Small lunar crater identification and age estimation in Chang'e-5 landing area based on improved Faster R-CNN

The Chang'e-5 (CE-5) mission marks China's first lunar sample return endeavor, with its landing site (43.06°N, 51.92°W) situated in the Mons Rümker region of the northern Oceanus Procellarum on the Moon. This region hosts some of the youngest mare basalts of the Moon and contains a relativ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Icarus (New York, N.Y. 1962) Ročník 410; s. 115909
Hlavní autoři: Zou, Chen, Lai, Jialong, Liu, Yanshuang, Cui, Feifei, Xu, Yi, Qiao, Le
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.03.2024
Témata:
ISSN:0019-1035, 1090-2643
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Chang'e-5 (CE-5) mission marks China's first lunar sample return endeavor, with its landing site (43.06°N, 51.92°W) situated in the Mons Rümker region of the northern Oceanus Procellarum on the Moon. This region hosts some of the youngest mare basalts of the Moon and contains a relatively youthful geologic unit characterized by crater's equilibrium diameters slightly over 100 m. By refining the Faster Region-based Convolutional Neural Network (Faster R-CNN) algorithm and leveraging high-resolution imagery to create training samples, accurate identification of lunar craters can be achieved. In this study, we enhance the algorithm in aspects such as anchor boxes and Region of Interest alignment. Additionally, we have utilized high-resolution images for training, and identify and statistics craters within the CE-5 landing area. Ultimately, our model attains a validation set Recall of 90%, Precision of 69%, and an Average Precision score of 0.83. Notably, in certain scales, such as for the crater larger than 400 m, recognition results reach Precision of 88% and Recall of 89%. The findings of this study are mapped into a crater catalog. Furthermore, we predict crater density and integrate it with geochronological functions to estimate the absolute model age of nine major geologic units within the CE-5 landing area. The results are generally in agreement with those of other studies who have used manual methods for crater counting, and verify the correctness of our automatic crater identification results. •Enhanced small crater recognition in deep learning: sub-kilometer scale precision.•Employed three strategies to improve Faster RCNN in identifying lunar craters.•Created a crater catalog and estimated model age for the Chang'E-5 area.
AbstractList The Chang'e-5 (CE-5) mission marks China's first lunar sample return endeavor, with its landing site (43.06°N, 51.92°W) situated in the Mons Rümker region of the northern Oceanus Procellarum on the Moon. This region hosts some of the youngest mare basalts of the Moon and contains a relatively youthful geologic unit characterized by crater's equilibrium diameters slightly over 100 m. By refining the Faster Region-based Convolutional Neural Network (Faster R-CNN) algorithm and leveraging high-resolution imagery to create training samples, accurate identification of lunar craters can be achieved. In this study, we enhance the algorithm in aspects such as anchor boxes and Region of Interest alignment. Additionally, we have utilized high-resolution images for training, and identify and statistics craters within the CE-5 landing area. Ultimately, our model attains a validation set Recall of 90%, Precision of 69%, and an Average Precision score of 0.83. Notably, in certain scales, such as for the crater larger than 400 m, recognition results reach Precision of 88% and Recall of 89%. The findings of this study are mapped into a crater catalog. Furthermore, we predict crater density and integrate it with geochronological functions to estimate the absolute model age of nine major geologic units within the CE-5 landing area. The results are generally in agreement with those of other studies who have used manual methods for crater counting, and verify the correctness of our automatic crater identification results. •Enhanced small crater recognition in deep learning: sub-kilometer scale precision.•Employed three strategies to improve Faster RCNN in identifying lunar craters.•Created a crater catalog and estimated model age for the Chang'E-5 area.
ArticleNumber 115909
Author Zou, Chen
Cui, Feifei
Lai, Jialong
Liu, Yanshuang
Xu, Yi
Qiao, Le
Author_xml – sequence: 1
  givenname: Chen
  surname: Zou
  fullname: Zou, Chen
  organization: School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
– sequence: 2
  givenname: Jialong
  surname: Lai
  fullname: Lai, Jialong
  email: laijialong@jxust.edu.cn
  organization: School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
– sequence: 3
  givenname: Yanshuang
  surname: Liu
  fullname: Liu, Yanshuang
  organization: School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
– sequence: 4
  givenname: Feifei
  surname: Cui
  fullname: Cui, Feifei
  organization: School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
– sequence: 5
  givenname: Yi
  surname: Xu
  fullname: Xu, Yi
  organization: State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau
– sequence: 6
  givenname: Le
  surname: Qiao
  fullname: Qiao, Le
  organization: Shandong Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Institute of Space Sciences, Shandong University, Weihai, Shandong 264209, China
BookMark eNqFkE9LAzEQxYNUsK1-Aw-5edp1stlsux4EKVaFUsE_5zCbTGvKNluSbcFv79b15EFPMwzvPeb9RmzgG0-MXQpIBYjiepM6g2Ef0wwymQqhSihP2FBACUlW5HLAhgCiTARIdcZGMW4AQE1LOWTb1y3WNa_3HgM3AVsK3FnyrVt1ma1rPEdvOa6JU2zdtj85z2cf6NdXlChedwLn1xwDIa8wkuVHyXYXmkO3zzEeQ1-S2XJ5zk5XWEe6-Jlj9j6_f5s9Jovnh6fZ3SIxEoo2yQsUNiOkyQqm1bQwolKVrFSusmwKslTGKkFFgXkp8xwnYHOLk4nNQFa2UCTH7KbPNaGJMdBKG9d-v94GdLUWoI_g9Eb34PQRnO7Bdeb8l3kXuuLh8z_bbW-jrtjBUdDROPKGrAtkWm0b93fAF3JojAs
CitedBy_id crossref_primary_10_5334_cstp_731
crossref_primary_10_1007_s12145_024_01396_2
crossref_primary_10_1080_10095020_2025_2452932
crossref_primary_10_1016_j_icarus_2025_116483
crossref_primary_10_1002_mop_70273
crossref_primary_10_1029_2025JE008937
Cites_doi 10.1029/2018JE005820
10.1016/j.epsl.2009.12.041
10.1016/j.epsl.2014.06.038
10.1007/s40295-021-00287-8
10.1126/science.1163382
10.1016/j.pss.2017.05.006
10.1029/2018JE005595
10.1038/nature19829
10.1109/TPAMI.2016.2577031
10.1016/j.icarus.2020.113749
10.3390/rs14030621
10.1016/j.icarus.2019.03.032
10.1016/j.epsl.2022.117791
10.1029/2018JE005592
10.1016/j.icarus.2018.06.022
10.14358/PERS.85.7.481
10.3390/rs10071067
10.1016/j.icarus.2015.07.039
10.1109/TGRS.2019.2902198
10.1016/j.icarus.2016.05.019
10.1016/j.asr.2021.09.001
10.5194/isprs-archives-XLII-3-271-2018
10.1016/j.icarus.2023.115434
10.1186/s40562-018-0116-9
10.1016/j.asr.2013.05.010
10.1126/science.1195050
10.1007/s11263-009-0275-4
10.1016/0019-1035(79)90009-5
10.1016/j.icarus.2013.07.004
10.1016/j.icarus.2014.02.022
10.1016/j.epsl.2020.116272
10.1109/TAES.2022.3184660
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright_xml – notice: 2023 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.icarus.2023.115909
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1090-2643
ExternalDocumentID 10_1016_j_icarus_2023_115909
S0019103523004888
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNEU
ABQEM
ABQYD
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LG5
LY3
LZ4
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SSE
SSQ
SSZ
T5K
TAE
ZMT
ZU3
~02
~G-
29I
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EJD
FEDTE
FGOYB
HMA
HME
HVGLF
HZ~
MVM
OHT
PVJ
R2-
SEP
UQL
VOH
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c306t-46a1d2eae7f08b86c1b5b3b5452280395cd51e66a49344a70d4da77d203bd65e3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001135621600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0019-1035
IngestDate Sat Nov 29 07:00:03 EST 2025
Tue Nov 18 21:18:24 EST 2025
Sat Feb 17 16:11:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Small craters detection
Lunar crater dating
Algorithm optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-46a1d2eae7f08b86c1b5b3b5452280395cd51e66a49344a70d4da77d203bd65e3
ParticipantIDs crossref_citationtrail_10_1016_j_icarus_2023_115909
crossref_primary_10_1016_j_icarus_2023_115909
elsevier_sciencedirect_doi_10_1016_j_icarus_2023_115909
PublicationCentury 2000
PublicationDate 2024-03-01
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Icarus (New York, N.Y. 1962)
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wang, Jiang, Zhang (bb0175) 2018; 10
Christian, Derksen, Watkins (bb0015) 2021; 68
Robbins (bb0155) 2014; 234
Eggert, Zecha, Brehm, Lienhart (bb0035) 2017
(bb0060) 1979; 37
Liu, Guo, Hu, Chen, Liu (bb0095) 2023; 59
Silburt (bb0160) 2019; 317
Jia (bb0070) 2022; 596
Michael, Kneissl, Neesemann (bb0120) 2022; ascl:2206.008
Qian (bb0135) 2018; 123
Lin (bb0085) 2014
Everingham, Van Gool, Williams, Winn, Zisserman (bb0040) 2010; 88
Neukum, Ivanov, Hartmann (bb0125) 2001
Robbins (bb0150) 2019; 124
Speyerer, Povilaitis, Robinson, Thomas, Wagner (bb0165) 2016; 538
Cohen, Ding (bb0020) 2014; 53
Lin (bb0090) 2022; 14
Hiesinger, Head, Wolf, Jaumann, Neukum (bb0055) 2003; 108
Ali-Dib, Menou, Jackson, Zhu, Hammond (bb0005) 2020; 345
Di (bb0025) 2018; XLII–3
Michael, Neukum (bb0110) 2010; 294
Robbins (bb0145) 2014; 403
Yue (bb0195) 2019; 329
Losiak (bb0100) 2009
Zhou (bb0205) 2022; 69
Xiao (bb0190) 2018; 5
Barker (bb0010) 2016; 273
Michael (bb0105) 2013; 226
Head (bb0050) 2010; 329
Michael, Kneissl, Neesemann (bb0115) 2016; 277
Di (bb0030) 2019; 85
Kisantal, Wojna, Murawski, Naruniec, Cho (bb0075) 2019
Haruyama (bb0045) 2009; 323
Wu, Huang, Li, Wang, Peng (bb0185) 2018; 123
Jia (bb0065) 2020; 541
Wilhelms, Oberbeck, Aggarwal (bb0180) 1978
Povilaitis (bb0130) 2018; 162
Latorre, Spiller, Sasidharan, Basheer, Curti (bb0080) 2023; 394
Ren, He, Girshick, Sun (bb0140) 2017; 39
Wang, Wu (bb0170) 2019; 57
Zhang (bb0200) 2023
Robbins (10.1016/j.icarus.2023.115909_bb0150) 2019; 124
Yue (10.1016/j.icarus.2023.115909_bb0195) 2019; 329
Kisantal (10.1016/j.icarus.2023.115909_bb0075) 2019
Di (10.1016/j.icarus.2023.115909_bb0030) 2019; 85
Robbins (10.1016/j.icarus.2023.115909_bb0155) 2014; 234
Wu (10.1016/j.icarus.2023.115909_bb0185) 2018; 123
Michael (10.1016/j.icarus.2023.115909_bb0110) 2010; 294
Jia (10.1016/j.icarus.2023.115909_bb0065) 2020; 541
Jia (10.1016/j.icarus.2023.115909_bb0070) 2022; 596
Qian (10.1016/j.icarus.2023.115909_bb0135) 2018; 123
Christian (10.1016/j.icarus.2023.115909_bb0015) 2021; 68
Michael (10.1016/j.icarus.2023.115909_bb0105) 2013; 226
Xiao (10.1016/j.icarus.2023.115909_bb0190) 2018; 5
Zhou (10.1016/j.icarus.2023.115909_bb0205) 2022; 69
Cohen (10.1016/j.icarus.2023.115909_bb0020) 2014; 53
Di (10.1016/j.icarus.2023.115909_bb0025) 2018; XLII–3
Wang (10.1016/j.icarus.2023.115909_bb0170) 2019; 57
Zhang (10.1016/j.icarus.2023.115909_bb0200) 2023
Ali-Dib (10.1016/j.icarus.2023.115909_bb0005) 2020; 345
Wilhelms (10.1016/j.icarus.2023.115909_bb0180) 1978
Liu (10.1016/j.icarus.2023.115909_bb0095) 2023; 59
Neukum (10.1016/j.icarus.2023.115909_bb0125) 2001
Haruyama (10.1016/j.icarus.2023.115909_bb0045) 2009; 323
Eggert (10.1016/j.icarus.2023.115909_bb0035) 2017
Ren (10.1016/j.icarus.2023.115909_bb0140) 2017; 39
Head (10.1016/j.icarus.2023.115909_bb0050) 2010; 329
Everingham (10.1016/j.icarus.2023.115909_bb0040) 2010; 88
Silburt (10.1016/j.icarus.2023.115909_bb0160) 2019; 317
Barker (10.1016/j.icarus.2023.115909_bb0010) 2016; 273
Latorre (10.1016/j.icarus.2023.115909_bb0080) 2023; 394
Lin (10.1016/j.icarus.2023.115909_bb0085) 2014
Michael (10.1016/j.icarus.2023.115909_bb0120) 2022; ascl:2206.008
Lin (10.1016/j.icarus.2023.115909_bb0090) 2022; 14
Michael (10.1016/j.icarus.2023.115909_bb0115) 2016; 277
(10.1016/j.icarus.2023.115909_bb0060) 1979; 37
Robbins (10.1016/j.icarus.2023.115909_bb0145) 2014; 403
Speyerer (10.1016/j.icarus.2023.115909_bb0165) 2016; 538
Losiak (10.1016/j.icarus.2023.115909_bb0100) 2009
Hiesinger (10.1016/j.icarus.2023.115909_bb0055) 2003; 108
Povilaitis (10.1016/j.icarus.2023.115909_bb0130) 2018; 162
Wang (10.1016/j.icarus.2023.115909_bb0175) 2018; 10
References_xml – volume: 88
  start-page: 303
  year: 2010
  end-page: 338
  ident: bb0040
  article-title: The Pascal visual object classes (VOC) challenge
  publication-title: Int. J. Comput. Vis.
– start-page: 740
  year: 2014
  end-page: 755
  ident: bb0085
  article-title: Microsoft COCO: Common objects in context
  publication-title: Computer Vision – ECCV 2014
– volume: 394
  year: 2023
  ident: bb0080
  article-title: Transfer learning for real-time crater detection on asteroids using a fully convolutional neural network
  publication-title: Icarus
– start-page: 55
  year: 2001
  end-page: 86
  ident: bb0125
  article-title: Cratering Records in the Inner Solar System in Relation to the Lunar Reference System
  publication-title: Chronology and Evolution of Mars
– volume: 323
  start-page: 905
  year: 2009
  end-page: 908
  ident: bb0045
  article-title: Long-lived volcanism on the lunar Farside revealed by SELENE terrain camera
  publication-title: Science
– volume: 234
  start-page: 109
  year: 2014
  end-page: 131
  ident: bb0155
  article-title: The variability of crater identification among expert and community crater analysts
  publication-title: Icarus
– volume: 329
  start-page: 46
  year: 2019
  end-page: 54
  ident: bb0195
  article-title: Lunar regolith thickness deduced from concentric craters in the CE-5 landing area
  publication-title: Icarus
– volume: 226
  start-page: 885
  year: 2013
  end-page: 890
  ident: bb0105
  article-title: Planetary surface dating from crater size–frequency distribution measurements: multiple resurfacing episodes and differential isochron fitting
  publication-title: Icarus
– volume: 59
  start-page: 311
  year: 2023
  end-page: 335
  ident: bb0095
  article-title: Real-time crater-based monocular 3-D pose tracking for planetary landing and navigation
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 403
  start-page: 188
  year: 2014
  end-page: 198
  ident: bb0145
  article-title: New crater calibrations for the lunar crater-age chronology
  publication-title: Earth Planet. Sci. Lett.
– volume: 108
  start-page: 5065
  year: 2003
  ident: bb0055
  article-title: Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum
  publication-title: J. Geophys. Res.
– start-page: 119
  year: 2019
  end-page: 133
  ident: bb0075
  article-title: Augmentation for small object detection
  publication-title: 9th International Conference on Advances in Computing and Information Technology (ACITY 2019)
– volume: 14
  start-page: 621
  year: 2022
  ident: bb0090
  article-title: Lunar crater detection on digital elevation model: a complete workflow using deep learning and its application
  publication-title: Remote Sens.
– volume: 123
  start-page: 1407
  year: 2018
  end-page: 1430
  ident: bb0135
  article-title: Geology and scientific significance of the Rümker region in northern Oceanus Procellarum: China’s Chang’E-5 landing region
  publication-title: J. Geophys. Res.: Planets
– volume: 123
  start-page: 3256
  year: 2018
  end-page: 3272
  ident: bb0185
  article-title: Rock abundance and crater density in the candidate Chang’E-5 landing region on the moon
  publication-title: J. Geophys. Res.: Planets
– volume: 162
  start-page: 41
  year: 2018
  end-page: 51
  ident: bb0130
  article-title: Crater density differences: exploring regional resurfacing, secondary crater populations, and crater saturation equilibrium on the moon
  publication-title: Planet. Space Sci.
– volume: XLII–3
  start-page: 271
  year: 2018
  end-page: 276
  ident: bb0025
  article-title: High resolution seamless dom generation over chang’e-5 landing area using lroc nac images
  publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci.
– volume: 329
  start-page: 1504
  year: 2010
  end-page: 1507
  ident: bb0050
  article-title: Global distribution of large lunar craters: implications for resurfacing and impactor populations
  publication-title: Science
– volume: ascl:2206.008
  year: 2022
  ident: bb0120
  article-title: Craterstats2: planetary surface dating from crater size-frequency distribution measurements
  publication-title: Astrophys. Source Code Librar.
– volume: 85
  start-page: 481
  year: 2019
  end-page: 491
  ident: bb0030
  article-title: High-resolution large-area digital Orthophoto map generation using LROC NAC images
  publication-title: Photogramm. Eng. Remote. Sens.
– start-page: 167
  year: 2017
  end-page: 174
  ident: bb0035
  article-title: Improving small object proposals for company logo detection
  publication-title: Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval
– volume: 277
  start-page: 279
  year: 2016
  end-page: 285
  ident: bb0115
  article-title: Planetary surface dating from crater size-frequency distribution measurements: Poisson timing analysis
  publication-title: Icarus
– volume: 538
  start-page: 215
  year: 2016
  end-page: 218
  ident: bb0165
  article-title: Quantifying crater production and regolith overturn on the moon with temporal imaging
  publication-title: Nature
– year: 2023
  ident: bb0200
  article-title: Automatic detection for small-scale lunar impact crater using deep learning
  publication-title: Adv. Space Res.
– volume: 57
  start-page: 5777
  year: 2019
  end-page: 5789
  ident: bb0170
  article-title: Active machine learning approach for crater detection from planetary imagery and digital elevation models
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 596
  year: 2022
  ident: bb0070
  article-title: On the provenance of the Chang’E-5 lunar samples
  publication-title: Earth Planet. Sci. Lett.
– volume: 317
  start-page: 27
  year: 2019
  end-page: 38
  ident: bb0160
  article-title: Lunar crater identification via deep learning
  publication-title: Icarus
– volume: 53
  start-page: 1768
  year: 2014
  end-page: 1782
  ident: bb0020
  article-title: Crater detection via genetic search methods to reduce image features
  publication-title: Adv. Space Res.
– volume: 124
  start-page: 871
  year: 2019
  end-page: 892
  ident: bb0150
  article-title: A new global database of lunar impact craters >1–2 km: 1. Crater locations and sizes, comparisons with published databases, and global analysis
  publication-title: JGR Planets
– volume: 273
  start-page: 346
  year: 2016
  end-page: 355
  ident: bb0010
  article-title: A new lunar digital elevation model from the lunar orbiter laser altimeter and SELENE terrain camera
  publication-title: Icarus
– volume: 294
  start-page: 223
  year: 2010
  end-page: 229
  ident: bb0110
  article-title: Planetary surface dating from crater size–frequency distribution measurements: partial resurfacing events and statistical age uncertainty
  publication-title: Earth Planet. Sci. Lett.
– year: 1978
  ident: bb0180
  article-title: Size-Frequency Distributions of Primary and Secondary Lunar Impact Craters
– volume: 345
  year: 2020
  ident: bb0005
  article-title: Automated crater shape retrieval using weakly-supervised deep learning
  publication-title: Icarus
– volume: 541
  year: 2020
  ident: bb0065
  article-title: A catalogue of impact craters larger than 200 m and surface age analysis in the Chang’e-5 landing area
  publication-title: Earth Planet. Sci. Lett.
– volume: 39
  start-page: 1137
  year: 2017
  end-page: 1149
  ident: bb0140
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 10
  start-page: 1067
  year: 2018
  ident: bb0175
  article-title: CraterIDNet: an end-to-end fully convolutional neural network for crater detection and identification in remotely sensed planetary images
  publication-title: Remote Sens.
– volume: 69
  start-page: 823
  year: 2022
  end-page: 836
  ident: bb0205
  article-title: Scientific objectives and payloads of the lunar sample return mission—Chang’E-5
  publication-title: Adv. Space Res.
– volume: 68
  start-page: 1056
  year: 2021
  end-page: 1144
  ident: bb0015
  article-title: Lunar Crater Identification in Digital Images
  publication-title: J. Astronaut. Sci.
– volume: 5
  start-page: 17
  year: 2018
  ident: bb0190
  article-title: On the importance of self-secondaries
  publication-title: Geosci. Lett.
– volume: 37
  start-page: 467
  year: 1979
  end-page: 474
  ident: bb0060
  publication-title: Standard techniques for presentation and analysis of crater size-frequency data
– start-page: 1532
  year: 2009
  ident: bb0100
  article-title: A new lunar impact crater database
  publication-title: 40th Annual Lunar and Planetary Science Conference
– volume: 123
  start-page: 3256
  year: 2018
  ident: 10.1016/j.icarus.2023.115909_bb0185
  article-title: Rock abundance and crater density in the candidate Chang’E-5 landing region on the moon
  publication-title: J. Geophys. Res.: Planets
  doi: 10.1029/2018JE005820
– volume: 294
  start-page: 223
  year: 2010
  ident: 10.1016/j.icarus.2023.115909_bb0110
  article-title: Planetary surface dating from crater size–frequency distribution measurements: partial resurfacing events and statistical age uncertainty
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2009.12.041
– volume: ascl:2206.008
  year: 2022
  ident: 10.1016/j.icarus.2023.115909_bb0120
  article-title: Craterstats2: planetary surface dating from crater size-frequency distribution measurements
  publication-title: Astrophys. Source Code Librar.
– volume: 403
  start-page: 188
  year: 2014
  ident: 10.1016/j.icarus.2023.115909_bb0145
  article-title: New crater calibrations for the lunar crater-age chronology
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2014.06.038
– volume: 68
  start-page: 1056
  year: 2021
  ident: 10.1016/j.icarus.2023.115909_bb0015
  article-title: Lunar Crater Identification in Digital Images
  publication-title: J. Astronaut. Sci.
  doi: 10.1007/s40295-021-00287-8
– volume: 323
  start-page: 905
  year: 2009
  ident: 10.1016/j.icarus.2023.115909_bb0045
  article-title: Long-lived volcanism on the lunar Farside revealed by SELENE terrain camera
  publication-title: Science
  doi: 10.1126/science.1163382
– volume: 162
  start-page: 41
  year: 2018
  ident: 10.1016/j.icarus.2023.115909_bb0130
  article-title: Crater density differences: exploring regional resurfacing, secondary crater populations, and crater saturation equilibrium on the moon
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2017.05.006
– start-page: 119
  year: 2019
  ident: 10.1016/j.icarus.2023.115909_bb0075
  article-title: Augmentation for small object detection
– volume: 123
  start-page: 1407
  year: 2018
  ident: 10.1016/j.icarus.2023.115909_bb0135
  article-title: Geology and scientific significance of the Rümker region in northern Oceanus Procellarum: China’s Chang’E-5 landing region
  publication-title: J. Geophys. Res.: Planets
  doi: 10.1029/2018JE005595
– volume: 538
  start-page: 215
  year: 2016
  ident: 10.1016/j.icarus.2023.115909_bb0165
  article-title: Quantifying crater production and regolith overturn on the moon with temporal imaging
  publication-title: Nature
  doi: 10.1038/nature19829
– volume: 39
  start-page: 1137
  year: 2017
  ident: 10.1016/j.icarus.2023.115909_bb0140
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– start-page: 167
  year: 2017
  ident: 10.1016/j.icarus.2023.115909_bb0035
  article-title: Improving small object proposals for company logo detection
– start-page: 740
  year: 2014
  ident: 10.1016/j.icarus.2023.115909_bb0085
  article-title: Microsoft COCO: Common objects in context
– volume: 345
  year: 2020
  ident: 10.1016/j.icarus.2023.115909_bb0005
  article-title: Automated crater shape retrieval using weakly-supervised deep learning
  publication-title: Icarus
  doi: 10.1016/j.icarus.2020.113749
– volume: 14
  start-page: 621
  year: 2022
  ident: 10.1016/j.icarus.2023.115909_bb0090
  article-title: Lunar crater detection on digital elevation model: a complete workflow using deep learning and its application
  publication-title: Remote Sens.
  doi: 10.3390/rs14030621
– volume: 329
  start-page: 46
  year: 2019
  ident: 10.1016/j.icarus.2023.115909_bb0195
  article-title: Lunar regolith thickness deduced from concentric craters in the CE-5 landing area
  publication-title: Icarus
  doi: 10.1016/j.icarus.2019.03.032
– volume: 596
  year: 2022
  ident: 10.1016/j.icarus.2023.115909_bb0070
  article-title: On the provenance of the Chang’E-5 lunar samples
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2022.117791
– volume: 124
  start-page: 871
  year: 2019
  ident: 10.1016/j.icarus.2023.115909_bb0150
  article-title: A new global database of lunar impact craters >1–2 km: 1. Crater locations and sizes, comparisons with published databases, and global analysis
  publication-title: JGR Planets
  doi: 10.1029/2018JE005592
– volume: 108
  start-page: 5065
  year: 2003
  ident: 10.1016/j.icarus.2023.115909_bb0055
  article-title: Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum
  publication-title: J. Geophys. Res.
– volume: 317
  start-page: 27
  year: 2019
  ident: 10.1016/j.icarus.2023.115909_bb0160
  article-title: Lunar crater identification via deep learning
  publication-title: Icarus
  doi: 10.1016/j.icarus.2018.06.022
– year: 2023
  ident: 10.1016/j.icarus.2023.115909_bb0200
  article-title: Automatic detection for small-scale lunar impact crater using deep learning
  publication-title: Adv. Space Res.
– volume: 85
  start-page: 481
  year: 2019
  ident: 10.1016/j.icarus.2023.115909_bb0030
  article-title: High-resolution large-area digital Orthophoto map generation using LROC NAC images
  publication-title: Photogramm. Eng. Remote. Sens.
  doi: 10.14358/PERS.85.7.481
– volume: 10
  start-page: 1067
  year: 2018
  ident: 10.1016/j.icarus.2023.115909_bb0175
  article-title: CraterIDNet: an end-to-end fully convolutional neural network for crater detection and identification in remotely sensed planetary images
  publication-title: Remote Sens.
  doi: 10.3390/rs10071067
– volume: 273
  start-page: 346
  year: 2016
  ident: 10.1016/j.icarus.2023.115909_bb0010
  article-title: A new lunar digital elevation model from the lunar orbiter laser altimeter and SELENE terrain camera
  publication-title: Icarus
  doi: 10.1016/j.icarus.2015.07.039
– volume: 57
  start-page: 5777
  year: 2019
  ident: 10.1016/j.icarus.2023.115909_bb0170
  article-title: Active machine learning approach for crater detection from planetary imagery and digital elevation models
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2902198
– start-page: 55
  year: 2001
  ident: 10.1016/j.icarus.2023.115909_bb0125
  article-title: Cratering Records in the Inner Solar System in Relation to the Lunar Reference System
– volume: 277
  start-page: 279
  year: 2016
  ident: 10.1016/j.icarus.2023.115909_bb0115
  article-title: Planetary surface dating from crater size-frequency distribution measurements: Poisson timing analysis
  publication-title: Icarus
  doi: 10.1016/j.icarus.2016.05.019
– volume: 69
  start-page: 823
  year: 2022
  ident: 10.1016/j.icarus.2023.115909_bb0205
  article-title: Scientific objectives and payloads of the lunar sample return mission—Chang’E-5
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2021.09.001
– volume: XLII–3
  start-page: 271
  year: 2018
  ident: 10.1016/j.icarus.2023.115909_bb0025
  article-title: High resolution seamless dom generation over chang’e-5 landing area using lroc nac images
  publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLII-3-271-2018
– start-page: 1532
  year: 2009
  ident: 10.1016/j.icarus.2023.115909_bb0100
  article-title: A new lunar impact crater database
– volume: 394
  year: 2023
  ident: 10.1016/j.icarus.2023.115909_bb0080
  article-title: Transfer learning for real-time crater detection on asteroids using a fully convolutional neural network
  publication-title: Icarus
  doi: 10.1016/j.icarus.2023.115434
– volume: 5
  start-page: 17
  year: 2018
  ident: 10.1016/j.icarus.2023.115909_bb0190
  article-title: On the importance of self-secondaries
  publication-title: Geosci. Lett.
  doi: 10.1186/s40562-018-0116-9
– volume: 53
  start-page: 1768
  year: 2014
  ident: 10.1016/j.icarus.2023.115909_bb0020
  article-title: Crater detection via genetic search methods to reduce image features
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2013.05.010
– volume: 329
  start-page: 1504
  year: 2010
  ident: 10.1016/j.icarus.2023.115909_bb0050
  article-title: Global distribution of large lunar craters: implications for resurfacing and impactor populations
  publication-title: Science
  doi: 10.1126/science.1195050
– volume: 88
  start-page: 303
  year: 2010
  ident: 10.1016/j.icarus.2023.115909_bb0040
  article-title: The Pascal visual object classes (VOC) challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0275-4
– volume: 37
  start-page: 467
  year: 1979
  ident: 10.1016/j.icarus.2023.115909_bb0060
  publication-title: Icarus
  doi: 10.1016/0019-1035(79)90009-5
– volume: 226
  start-page: 885
  year: 2013
  ident: 10.1016/j.icarus.2023.115909_bb0105
  article-title: Planetary surface dating from crater size–frequency distribution measurements: multiple resurfacing episodes and differential isochron fitting
  publication-title: Icarus
  doi: 10.1016/j.icarus.2013.07.004
– volume: 234
  start-page: 109
  year: 2014
  ident: 10.1016/j.icarus.2023.115909_bb0155
  article-title: The variability of crater identification among expert and community crater analysts
  publication-title: Icarus
  doi: 10.1016/j.icarus.2014.02.022
– volume: 541
  year: 2020
  ident: 10.1016/j.icarus.2023.115909_bb0065
  article-title: A catalogue of impact craters larger than 200 m and surface age analysis in the Chang’e-5 landing area
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2020.116272
– volume: 59
  start-page: 311
  year: 2023
  ident: 10.1016/j.icarus.2023.115909_bb0095
  article-title: Real-time crater-based monocular 3-D pose tracking for planetary landing and navigation
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2022.3184660
– year: 1978
  ident: 10.1016/j.icarus.2023.115909_bb0180
SSID ssj0005893
Score 2.4682987
Snippet The Chang'e-5 (CE-5) mission marks China's first lunar sample return endeavor, with its landing site (43.06°N, 51.92°W) situated in the Mons Rümker region of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115909
SubjectTerms Algorithm optimization
Deep learning
Lunar crater dating
Small craters detection
Title Small lunar crater identification and age estimation in Chang'e-5 landing area based on improved Faster R-CNN
URI https://dx.doi.org/10.1016/j.icarus.2023.115909
Volume 410
WOSCitedRecordID wos001135621600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1090-2643
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005893
  issn: 0019-1035
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcuiKdaXvIBwSHKKg8njo-rVVe0QisERVq4RI7t0FS72Sq7qcrv4A8zfmSzpVWhBy6RZTlO4vlij8cz3yD0tpRlGURM-CJk0ieMFD6HnZBPYtgRsZSFsbDJJuhsls3n7NNg8KuLhblY0LrOLi_Z-X8VNdSBsHXo7B3Eve0UKqAMQocriB2u_yT4L0t92rxoa954QhNBNF4lnU-QlbbhZ_2hPE2wYSMXTeyfNR1T5SfaimmCXTiolJ5e6KQ-VKiMAQLKU67pFbzP_mQ229VujwRv2vVNCX48-AWjHavD91VrD_v7SLSPNjH2MYzQyi2nurYyDb_Binra8r5-0prWU1WVqto1XUSk993qpuOQwTpg-Uq66Zg4N1c7oYLCygx_wvW53podzkaV-baRzgM_6ptfpdb-Y8nbOiJ2Pm5nue0l173ktpd7aC-iCcuGaG98dDg_7j2HMsfl7N6-i8g0boPX3-ZmjWdHizl5hB667QceW9g8RgNVP0H747U-EFktf-J32JStvWv9FC0NmrBBE7ZowlfRhAEqGMYQ92jCVY0Nmt4DlrDDEtZYwgZLWDdxWMIWS9hg6Rn6Oj08mXzwXYYOX8BWc-OTlIcyUlzRMsiKLBVhkRRxofPW66xnLBEyCVWacsJiQjgNJJGcUhkFcSHTRMXP0bBe1WofYaGJEBOqeFEGRAZlRrks01QGcaxzCJADFHejmAtHX6-zqCzy22R4gPztXeeWvuUv7WknoNypoFa1zAF1t9754o5Peoke9L_EKzTcNK16je6Li021bt44yP0GiiSlmg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+lunar+crater+identification+and+age+estimation+in+Chang%27e-5+landing+area+based+on+improved+Faster+R-CNN&rft.jtitle=Icarus+%28New+York%2C+N.Y.+1962%29&rft.au=Zou%2C+Chen&rft.au=Lai%2C+Jialong&rft.au=Liu%2C+Yanshuang&rft.au=Cui%2C+Feifei&rft.date=2024-03-01&rft.issn=0019-1035&rft.volume=410&rft.spage=115909&rft_id=info:doi/10.1016%2Fj.icarus.2023.115909&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_icarus_2023_115909
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-1035&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-1035&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-1035&client=summon