Low-dose CT restoration via stacked sparse denoising autoencoders

To improve the imaging quality of low-dose computed tomography (CT) images, a deep learning based method for low-dose CT restoration is presented in this paper. Stacked sparse denoising autoencoders, which were designed originally for training noisy samples, are adopted to construct the architecture...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 284; pp. 80 - 89
Main Authors: Liu, Yan, Zhang, Yi
Format: Journal Article
Language:English
Published: Elsevier B.V 05.04.2018
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To improve the imaging quality of low-dose computed tomography (CT) images, a deep learning based method for low-dose CT restoration is presented in this paper. Stacked sparse denoising autoencoders, which were designed originally for training noisy samples, are adopted to construct the architecture. Experimental results demonstrate that the proposed model outperforms several state-of-the-art methods, including total variation based projection on convex sets (TV-POCS), dictionary learning, block-matching 3D (BM3D), convolutional denoising autoencoders (CDA) and U-Net based residual convolutional neural network (KAIST-Net), both qualitatively and quantitatively. The proposed method is not only capable of suppressing noise but also recovering structural details. Furthermore, once the network is trained offline, the processing speed for target low-dose images is much faster than other methods.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2018.01.015