Generation of Frequent sensor epochs using efficient Parallel Distributed mining algorithm in large IOT

Numerous data mining algorithms are implemented using huge volume of sensor data to generate the frequent item sets that are useful in many aspects such as to predict the behavioural sensor patterns of future events and to detect the survival of sensors in large IOT . Traditional data mining algorit...

Full description

Saved in:
Bibliographic Details
Published in:Computer communications Vol. 148; pp. 107 - 114
Main Authors: Rani, R.M., Pushpalatha, M.
Format: Journal Article
Language:English
Published: Elsevier B.V 15.12.2019
Subjects:
ISSN:0140-3664
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Numerous data mining algorithms are implemented using huge volume of sensor data to generate the frequent item sets that are useful in many aspects such as to predict the behavioural sensor patterns of future events and to detect the survival of sensors in large IOT . Traditional data mining algorithms transactional databases to produce the frequent patterns. Since the rate of input data arrival in large IOT varies, it becomes difficult to mine the dynamic sensor database. This work proposes an efficient algorithm known as Vertical Partitioning Parallel Distributed Algorithm(VPPDA) that uses MapReduce framework to mine sensor epochs to detect the survival of sensors using association rules formed by generated frequent patterns. The proposed VPPDA eliminates overhead of interprocess communication, by introducing overlapped window concept implemented in MapReduce framework combined with Vertical partitioning approach to get better progress in execution time and accurate results. Additionally pipelining processing has been implemented in MapReduce framework that still increases the performance and generates the frequent sensor epochs patterns. The concept of pipeline processing was introduced to minimize the execution time and also make the situation adaptable to any input rate of incoming sensor epochs.
AbstractList Numerous data mining algorithms are implemented using huge volume of sensor data to generate the frequent item sets that are useful in many aspects such as to predict the behavioural sensor patterns of future events and to detect the survival of sensors in large IOT . Traditional data mining algorithms transactional databases to produce the frequent patterns. Since the rate of input data arrival in large IOT varies, it becomes difficult to mine the dynamic sensor database. This work proposes an efficient algorithm known as Vertical Partitioning Parallel Distributed Algorithm(VPPDA) that uses MapReduce framework to mine sensor epochs to detect the survival of sensors using association rules formed by generated frequent patterns. The proposed VPPDA eliminates overhead of interprocess communication, by introducing overlapped window concept implemented in MapReduce framework combined with Vertical partitioning approach to get better progress in execution time and accurate results. Additionally pipelining processing has been implemented in MapReduce framework that still increases the performance and generates the frequent sensor epochs patterns. The concept of pipeline processing was introduced to minimize the execution time and also make the situation adaptable to any input rate of incoming sensor epochs.
Author Pushpalatha, M.
Rani, R.M.
Author_xml – sequence: 1
  givenname: R.M.
  surname: Rani
  fullname: Rani, R.M.
  email: ranir@srmist.edu.in
– sequence: 2
  givenname: M.
  surname: Pushpalatha
  fullname: Pushpalatha, M.
  email: pushpalm@srmist.edu.in
BookMark eNqFkM1OwzAQhH0oEm3hDTj4BRI2P3VSDkio0FKpUjmUs-XYm9RVYhfbReLtSVpOHEAaaQ-zM9J8EzIy1iAhdwnECSTs_hBL2_WKU0jmMfQCNiJjSHKIMsbyazLx_gAAeVFkY9Ks0KATQVtDbU2XDj9OaAL1aLx1FI9W7j09eW0ainWtpR7cN-FE22JLn7UPTlengIp22gxfom2s02HfUW1oK1yDdL3d3ZCrWrQeb3_ulLwvX3aL12izXa0XT5tIZsBClLNZKoQq87LGWVpIVs5ZylQ9QwZpmilZKFHKYl6hTCuVoapKKFXV-yDyilXZlDxceqWz3jusudThPC84oVueAB8w8QO_YOIDJg69gPXh_Ff46HQn3Nd_scdLDPthnxod9wMmiUo7lIErq_8u-AZRlos9
CitedBy_id crossref_primary_10_1155_2021_5519647
crossref_primary_10_3233_JCM_226903
crossref_primary_10_1016_j_comcom_2020_04_045
crossref_primary_10_3390_a14110309
crossref_primary_10_1007_s11227_023_05106_5
crossref_primary_10_1002_cpe_7229
crossref_primary_10_1007_s40042_025_01378_7
crossref_primary_10_1109_ACCESS_2020_2974035
crossref_primary_10_1155_2022_7430106
Cites_doi 10.1109/ICICTA.2015.94
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
DOI 10.1016/j.comcom.2019.09.006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 114
ExternalDocumentID 10_1016_j_comcom_2019_09_006
S0140366419306668
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
WH7
ZMT
~G-
07C
29F
77I
9DU
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
F0J
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
TAE
UHS
VH1
VOH
WUQ
XPP
ZY4
~HD
ID FETCH-LOGICAL-c306t-4652aad848fe527c689626df5e60223dc7da8c79bec2bd3edb808dbf5e0a4b6b3
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000501657200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0140-3664
IngestDate Sat Nov 29 07:24:33 EST 2025
Tue Nov 18 22:24:22 EST 2025
Sun Apr 06 06:54:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords VPPDA
KDT
WSN
Decision tree
MapReduce
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-4652aad848fe527c689626df5e60223dc7da8c79bec2bd3edb808dbf5e0a4b6b3
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_comcom_2019_09_006
crossref_primary_10_1016_j_comcom_2019_09_006
elsevier_sciencedirect_doi_10_1016_j_comcom_2019_09_006
PublicationCentury 2000
PublicationDate 2019-12-15
PublicationDateYYYYMMDD 2019-12-15
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-15
  day: 15
PublicationDecade 2010
PublicationTitle Computer communications
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ganesh, Sathiyabhama, Geetha (b14) 2016
Huang suyu, Data mining association rule algorithm based on Hadoop, 2015 8th International Conference on Intelligent Computation Technology and Automation.
zarika, rahman (b6) 2014; 3
Chandanmeet Narula, Geeta Sikka, Comparison of Apriori and Parallel FP Growth over Single-node and Multi-node Hadoop Cluster, Proceedings of the World Congress on Engineering and Computer Science 2016 Vol. I WCECS 2016, 2016, San Francisco, USA.
Lior Shabtay, Rami Yaari, Itai Dattner, A Guided FP-growth algorithm for fast mining of frequent itemsets from big data, 2018.
Mahesh A. Shinde, K.P. Adhiya, Frequent Itemset Mining Algorithms for Big Data using MapReduce Technique - A Review, International Conference on Global Trends in Engineering, Technology and Management(ICGTETM-2016).
Intel Lab Data. 2013.
Subject1 tapia, Smart Home Buiding dataset, courses.media.mit.in.
Venkatesh (b18) 2018
Mamunur Rashid, Gondal, IEEE, Kamruzzaman, IEEE (b3) 2015; 26
Subhashini, Gunasekaran (b12) 2016; 5
Anjan Das, Horizontal vs. Vertical Partitioning in Association Rule Mining: A Comparison, 2008.
al-hamodi, yahyaal-salhi1 (b9) 2016; 6
Vanteru Kusumakumari, Deepthi Sherigar, Roshni Chandran, Nagamma Patil, Frequent pattern mining on stream data using HadoopCanTree- GTree, in: 7th International Conference on Advances in Computing & Communications, ICACC-2017, 2017, pp. 22-24.
Boukerche, Samarah (b2) 2007
Deng, University (b5) 2012
Ahmad Shah, Amjad, Habeeb, Faruqui1, Shafi (b7) 2017; 12
Mamunur Rashid, Gondal, IEEE, Kamruzzaman, IEEE (b1) 2015; 64
Duong Bac Le, Philippe Fournier-Viger, Efficient Vertical Mining of High Average Utility Item base, Novel Upper-Bounds, Truong, Hai 1041-4347 (c) 2018 IEEE. IEEE Transactions on Knowledge and Data engineering.
C. David, Anastasiu and Jeremy Iverson and Shaden Smith and George Karypis, Department of Computer Science and Engineering Big Data Frequent Pattern Mining, University of Minnesota, Twin Cities, MN 55455, U.S.A.
Mamunur Rashid (10.1016/j.comcom.2019.09.006_b3) 2015; 26
Deng (10.1016/j.comcom.2019.09.006_b5) 2012
Mamunur Rashid (10.1016/j.comcom.2019.09.006_b1) 2015; 64
zarika (10.1016/j.comcom.2019.09.006_b6) 2014; 3
10.1016/j.comcom.2019.09.006_b10
10.1016/j.comcom.2019.09.006_b20
10.1016/j.comcom.2019.09.006_b11
Ganesh (10.1016/j.comcom.2019.09.006_b14) 2016
10.1016/j.comcom.2019.09.006_b8
al-hamodi (10.1016/j.comcom.2019.09.006_b9) 2016; 6
Subhashini (10.1016/j.comcom.2019.09.006_b12) 2016; 5
Boukerche (10.1016/j.comcom.2019.09.006_b2) 2007
10.1016/j.comcom.2019.09.006_b13
10.1016/j.comcom.2019.09.006_b16
Venkatesh (10.1016/j.comcom.2019.09.006_b18) 2018
10.1016/j.comcom.2019.09.006_b15
10.1016/j.comcom.2019.09.006_b4
10.1016/j.comcom.2019.09.006_b17
Ahmad Shah (10.1016/j.comcom.2019.09.006_b7) 2017; 12
10.1016/j.comcom.2019.09.006_b19
References_xml – year: 2012
  ident: b5
  article-title: A new fast vertical method for mining frequent patterns
  publication-title: Int. J. Comput. Intell. Syst.
– reference: Anjan Das, Horizontal vs. Vertical Partitioning in Association Rule Mining: A Comparison, 2008.
– reference: Mahesh A. Shinde, K.P. Adhiya, Frequent Itemset Mining Algorithms for Big Data using MapReduce Technique - A Review, International Conference on Global Trends in Engineering, Technology and Management(ICGTETM-2016).
– reference: Chandanmeet Narula, Geeta Sikka, Comparison of Apriori and Parallel FP Growth over Single-node and Multi-node Hadoop Cluster, Proceedings of the World Congress on Engineering and Computer Science 2016 Vol. I WCECS 2016, 2016, San Francisco, USA.
– volume: 64
  year: 2015
  ident: b1
  article-title: Mining associated patterns from wireless sensor
  publication-title: Netw. IEEE Trans. Comput.
– reference: Duong Bac Le, Philippe Fournier-Viger, Efficient Vertical Mining of High Average Utility Item base, Novel Upper-Bounds, Truong, Hai 1041-4347 (c) 2018 IEEE. IEEE Transactions on Knowledge and Data engineering.
– reference: Lior Shabtay, Rami Yaari, Itai Dattner, A Guided FP-growth algorithm for fast mining of frequent itemsets from big data, 2018.
– volume: 5
  year: 2016
  ident: b12
  article-title: An efficient algorithm for frequent pattern mining in big data
  publication-title: Int. J. Adv. Comput. Eng. Commun. Technol. (IJACECT)
– reference: , Intel Lab Data. 2013.
– reference: Subject1 tapia, Smart Home Buiding dataset, courses.media.mit.in.
– volume: 6
  year: 2016
  ident: b9
  article-title: An enhanced frequent pattern growth based on mapreduce for mining association rules
  publication-title: Int. J. Data Min. Knowl. Manage. Process (IJDKP)
– reference: Huang suyu, Data mining association rule algorithm based on Hadoop, 2015 8th International Conference on Intelligent Computation Technology and Automation.
– year: 2018
  ident: b18
  article-title: Comparative study on apriori and FP growth algorithms in big data
  publication-title: Int. J. Adv. Res., Ideas Innov. Technol.
– volume: 12
  start-page: 7355
  year: 2017
  end-page: 7359
  ident: b7
  article-title: Algorithms for frequent pattern mining of big data
  publication-title: Int. J. Appl. Eng. Res.
– reference: Vanteru Kusumakumari, Deepthi Sherigar, Roshni Chandran, Nagamma Patil, Frequent pattern mining on stream data using HadoopCanTree- GTree, in: 7th International Conference on Advances in Computing & Communications, ICACC-2017, 2017, pp. 22-24.
– volume: 26
  year: 2015
  ident: b3
  article-title: Share-frequent sensor patterns mining from wireless sensor network data
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– reference: C. David, Anastasiu and Jeremy Iverson and Shaden Smith and George Karypis, Department of Computer Science and Engineering Big Data Frequent Pattern Mining, University of Minnesota, Twin Cities, MN 55455, U.S.A.
– volume: 3
  start-page: 19
  year: 2014
  end-page: 28
  ident: b6
  article-title: Department of information technology, gauhati university, guwahati, assam, india, mapreduce based eclat algorithm for association rule mining in datamining: MR_ECLAT
  publication-title: Int. J. Comput. Sci. Eng. (IJCSE)
– year: 2016
  ident: b14
  article-title: Fast frequent pattern mining using vertical dat format for knowledge discovery
  publication-title: Int. J. Emerg. Res. Manage. Technol.
– year: 2007
  ident: b2
  article-title: A New Representation Structure for Mining Association Rules from Wireless Sensor Networks
– ident: 10.1016/j.comcom.2019.09.006_b8
– ident: 10.1016/j.comcom.2019.09.006_b10
– ident: 10.1016/j.comcom.2019.09.006_b15
  doi: 10.1109/ICICTA.2015.94
– ident: 10.1016/j.comcom.2019.09.006_b4
– year: 2016
  ident: 10.1016/j.comcom.2019.09.006_b14
  article-title: Fast frequent pattern mining using vertical dat format for knowledge discovery
  publication-title: Int. J. Emerg. Res. Manage. Technol.
– volume: 26
  issue: 12
  year: 2015
  ident: 10.1016/j.comcom.2019.09.006_b3
  article-title: Share-frequent sensor patterns mining from wireless sensor network data
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 5
  issue: 2
  year: 2016
  ident: 10.1016/j.comcom.2019.09.006_b12
  article-title: An efficient algorithm for frequent pattern mining in big data
  publication-title: Int. J. Adv. Comput. Eng. Commun. Technol. (IJACECT)
– volume: 3
  start-page: 19
  issue: 1
  year: 2014
  ident: 10.1016/j.comcom.2019.09.006_b6
  article-title: Department of information technology, gauhati university, guwahati, assam, india, mapreduce based eclat algorithm for association rule mining in datamining: MR_ECLAT
  publication-title: Int. J. Comput. Sci. Eng. (IJCSE)
– volume: 12
  start-page: 7355
  issn: 0973-4562
  issue: 18
  year: 2017
  ident: 10.1016/j.comcom.2019.09.006_b7
  article-title: Algorithms for frequent pattern mining of big data
  publication-title: Int. J. Appl. Eng. Res.
– ident: 10.1016/j.comcom.2019.09.006_b17
– volume: 64
  issue: 7
  year: 2015
  ident: 10.1016/j.comcom.2019.09.006_b1
  article-title: Mining associated patterns from wireless sensor
  publication-title: Netw. IEEE Trans. Comput.
– ident: 10.1016/j.comcom.2019.09.006_b16
– year: 2007
  ident: 10.1016/j.comcom.2019.09.006_b2
– ident: 10.1016/j.comcom.2019.09.006_b13
– ident: 10.1016/j.comcom.2019.09.006_b20
– year: 2012
  ident: 10.1016/j.comcom.2019.09.006_b5
  article-title: A new fast vertical method for mining frequent patterns
  publication-title: Int. J. Comput. Intell. Syst.
– volume: 6
  issue: 2
  year: 2016
  ident: 10.1016/j.comcom.2019.09.006_b9
  article-title: An enhanced frequent pattern growth based on mapreduce for mining association rules
  publication-title: Int. J. Data Min. Knowl. Manage. Process (IJDKP)
– ident: 10.1016/j.comcom.2019.09.006_b11
– issn: 2454-132X
  year: 2018
  ident: 10.1016/j.comcom.2019.09.006_b18
  article-title: Comparative study on apriori and FP growth algorithms in big data
  publication-title: Int. J. Adv. Res., Ideas Innov. Technol.
– ident: 10.1016/j.comcom.2019.09.006_b19
SSID ssj0004773
Score 2.3305726
Snippet Numerous data mining algorithms are implemented using huge volume of sensor data to generate the frequent item sets that are useful in many aspects such as to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107
SubjectTerms Decision tree
KDT
MapReduce
VPPDA
WSN
Title Generation of Frequent sensor epochs using efficient Parallel Distributed mining algorithm in large IOT
URI https://dx.doi.org/10.1016/j.comcom.2019.09.006
Volume 148
WOSCitedRecordID wos000501657200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0140-3664
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004773
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt0kN7KH2SPtGhN-PFa8uSfAwloSk0DWULezOSpc1u2HgX2xvy8zN62aZb-oKCMca2bKP5NBqNZ-ZD6IMiUrGUyLjKYLgRLlgsq0LESVFpRnWSSKIs2QQ7P-fzeXHhc09aSyfA6prf3hbb_ypqOAfCNqmzfyHu_qFwAo5B6LAHscP-jwTvCkkHQ_C0sbHSXdTCetVU995uqmUb7ayLQNv6EebqhWgMqYpRga3jwAJD9NqSR0RifblpVt3y2vhG1iZyPDr7OhtbtYEawgSoD-kmQxS9442Kvk2-THpVvGuXW7E2nnvrk52M3Q9Ty53gEjCdT2wvL8a7KUG7U1efvNezrqSm15Se7NZPulOXSbqnz51r4cqIwwT3mA-wZWmTH8pn2wnZBqqZt4JRapZl_D46TFlegL4-PD47mX8eEmaZCz0InxlyKm3g3_67fm6zjOyQ2RP02C8g8LET_FN0T9fP0KNRWcnn6HKAAN4scIAAdhDADgLYQgD3EMABAngEAewggHsI4FWNLQQwQOAF-n56Mvv4KfaEGmYk0i4mNE-FUJzwhc5TVlFewHpWLXJNwZTLVMWU4BUrYFynUmVaSZ5wJeF6IoikMnuJDupNrY8QlkQQspB8SiQhufmXDg-koP6hE7Vi9BXKQpeVla82b0hP1mUIK7wqXUeXpqPLBLYEWsV9q62rtvKb-1mQRuktRmcJlgCgX7Z8_c8t36CHwzh4iw66ZqffoQfVTbdqm_ceaXfo45Uc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+Frequent+sensor+epochs+using+efficient+Parallel+Distributed+mining+algorithm+in+large+IOT&rft.jtitle=Computer+communications&rft.au=Rani%2C+R.M.&rft.au=Pushpalatha%2C+M.&rft.date=2019-12-15&rft.pub=Elsevier+B.V&rft.issn=0140-3664&rft.volume=148&rft.spage=107&rft.epage=114&rft_id=info:doi/10.1016%2Fj.comcom.2019.09.006&rft.externalDocID=S0140366419306668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon