Generation of Frequent sensor epochs using efficient Parallel Distributed mining algorithm in large IOT
Numerous data mining algorithms are implemented using huge volume of sensor data to generate the frequent item sets that are useful in many aspects such as to predict the behavioural sensor patterns of future events and to detect the survival of sensors in large IOT . Traditional data mining algorit...
Saved in:
| Published in: | Computer communications Vol. 148; pp. 107 - 114 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
15.12.2019
|
| Subjects: | |
| ISSN: | 0140-3664 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Numerous data mining algorithms are implemented using huge volume of sensor data to generate the frequent item sets that are useful in many aspects such as to predict the behavioural sensor patterns of future events and to detect the survival of sensors in large IOT . Traditional data mining algorithms transactional databases to produce the frequent patterns. Since the rate of input data arrival in large IOT varies, it becomes difficult to mine the dynamic sensor database. This work proposes an efficient algorithm known as Vertical Partitioning Parallel Distributed Algorithm(VPPDA) that uses MapReduce framework to mine sensor epochs to detect the survival of sensors using association rules formed by generated frequent patterns. The proposed VPPDA eliminates overhead of interprocess communication, by introducing overlapped window concept implemented in MapReduce framework combined with Vertical partitioning approach to get better progress in execution time and accurate results. Additionally pipelining processing has been implemented in MapReduce framework that still increases the performance and generates the frequent sensor epochs patterns. The concept of pipeline processing was introduced to minimize the execution time and also make the situation adaptable to any input rate of incoming sensor epochs. |
|---|---|
| AbstractList | Numerous data mining algorithms are implemented using huge volume of sensor data to generate the frequent item sets that are useful in many aspects such as to predict the behavioural sensor patterns of future events and to detect the survival of sensors in large IOT . Traditional data mining algorithms transactional databases to produce the frequent patterns. Since the rate of input data arrival in large IOT varies, it becomes difficult to mine the dynamic sensor database. This work proposes an efficient algorithm known as Vertical Partitioning Parallel Distributed Algorithm(VPPDA) that uses MapReduce framework to mine sensor epochs to detect the survival of sensors using association rules formed by generated frequent patterns. The proposed VPPDA eliminates overhead of interprocess communication, by introducing overlapped window concept implemented in MapReduce framework combined with Vertical partitioning approach to get better progress in execution time and accurate results. Additionally pipelining processing has been implemented in MapReduce framework that still increases the performance and generates the frequent sensor epochs patterns. The concept of pipeline processing was introduced to minimize the execution time and also make the situation adaptable to any input rate of incoming sensor epochs. |
| Author | Pushpalatha, M. Rani, R.M. |
| Author_xml | – sequence: 1 givenname: R.M. surname: Rani fullname: Rani, R.M. email: ranir@srmist.edu.in – sequence: 2 givenname: M. surname: Pushpalatha fullname: Pushpalatha, M. email: pushpalm@srmist.edu.in |
| BookMark | eNqFkM1OwzAQhH0oEm3hDTj4BRI2P3VSDkio0FKpUjmUs-XYm9RVYhfbReLtSVpOHEAaaQ-zM9J8EzIy1iAhdwnECSTs_hBL2_WKU0jmMfQCNiJjSHKIMsbyazLx_gAAeVFkY9Ks0KATQVtDbU2XDj9OaAL1aLx1FI9W7j09eW0ainWtpR7cN-FE22JLn7UPTlengIp22gxfom2s02HfUW1oK1yDdL3d3ZCrWrQeb3_ulLwvX3aL12izXa0XT5tIZsBClLNZKoQq87LGWVpIVs5ZylQ9QwZpmilZKFHKYl6hTCuVoapKKFXV-yDyilXZlDxceqWz3jusudThPC84oVueAB8w8QO_YOIDJg69gPXh_Ff46HQn3Nd_scdLDPthnxod9wMmiUo7lIErq_8u-AZRlos9 |
| CitedBy_id | crossref_primary_10_1155_2021_5519647 crossref_primary_10_3233_JCM_226903 crossref_primary_10_1016_j_comcom_2020_04_045 crossref_primary_10_3390_a14110309 crossref_primary_10_1007_s11227_023_05106_5 crossref_primary_10_1002_cpe_7229 crossref_primary_10_1007_s40042_025_01378_7 crossref_primary_10_1109_ACCESS_2020_2974035 crossref_primary_10_1155_2022_7430106 |
| Cites_doi | 10.1109/ICICTA.2015.94 |
| ContentType | Journal Article |
| Copyright | 2019 |
| Copyright_xml | – notice: 2019 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.comcom.2019.09.006 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 114 |
| ExternalDocumentID | 10_1016_j_comcom_2019_09_006 S0140366419306668 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SSH SST SSV SSZ T5K WH7 ZMT ~G- 07C 29F 77I 9DU AAQXK AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG F0J FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW TAE UHS VH1 VOH WUQ XPP ZY4 ~HD |
| ID | FETCH-LOGICAL-c306t-4652aad848fe527c689626df5e60223dc7da8c79bec2bd3edb808dbf5e0a4b6b3 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000501657200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0140-3664 |
| IngestDate | Sat Nov 29 07:24:33 EST 2025 Tue Nov 18 22:24:22 EST 2025 Sun Apr 06 06:54:08 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | VPPDA KDT WSN Decision tree MapReduce |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-4652aad848fe527c689626df5e60223dc7da8c79bec2bd3edb808dbf5e0a4b6b3 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_comcom_2019_09_006 crossref_primary_10_1016_j_comcom_2019_09_006 elsevier_sciencedirect_doi_10_1016_j_comcom_2019_09_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-15 |
| PublicationDateYYYYMMDD | 2019-12-15 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Computer communications |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Ganesh, Sathiyabhama, Geetha (b14) 2016 Huang suyu, Data mining association rule algorithm based on Hadoop, 2015 8th International Conference on Intelligent Computation Technology and Automation. zarika, rahman (b6) 2014; 3 Chandanmeet Narula, Geeta Sikka, Comparison of Apriori and Parallel FP Growth over Single-node and Multi-node Hadoop Cluster, Proceedings of the World Congress on Engineering and Computer Science 2016 Vol. I WCECS 2016, 2016, San Francisco, USA. Lior Shabtay, Rami Yaari, Itai Dattner, A Guided FP-growth algorithm for fast mining of frequent itemsets from big data, 2018. Mahesh A. Shinde, K.P. Adhiya, Frequent Itemset Mining Algorithms for Big Data using MapReduce Technique - A Review, International Conference on Global Trends in Engineering, Technology and Management(ICGTETM-2016). Intel Lab Data. 2013. Subject1 tapia, Smart Home Buiding dataset, courses.media.mit.in. Venkatesh (b18) 2018 Mamunur Rashid, Gondal, IEEE, Kamruzzaman, IEEE (b3) 2015; 26 Subhashini, Gunasekaran (b12) 2016; 5 Anjan Das, Horizontal vs. Vertical Partitioning in Association Rule Mining: A Comparison, 2008. al-hamodi, yahyaal-salhi1 (b9) 2016; 6 Vanteru Kusumakumari, Deepthi Sherigar, Roshni Chandran, Nagamma Patil, Frequent pattern mining on stream data using HadoopCanTree- GTree, in: 7th International Conference on Advances in Computing & Communications, ICACC-2017, 2017, pp. 22-24. Boukerche, Samarah (b2) 2007 Deng, University (b5) 2012 Ahmad Shah, Amjad, Habeeb, Faruqui1, Shafi (b7) 2017; 12 Mamunur Rashid, Gondal, IEEE, Kamruzzaman, IEEE (b1) 2015; 64 Duong Bac Le, Philippe Fournier-Viger, Efficient Vertical Mining of High Average Utility Item base, Novel Upper-Bounds, Truong, Hai 1041-4347 (c) 2018 IEEE. IEEE Transactions on Knowledge and Data engineering. C. David, Anastasiu and Jeremy Iverson and Shaden Smith and George Karypis, Department of Computer Science and Engineering Big Data Frequent Pattern Mining, University of Minnesota, Twin Cities, MN 55455, U.S.A. Mamunur Rashid (10.1016/j.comcom.2019.09.006_b3) 2015; 26 Deng (10.1016/j.comcom.2019.09.006_b5) 2012 Mamunur Rashid (10.1016/j.comcom.2019.09.006_b1) 2015; 64 zarika (10.1016/j.comcom.2019.09.006_b6) 2014; 3 10.1016/j.comcom.2019.09.006_b10 10.1016/j.comcom.2019.09.006_b20 10.1016/j.comcom.2019.09.006_b11 Ganesh (10.1016/j.comcom.2019.09.006_b14) 2016 10.1016/j.comcom.2019.09.006_b8 al-hamodi (10.1016/j.comcom.2019.09.006_b9) 2016; 6 Subhashini (10.1016/j.comcom.2019.09.006_b12) 2016; 5 Boukerche (10.1016/j.comcom.2019.09.006_b2) 2007 10.1016/j.comcom.2019.09.006_b13 10.1016/j.comcom.2019.09.006_b16 Venkatesh (10.1016/j.comcom.2019.09.006_b18) 2018 10.1016/j.comcom.2019.09.006_b15 10.1016/j.comcom.2019.09.006_b4 10.1016/j.comcom.2019.09.006_b17 Ahmad Shah (10.1016/j.comcom.2019.09.006_b7) 2017; 12 10.1016/j.comcom.2019.09.006_b19 |
| References_xml | – year: 2012 ident: b5 article-title: A new fast vertical method for mining frequent patterns publication-title: Int. J. Comput. Intell. Syst. – reference: Anjan Das, Horizontal vs. Vertical Partitioning in Association Rule Mining: A Comparison, 2008. – reference: Mahesh A. Shinde, K.P. Adhiya, Frequent Itemset Mining Algorithms for Big Data using MapReduce Technique - A Review, International Conference on Global Trends in Engineering, Technology and Management(ICGTETM-2016). – reference: Chandanmeet Narula, Geeta Sikka, Comparison of Apriori and Parallel FP Growth over Single-node and Multi-node Hadoop Cluster, Proceedings of the World Congress on Engineering and Computer Science 2016 Vol. I WCECS 2016, 2016, San Francisco, USA. – volume: 64 year: 2015 ident: b1 article-title: Mining associated patterns from wireless sensor publication-title: Netw. IEEE Trans. Comput. – reference: Duong Bac Le, Philippe Fournier-Viger, Efficient Vertical Mining of High Average Utility Item base, Novel Upper-Bounds, Truong, Hai 1041-4347 (c) 2018 IEEE. IEEE Transactions on Knowledge and Data engineering. – reference: Lior Shabtay, Rami Yaari, Itai Dattner, A Guided FP-growth algorithm for fast mining of frequent itemsets from big data, 2018. – volume: 5 year: 2016 ident: b12 article-title: An efficient algorithm for frequent pattern mining in big data publication-title: Int. J. Adv. Comput. Eng. Commun. Technol. (IJACECT) – reference: , Intel Lab Data. 2013. – reference: Subject1 tapia, Smart Home Buiding dataset, courses.media.mit.in. – volume: 6 year: 2016 ident: b9 article-title: An enhanced frequent pattern growth based on mapreduce for mining association rules publication-title: Int. J. Data Min. Knowl. Manage. Process (IJDKP) – reference: Huang suyu, Data mining association rule algorithm based on Hadoop, 2015 8th International Conference on Intelligent Computation Technology and Automation. – year: 2018 ident: b18 article-title: Comparative study on apriori and FP growth algorithms in big data publication-title: Int. J. Adv. Res., Ideas Innov. Technol. – volume: 12 start-page: 7355 year: 2017 end-page: 7359 ident: b7 article-title: Algorithms for frequent pattern mining of big data publication-title: Int. J. Appl. Eng. Res. – reference: Vanteru Kusumakumari, Deepthi Sherigar, Roshni Chandran, Nagamma Patil, Frequent pattern mining on stream data using HadoopCanTree- GTree, in: 7th International Conference on Advances in Computing & Communications, ICACC-2017, 2017, pp. 22-24. – volume: 26 year: 2015 ident: b3 article-title: Share-frequent sensor patterns mining from wireless sensor network data publication-title: IEEE Trans. Parallel Distrib. Syst. – reference: C. David, Anastasiu and Jeremy Iverson and Shaden Smith and George Karypis, Department of Computer Science and Engineering Big Data Frequent Pattern Mining, University of Minnesota, Twin Cities, MN 55455, U.S.A. – volume: 3 start-page: 19 year: 2014 end-page: 28 ident: b6 article-title: Department of information technology, gauhati university, guwahati, assam, india, mapreduce based eclat algorithm for association rule mining in datamining: MR_ECLAT publication-title: Int. J. Comput. Sci. Eng. (IJCSE) – year: 2016 ident: b14 article-title: Fast frequent pattern mining using vertical dat format for knowledge discovery publication-title: Int. J. Emerg. Res. Manage. Technol. – year: 2007 ident: b2 article-title: A New Representation Structure for Mining Association Rules from Wireless Sensor Networks – ident: 10.1016/j.comcom.2019.09.006_b8 – ident: 10.1016/j.comcom.2019.09.006_b10 – ident: 10.1016/j.comcom.2019.09.006_b15 doi: 10.1109/ICICTA.2015.94 – ident: 10.1016/j.comcom.2019.09.006_b4 – year: 2016 ident: 10.1016/j.comcom.2019.09.006_b14 article-title: Fast frequent pattern mining using vertical dat format for knowledge discovery publication-title: Int. J. Emerg. Res. Manage. Technol. – volume: 26 issue: 12 year: 2015 ident: 10.1016/j.comcom.2019.09.006_b3 article-title: Share-frequent sensor patterns mining from wireless sensor network data publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 5 issue: 2 year: 2016 ident: 10.1016/j.comcom.2019.09.006_b12 article-title: An efficient algorithm for frequent pattern mining in big data publication-title: Int. J. Adv. Comput. Eng. Commun. Technol. (IJACECT) – volume: 3 start-page: 19 issue: 1 year: 2014 ident: 10.1016/j.comcom.2019.09.006_b6 article-title: Department of information technology, gauhati university, guwahati, assam, india, mapreduce based eclat algorithm for association rule mining in datamining: MR_ECLAT publication-title: Int. J. Comput. Sci. Eng. (IJCSE) – volume: 12 start-page: 7355 issn: 0973-4562 issue: 18 year: 2017 ident: 10.1016/j.comcom.2019.09.006_b7 article-title: Algorithms for frequent pattern mining of big data publication-title: Int. J. Appl. Eng. Res. – ident: 10.1016/j.comcom.2019.09.006_b17 – volume: 64 issue: 7 year: 2015 ident: 10.1016/j.comcom.2019.09.006_b1 article-title: Mining associated patterns from wireless sensor publication-title: Netw. IEEE Trans. Comput. – ident: 10.1016/j.comcom.2019.09.006_b16 – year: 2007 ident: 10.1016/j.comcom.2019.09.006_b2 – ident: 10.1016/j.comcom.2019.09.006_b13 – ident: 10.1016/j.comcom.2019.09.006_b20 – year: 2012 ident: 10.1016/j.comcom.2019.09.006_b5 article-title: A new fast vertical method for mining frequent patterns publication-title: Int. J. Comput. Intell. Syst. – volume: 6 issue: 2 year: 2016 ident: 10.1016/j.comcom.2019.09.006_b9 article-title: An enhanced frequent pattern growth based on mapreduce for mining association rules publication-title: Int. J. Data Min. Knowl. Manage. Process (IJDKP) – ident: 10.1016/j.comcom.2019.09.006_b11 – issn: 2454-132X year: 2018 ident: 10.1016/j.comcom.2019.09.006_b18 article-title: Comparative study on apriori and FP growth algorithms in big data publication-title: Int. J. Adv. Res., Ideas Innov. Technol. – ident: 10.1016/j.comcom.2019.09.006_b19 |
| SSID | ssj0004773 |
| Score | 2.3305726 |
| Snippet | Numerous data mining algorithms are implemented using huge volume of sensor data to generate the frequent item sets that are useful in many aspects such as to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107 |
| SubjectTerms | Decision tree KDT MapReduce VPPDA WSN |
| Title | Generation of Frequent sensor epochs using efficient Parallel Distributed mining algorithm in large IOT |
| URI | https://dx.doi.org/10.1016/j.comcom.2019.09.006 |
| Volume | 148 |
| WOSCitedRecordID | wos000501657200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0140-3664 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004773 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt0kN7KH2SPtGhN-PFa8uSfAwloSk0DWULezOSpc1u2HgX2xvy8zN62aZb-oKCMca2bKP5NBqNZ-ZD6IMiUrGUyLjKYLgRLlgsq0LESVFpRnWSSKIs2QQ7P-fzeXHhc09aSyfA6prf3hbb_ypqOAfCNqmzfyHu_qFwAo5B6LAHscP-jwTvCkkHQ_C0sbHSXdTCetVU995uqmUb7ayLQNv6EebqhWgMqYpRga3jwAJD9NqSR0RifblpVt3y2vhG1iZyPDr7OhtbtYEawgSoD-kmQxS9442Kvk2-THpVvGuXW7E2nnvrk52M3Q9Ty53gEjCdT2wvL8a7KUG7U1efvNezrqSm15Se7NZPulOXSbqnz51r4cqIwwT3mA-wZWmTH8pn2wnZBqqZt4JRapZl_D46TFlegL4-PD47mX8eEmaZCz0InxlyKm3g3_67fm6zjOyQ2RP02C8g8LET_FN0T9fP0KNRWcnn6HKAAN4scIAAdhDADgLYQgD3EMABAngEAewggHsI4FWNLQQwQOAF-n56Mvv4KfaEGmYk0i4mNE-FUJzwhc5TVlFewHpWLXJNwZTLVMWU4BUrYFynUmVaSZ5wJeF6IoikMnuJDupNrY8QlkQQspB8SiQhufmXDg-koP6hE7Vi9BXKQpeVla82b0hP1mUIK7wqXUeXpqPLBLYEWsV9q62rtvKb-1mQRuktRmcJlgCgX7Z8_c8t36CHwzh4iw66ZqffoQfVTbdqm_ceaXfo45Uc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+Frequent+sensor+epochs+using+efficient+Parallel+Distributed+mining+algorithm+in+large+IOT&rft.jtitle=Computer+communications&rft.au=Rani%2C+R.M.&rft.au=Pushpalatha%2C+M.&rft.date=2019-12-15&rft.pub=Elsevier+B.V&rft.issn=0140-3664&rft.volume=148&rft.spage=107&rft.epage=114&rft_id=info:doi/10.1016%2Fj.comcom.2019.09.006&rft.externalDocID=S0140366419306668 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon |