126235_b0080) 2014; 27 Salehi (10.1016/j.neucom.2023.126235_b0120) 2020 Anil (10.1016/j.neucom.2023.126235_b0135) 2019 Rubner (10.1016/j.neucom.2023.126235_b0090) 1998 |
| References_xml | – reference: W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, D. Yin, Graph neural networks for social recommendation, in: The World Wide Web Conference, 2019, pp. 417–426. – reference: A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 855–864. – reference: B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social representations, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 701–710. – volume: arXiv:2107.08562 year: 2021 ident: b0170 publication-title: Rethinking graph autoencoder models for attributed graph clustering – reference: M. Arjovsky, L. Bottou, Towards principled methods for training generative adversarial networks, in: International Conference on Learning Representations, 2017. – year: 2003 ident: b0115 article-title: Topics in Optimal Transportation – reference: I. Tolstikhin, O. Bousquet, S. Gelly, B. Schoelkopf, Wasserstein auto-encoders, in: International Conference on Learning Representations, 2018. – reference: W.L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on large graphs, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 1025–1035. – reference: J.E. Cohen, T. Huster, R. Cohen, Universal lipschitz approximation in bounded depth neural networks, arXiv preprint arXiv:1904.04861 (2019). – reference: M. Agrawal, M. Zitnik, J. Leskovec, Large-scale analysis of disease pathways in the human interactome, in: Proceedings of the Pacific Symposium on Biocomputing, World Scientific, 2018, pp. 111–122. – start-page: 291 year: 2019 end-page: 301 ident: b0135 article-title: Sorting out lipschitz function approximation publication-title: International Conference on Machine Learning – reference: D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: International Conference on Learning Representations, 2014. – reference: L. Backstrom, J. Leskovec, Supervised random walks: predicting and recommending links in social networks, in: Proceedings of the 4th ACM International Conference on Web Search and Data Mining, 2011, pp. 635–644. – volume: 27 year: 2014 ident: b0080 article-title: Generative adversarial nets publication-title: Adv. Neural Inform. Process. Syst. – start-page: 214 year: 2017 end-page: 223 ident: b0095 article-title: Wasserstein generative adversarial networks publication-title: International Conference on Machine Learning – reference: T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in: International Conference on Learning Representations, 2017. – volume: 1 start-page: 57 year: 2020 end-page: 81 ident: b0005 article-title: Graph neural networks: A review of methods and applications publication-title: AI Open – volume: 32 start-page: 4 year: 2020 end-page: 24 ident: b0040 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems – reference: X. Lin, Z. Quan, Z.-J. Wang, T. Ma, X. Zeng, Kgnn: Knowledge graph neural network for drug-drug interaction prediction., in: IJCAI, Vol. 380, 2020, pp. 2739–2745. – reference: I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of wasserstein gans, in: International Conference on Neural Information Processing Systems, 2017, pp. 5769–5779. – reference: D.P. Kingma, M. Welling, Auto-encoding variational Bayes, in: International Conference on Learning Representations, 2014. – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b0175 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – volume: 29 year: 2008 ident: b0150 article-title: Collective classification in network data publication-title: AI magazine – reference: S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, C. Zhang, Adversarially regularized graph autoencoder for graph embedding, in: International Joint Conference on Artificial Intelligence, 2018. – start-page: 989 year: 2020 end-page: 996 ident: b0120 article-title: Graph attention auto-encoders publication-title: IEEE International Conference on Tools with Artificial Intelligence – volume: 23 start-page: 447 year: 2011 end-page: 478 ident: b0015 article-title: Leveraging social media networks for classification publication-title: Data Min. Knowl. Disc. – reference: T.N. Kipf, M. Welling, Variational graph auto-encoders, arXiv:1611.07308 (2016). – reference: T. Miyato, T. Kataoka, M. Koyama, Y. Yoshida, Spectral normalization for generative adversarial networks, in: International Conference on Learning Representations, 2018. – reference: T.R. Davidson, L. Falorsi, N. De Cao, T. Kipf, J.M. Tomczak, Hyperspherical variational auto-encoders, in: Conference on Uncertainty in Artificial Intelligence, Association For Uncertainty in Artificial Intelligence (AUAI), 2018, pp. 856–865. – volume: 42 start-page: 30 year: 2009 end-page: 37 ident: b0020 article-title: Matrix factorization techniques for recommender systems publication-title: Computer – reference: J. MacQueen, et al., Some methods for classification and analysis of multivariate observations, in: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol. 1, Oakland, CA, USA, 1967, pp. 281–297. – reference: X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the 13rd International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, 2010, pp. 249–256. – reference: P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention networks, in: International Conference on Learning Representations, 2018. – start-page: 442 year: 2021 end-page: 450 ident: b0145 article-title: Approximating lipschitz continuous functions with groupsort neural networks publication-title: International Conference on Artificial Intelligence and Statistics – start-page: 59 year: 1998 end-page: 66 ident: b0090 article-title: A metric for distributions with applications to image databases publication-title: International Conference on Computer Vision – start-page: 291 year: 2019 ident: 10.1016/j.neucom.2023.126235_b0135 article-title: Sorting out lipschitz function approximation – ident: 10.1016/j.neucom.2023.126235_b0070 – ident: 10.1016/j.neucom.2023.126235_b0075 doi: 10.24963/ijcai.2018/362 – volume: 29 issue: 3 year: 2008 ident: 10.1016/j.neucom.2023.126235_b0150 article-title: Collective classification in network data publication-title: AI magazine doi: 10.1609/aimag.v29i3.2157 – volume: 42 start-page: 30 issue: 8 year: 2009 ident: 10.1016/j.neucom.2023.126235_b0020 article-title: Matrix factorization techniques for recommender systems publication-title: Computer doi: 10.1109/MC.2009.263 – ident: 10.1016/j.neucom.2023.126235_b0110 – volume: 32 start-page: 4 issue: 1 year: 2020 ident: 10.1016/j.neucom.2023.126235_b0040 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.2978386 – volume: 27 year: 2014 ident: 10.1016/j.neucom.2023.126235_b0080 article-title: Generative adversarial nets publication-title: Adv. Neural Inform. Process. Syst. – ident: 10.1016/j.neucom.2023.126235_b0030 doi: 10.1101/189787 – ident: 10.1016/j.neucom.2023.126235_b0055 – ident: 10.1016/j.neucom.2023.126235_b0065 – ident: 10.1016/j.neucom.2023.126235_b0025 doi: 10.1145/3308558.3313488 – start-page: 214 year: 2017 ident: 10.1016/j.neucom.2023.126235_b0095 article-title: Wasserstein generative adversarial networks – start-page: 989 year: 2020 ident: 10.1016/j.neucom.2023.126235_b0120 article-title: Graph attention auto-encoders – ident: 10.1016/j.neucom.2023.126235_b0160 – ident: 10.1016/j.neucom.2023.126235_b0155 – ident: 10.1016/j.neucom.2023.126235_b0105 – ident: 10.1016/j.neucom.2023.126235_b0130 – ident: 10.1016/j.neucom.2023.126235_b0050 doi: 10.1145/2939672.2939754 – year: 2003 ident: 10.1016/j.neucom.2023.126235_b0115 – start-page: 442 year: 2021 ident: 10.1016/j.neucom.2023.126235_b0145 article-title: Approximating lipschitz continuous functions with groupsort neural networks – volume: 23 start-page: 447 issue: 3 year: 2011 ident: 10.1016/j.neucom.2023.126235_b0015 article-title: Leveraging social media networks for classification publication-title: Data Min. Knowl. Disc. doi: 10.1007/s10618-010-0210-x – ident: 10.1016/j.neucom.2023.126235_b0045 doi: 10.1145/2623330.2623732 – start-page: 59 year: 1998 ident: 10.1016/j.neucom.2023.126235_b0090 article-title: A metric for distributions with applications to image databases – ident: 10.1016/j.neucom.2023.126235_b0010 doi: 10.1145/1935826.1935914 – ident: 10.1016/j.neucom.2023.126235_b0060 – volume: 1 start-page: 57 year: 2020 ident: 10.1016/j.neucom.2023.126235_b0005 article-title: Graph neural networks: A review of methods and applications publication-title: AI Open doi: 10.1016/j.aiopen.2021.01.001 – ident: 10.1016/j.neucom.2023.126235_b0165 – ident: 10.1016/j.neucom.2023.126235_b0035 doi: 10.24963/ijcai.2020/380 – ident: 10.1016/j.neucom.2023.126235_b0085 – ident: 10.1016/j.neucom.2023.126235_b0100 – ident: 10.1016/j.neucom.2023.126235_b0140 – volume: arXiv:2107.08562 year: 2021 ident: 10.1016/j.neucom.2023.126235_b0170 publication-title: Rethinking graph autoencoder models for attributed graph clustering – volume: 9 start-page: 2579 issue: 86 year: 2008 ident: 10.1016/j.neucom.2023.126235_b0175 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.neucom.2023.126235_b0125 |
| SSID | ssj0017129 |
| Score | 2.4150672 |
| Snippet | •Application of Wasserstein distance under graph settings.•Using Wasserstein distance for node embedding regularization.•Applying weight clipping and gradient... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 126235 |
| SubjectTerms | Adversarial training Graph neural networks Variational autoencoder Wasserstein distance |
| Title | Wasserstein Adversarially Regularized Graph Autoencoder |
| URI | https://dx.doi.org/10.1016/j.neucom.2023.126235 |
| Volume | 541 |
| WOSCitedRecordID | wos001033555400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF5Sp4de8mpLkiZBh96KgqSVtNJRlAQnhBCIS30T-zKVSWRjSyX012dGu5IVXJomkIswwusR861nvxnNg5CvodRpqALh-mHE0UERrqA6cidCwvkluaKy6a5_xa6vk_E4vbETBZfNOAFWlsnDQzp_U6jhHoCNpbMvgLv7UbgBnwF0uALscP0v4H_ypoISp1iacctLjlLvkGzj3PlF8UdjEIrPf33L6mqGnSyVzdGdtr2cajjXmnkPNpKQ3WNDBYW7p4scXBU21jysCzWzJyCm8nDzNqcuhW3rbaMKAW0yUNkq1LVW7mJihkHkAiE05lMbi5mwoKlF75vUyDSzWjPPJlIwPS11jbk6KPjUD4CBRavjqEsSvEVxKA28JA8Let-RzYBFaTIgm9nF2fiye1vE_MD0VLSP15ZINnl867L-TkF6tGK0Q7asP-BkBsddsqHLPbLdztpwrOn9SFgPVucJrE4PVqeB1enB-on8OD8bfR-6duiFK8F7q1xwIIUfMgbMMI3CCTAq5XNg4cpTHvd1CoyC09hTOgbizBQDBqoZlbEOwiTllNHPZFDOSr1PHCG8iYhpLIUvwLFNRBgJj3ENnBT-oTE7ILTVQy5tR3gcTHKXt6l_09xoL0ft5UZ7B8TtVs1NR5Rnvs9aFeeW1Rm2lsOu-OfKw1ev_EI-rDb1ERlUi1ofk_fyd1UsFyd2-zwCHBhxFQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wasserstein+Adversarially+Regularized+Graph+Autoencoder&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Liang%2C+Huidong&rft.au=Gao%2C+Junbin&rft.date=2023-07-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=541&rft_id=info:doi/10.1016%2Fj.neucom.2023.126235&rft.externalDocID=S0925231223003582 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |