Prediction of ultimate bearing capacity for rubberized concrete filled steel tube columns based on Tabular Variational Autoencoder method and Stacking ensemble strategy

The application of rubberized concrete filled steel tube (RuCFST) structures can facilitate the recycling of used tires, offering a sustainable solution. In recent years, data-driven machine learning (ML) algorithms have garnered significant attention from researchers in the engineering field. Howev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structures (Oxford) Jg. 70; S. 107667
Hauptverfasser: Song, Zongming, Zhang, Chao, Lu, Yiyan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.12.2024
Schlagworte:
ISSN:2352-0124, 2352-0124
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The application of rubberized concrete filled steel tube (RuCFST) structures can facilitate the recycling of used tires, offering a sustainable solution. In recent years, data-driven machine learning (ML) algorithms have garnered significant attention from researchers in the engineering field. However, the development of ML models for predicting the ultimate bearing capacity of RuCFST columns has been hindered by a lack of sufficient experimental data. To address this limitation, this study develops a novel ML framework aimed at accurately predicting the ultimate bearing capacity of RuCFST columns. This framework integrates an advanced Tabular Variational Autoencoder (TVAE) data augmentation method and a Stacking ensemble strategy. The TVAE method generates reliable synthetic data to enhance the dataset, while the Stacking strategy integrates the strengths of various ML models, including Gradient Boosting Decision Tree, Extreme Gradient Boosting, Light Gradient Boosting Machine, Random Forest, and Ridge, to improve prediction accuracy. The predictive validity of the developed TVAE-Stacking model was assessed against other ensemble methods and commonly used machine learning models. The findings indicated that the TVAE-Stacking model excels in predicting the ultimate bearing capacity of RuCFST columns. This model serves as a valuable reference for applying RuCFST columns in structural engineering.
AbstractList The application of rubberized concrete filled steel tube (RuCFST) structures can facilitate the recycling of used tires, offering a sustainable solution. In recent years, data-driven machine learning (ML) algorithms have garnered significant attention from researchers in the engineering field. However, the development of ML models for predicting the ultimate bearing capacity of RuCFST columns has been hindered by a lack of sufficient experimental data. To address this limitation, this study develops a novel ML framework aimed at accurately predicting the ultimate bearing capacity of RuCFST columns. This framework integrates an advanced Tabular Variational Autoencoder (TVAE) data augmentation method and a Stacking ensemble strategy. The TVAE method generates reliable synthetic data to enhance the dataset, while the Stacking strategy integrates the strengths of various ML models, including Gradient Boosting Decision Tree, Extreme Gradient Boosting, Light Gradient Boosting Machine, Random Forest, and Ridge, to improve prediction accuracy. The predictive validity of the developed TVAE-Stacking model was assessed against other ensemble methods and commonly used machine learning models. The findings indicated that the TVAE-Stacking model excels in predicting the ultimate bearing capacity of RuCFST columns. This model serves as a valuable reference for applying RuCFST columns in structural engineering.
ArticleNumber 107667
Author Zhang, Chao
Lu, Yiyan
Song, Zongming
Author_xml – sequence: 1
  givenname: Zongming
  surname: Song
  fullname: Song, Zongming
  organization: School of Civil Engineering, Wuhan University, Wuhan 430072, China
– sequence: 2
  givenname: Chao
  surname: Zhang
  fullname: Zhang, Chao
  email: chao.zhang@whu.edu.cn
  organization: School of Civil Engineering, Wuhan University, Wuhan 430072, China
– sequence: 3
  givenname: Yiyan
  surname: Lu
  fullname: Lu, Yiyan
  email: yylu901@163.com
  organization: School of Civil Engineering, Wuhan University, Wuhan 430072, China
BookMark eNqFkd1OnCEQhomxiVa9Aw-4gd0C-_3s9sDEmGqbmLSJ1lMywGDZsmCAz2R7RV5mZ7s9MD2oR8DMvO_MPLxnhyknZOxcirkUcviwnofaymTnSqiOQuMwjAfsWC16NRNSdYev7kfsrNa1EELJjqrHY_byraALtoWcePZ8ii1soCE3CCWkR27hCWxoW-5z4WUyBkv4hY7bnGxBKvQhRnrXhhh5mwxSKk6bVLmBSgnyvQczRSj8gSxh1wkiv5xaxmSzw8I32H5kxyE5ftfA_tz1xVRxYyKScaF5Hren7J2HWPHs73nCvl9_ur_6PLv9evPl6vJ2ZhdiaLNuENYYWs6u-kH0XvlBgrQIDr0XSxh7hb4H75Z9B0sLSi5U71bdarUcjfJuccK6va8tudaCXj8VQlK2Wgq9A67Xeg9c74DrPXCSffxHRtT-LEvzh_iW-GIvRlrsOWDR1QaiQz9T0Dbtcvi_wW_ID6ZG
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2025_143500
crossref_primary_10_1016_j_infsof_2024_107657
crossref_primary_10_1016_j_engappai_2025_111085
crossref_primary_10_1016_j_istruc_2025_110119
crossref_primary_10_1007_s00521_025_11323_1
crossref_primary_10_3390_buildings15111859
Cites_doi 10.1016/j.jclepro.2011.11.066
10.1016/j.autcon.2022.104579
10.1016/j.engstruct.2021.111979
10.1016/j.autcon.2022.104297
10.1016/j.jclepro.2015.07.081
10.1038/s42256-019-0138-9
10.1016/j.conbuildmat.2020.122216
10.1016/j.engstruct.2016.12.049
10.1016/j.ress.2021.108223
10.1016/j.autcon.2021.103977
10.1016/j.engstruct.2023.115675
10.1007/s13296-022-00693-0
10.1016/j.engstruct.2016.01.018
10.1016/j.jclepro.2021.126032
10.1016/j.jclepro.2015.03.012
10.1109/JBHI.2020.3027443
10.1016/j.tws.2012.03.008
10.1007/s40091-019-0228-2
10.1016/j.istruc.2022.05.022
10.1016/j.engstruct.2022.115066
10.1080/10618600.1998.10474784
10.1016/j.jclepro.2017.02.046
10.1016/j.jclepro.2022.135279
10.1016/j.jcsr.2011.04.001
10.1016/j.aei.2020.101126
10.1016/j.engstruct.2019.05.048
10.1016/j.jcsr.2012.10.005
10.1016/j.compstruct.2022.115651
10.1016/j.rineng.2021.100316
10.1214/12-STS406
10.1016/j.asoc.2024.111353
10.1061/(ASCE)ST.1943-541X.0003392
10.1016/j.compstruct.2022.115381
10.1016/j.jcsr.2013.07.001
10.1016/j.engstruct.2021.113479
10.1016/j.tws.2019.02.031
10.1007/s40996-022-00893-y
10.1016/j.conbuildmat.2022.129232
10.1016/j.tws.2022.110125
10.1007/s10115-007-0114-2
10.1016/j.conbuildmat.2022.129504
10.1016/j.eswa.2023.122071
10.1109/TII.2024.3366993
10.1016/j.jclepro.2013.10.028
10.1016/j.jclepro.2017.09.131
10.1016/j.jcsr.2010.04.006
10.1016/j.engappai.2022.105151
10.1016/j.jcsr.2009.07.004
10.1016/j.conbuildmat.2022.126694
10.1016/j.jmrt.2022.10.153
10.1016/S0893-6080(05)80023-1
10.1016/j.jcsr.2019.05.003
ContentType Journal Article
Copyright 2024 Institution of Structural Engineers
Copyright_xml – notice: 2024 Institution of Structural Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.istruc.2024.107667
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2352-0124
ExternalDocumentID 10_1016_j_istruc_2024_107667
S2352012424018204
GroupedDBID --M
0R~
4.4
457
AACTN
AAEDT
AAEDW
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADEZE
AEBSH
AEIPS
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EJD
FDB
FIRID
FYGXN
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SST
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
ID FETCH-LOGICAL-c306t-460cbb402c95605f2f61a1ceadeff08a752ef5afd854a8ca21325d949987b2fd3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001365989200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-0124
IngestDate Sat Nov 29 04:04:11 EST 2025
Tue Nov 18 21:55:00 EST 2025
Sat Feb 08 15:51:37 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Ultimate bearing capacity
Tabular variational autoencoder
Ensemble learning
Stacking
Rubberized concrete filled steel tube columns
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-460cbb402c95605f2f61a1ceadeff08a752ef5afd854a8ca21325d949987b2fd3
ParticipantIDs crossref_primary_10_1016_j_istruc_2024_107667
crossref_citationtrail_10_1016_j_istruc_2024_107667
elsevier_sciencedirect_doi_10_1016_j_istruc_2024_107667
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Structures (Oxford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Abed, AlHamaydeh, Abdalla (bib19) 2013; 80
Tan, Zhu, Wu, Chai (bib29) 2024; 241
Wang, Mazumder, Salarieh, Salman, Shafieezadeh, Li (bib1) 2022; 148
Khusru, Fawzia, Thambiratnam, Elchalakani (bib16) 2021; 276
Fu (bib58) 1998; 7
Wolpert (bib52) 1992; 5
Ahmed, Mangalathu, Jeon (bib49) 2022; 46
Wang, Tao, Han, Uy, Lam, Kang (bib20) 2017; 135
Guo, Dai, Si, Sun, Lu (bib15) 2017; 148
Vadyala, Betgeri, Matthews, Matthews (bib33) 2022; 13
Li, Song (bib39) 2022; 324
Bravo, de Brito, Pontes, Evangelista (bib13) 2015; 99
Truong, Chou (bib48) 2022; 143
Mujdeci, Guo, Bompa, Elghazouli (bib26) 2022; 181
Liu, Cao, Wang, Chen, Qin (bib42) 2022; 356
Baucum, Khojandi, Vasudevan (bib30) 2021; 25
Alwanas, Al-Musawi, Salih, Tao, Ali, Yaseen (bib6) 2019; 194
Gupta, Chaudhary, Sharma (bib14) 2016; 112
Hossain, Chu (bib55) 2019; 11
Duong, Le, Le (bib35) 2023; 23
A. Abid, A. Abdalla, A. Abid, D. Khan, A. Alfozan, J. Zou, Gradio: Hassle-Free Sharing and Testing of ML Models in the Wild, (2019). http://arxiv.org/abs/1906.02569 (accessed July 16, 2024).
Naser, Thai, Thai (bib31) 2021; 34
Zhaoyuan, Qiyun, Wanlin, Xiaopeng (bib57) 2022; 52
Wakjira, Al-Hamrani, Ebead, Alnahhal (bib3) 2022; 287
Shen, Huang, Liu, Zhou (bib62) 2022; 16
Farooq, Ahmed, Akbar, Aslam, Alyousef (bib37) 2021; 292
Czarnecki, Sadowski, Hoła (bib43) 2021; 132
Feng, Wang, Mangalathu, Hu, Wu (bib41) 2021; 235
Tao, Wang, Yu (bib22) 2013; 89
Saleh, AlHamaydeh, Zakaria (bib45) 2023; 280
Gilpin, Bau, Yuan, Bajwa, Specter, Kagal (bib63) 2018
Mohtasham Moein, Saradar, Rahmati, Ghasemzadeh Mousavinejad, Bristow, Aramali, Karakouzian (bib34) 2023; 63
Dong, Elchalakani, Karrech, Fawzia, Mohamed Ali, Yang, Xu (bib54) 2019; 162
Dundu (bib27) 2012; 56
Zhang, Cheng, Li, Du (bib38) 2022; 50
Huang, Xue, Zhang, Guo (bib4) 2022; 251
de Oliveira, De Nardin, de Cresce El Debs, El Debs (bib21) 2009; 65
Ganaie, Hu, Malik, Tanveer, Suganthan (bib53) 2022; 115
Saleh, Tarawneh, Naser (bib7) 2022; 292
Shafighfard, Bagherzadeh, Rizi, Yoo (bib47) 2022; 21
Duarte, Silva, Silvestre, de Brito, Júlio, Castro (bib24) 2016; 112
Feng, Liu, Wang, Jiang, Liang (bib36) 2020; 45
Cavaleri, Barkhordari, Repapis, Armaghani, Ulrikh, Asteris (bib40) 2022; 359
Wakjira, Alam (bib28) 2024; 154
Zhaoyuan, Qiyun, Wanlin, Jiafeng (bib56) 2022; 41
Li, Li, Hu, Sun, Qin, Chu (bib9) 2024; 20
Bravo, de Brito (bib12) 2012; 25
Blum, Nunes, Prangle, Sisson (bib59) 2013; 28
L. Xu, K. Veeramachaneni, Synthesizing Tabular Data using Generative Adversarial Networks, (2018). http://arxiv.org/abs/1811.11264 (accessed June 17, 2024).
Dong, Elchalakani, Karrech, Hassanein, Xie, Yang (bib25) 2019; 139
Huang, Burton (bib8) 2019; 25
Sagi, Rokach (bib60) 2018; 8
Wu, Kumar, Ross Quinlan, Ghosh, Yang, Motoda, McLachlan, Ng, Liu, Yu, Zhou, Steinbach, Hand, Steinberg (bib61) 2008; 14
Li, Song (bib44) 2023; 382
Silvestre, de Brito, Pinheiro (bib11) 2014; 66
Yu, Liang, Samali, Nguyen, Zhai, Li, Xie (bib5) 2022; 273
Arokiaprakash, Selvan (bib32) 2022; 46
Saraygord Afshari, Enayatollahi, Xu, Liang (bib2) 2022; 219
Duarte, Silvestre, de Brito, Júlio, Silvestre (bib23) 2018; 170
Ding, Yu, Bai, Gong (bib18) 2011; 67
L. Xu, M. Skoularidou, A. Cuesta-Infante, K. Veeramachaneni, Modeling Tabular data using Conditional GAN, (n.d.).
Chou, Nguyen (bib46) 2022; 140
Lundberg, Erion, Chen, DeGrave, Prutkin, Nair, Katz, Himmelfarb, Bansal, Lee (bib10) 2020; 2
Chitawadagi, Narasimhan, Kulkarni (bib17) 2010; 66
Saleh (10.1016/j.istruc.2024.107667_bib7) 2022; 292
Hossain (10.1016/j.istruc.2024.107667_bib55) 2019; 11
Mohtasham Moein (10.1016/j.istruc.2024.107667_bib34) 2023; 63
Blum (10.1016/j.istruc.2024.107667_bib59) 2013; 28
Khusru (10.1016/j.istruc.2024.107667_bib16) 2021; 276
Saraygord Afshari (10.1016/j.istruc.2024.107667_bib2) 2022; 219
Gupta (10.1016/j.istruc.2024.107667_bib14) 2016; 112
Fu (10.1016/j.istruc.2024.107667_bib58) 1998; 7
Vadyala (10.1016/j.istruc.2024.107667_bib33) 2022; 13
Zhang (10.1016/j.istruc.2024.107667_bib38) 2022; 50
Duong (10.1016/j.istruc.2024.107667_bib35) 2023; 23
Wakjira (10.1016/j.istruc.2024.107667_bib28) 2024; 154
Wolpert (10.1016/j.istruc.2024.107667_bib52) 1992; 5
Wang (10.1016/j.istruc.2024.107667_bib20) 2017; 135
Li (10.1016/j.istruc.2024.107667_bib44) 2023; 382
Mujdeci (10.1016/j.istruc.2024.107667_bib26) 2022; 181
Cavaleri (10.1016/j.istruc.2024.107667_bib40) 2022; 359
Dundu (10.1016/j.istruc.2024.107667_bib27) 2012; 56
Tan (10.1016/j.istruc.2024.107667_bib29) 2024; 241
Naser (10.1016/j.istruc.2024.107667_bib31) 2021; 34
Feng (10.1016/j.istruc.2024.107667_bib41) 2021; 235
Huang (10.1016/j.istruc.2024.107667_bib4) 2022; 251
Wakjira (10.1016/j.istruc.2024.107667_bib3) 2022; 287
Czarnecki (10.1016/j.istruc.2024.107667_bib43) 2021; 132
Farooq (10.1016/j.istruc.2024.107667_bib37) 2021; 292
Sagi (10.1016/j.istruc.2024.107667_bib60) 2018; 8
Wang (10.1016/j.istruc.2024.107667_bib1) 2022; 148
10.1016/j.istruc.2024.107667_bib64
Liu (10.1016/j.istruc.2024.107667_bib42) 2022; 356
Alwanas (10.1016/j.istruc.2024.107667_bib6) 2019; 194
Arokiaprakash (10.1016/j.istruc.2024.107667_bib32) 2022; 46
Silvestre (10.1016/j.istruc.2024.107667_bib11) 2014; 66
Shafighfard (10.1016/j.istruc.2024.107667_bib47) 2022; 21
Dong (10.1016/j.istruc.2024.107667_bib54) 2019; 162
Zhaoyuan (10.1016/j.istruc.2024.107667_bib57) 2022; 52
Yu (10.1016/j.istruc.2024.107667_bib5) 2022; 273
Bravo (10.1016/j.istruc.2024.107667_bib13) 2015; 99
Duarte (10.1016/j.istruc.2024.107667_bib24) 2016; 112
Zhaoyuan (10.1016/j.istruc.2024.107667_bib56) 2022; 41
Dong (10.1016/j.istruc.2024.107667_bib25) 2019; 139
Li (10.1016/j.istruc.2024.107667_bib9) 2024; 20
Ahmed (10.1016/j.istruc.2024.107667_bib49) 2022; 46
10.1016/j.istruc.2024.107667_bib50
Bravo (10.1016/j.istruc.2024.107667_bib12) 2012; 25
10.1016/j.istruc.2024.107667_bib51
Ding (10.1016/j.istruc.2024.107667_bib18) 2011; 67
Feng (10.1016/j.istruc.2024.107667_bib36) 2020; 45
Gilpin (10.1016/j.istruc.2024.107667_bib63) 2018
Guo (10.1016/j.istruc.2024.107667_bib15) 2017; 148
Li (10.1016/j.istruc.2024.107667_bib39) 2022; 324
de Oliveira (10.1016/j.istruc.2024.107667_bib21) 2009; 65
Baucum (10.1016/j.istruc.2024.107667_bib30) 2021; 25
Duarte (10.1016/j.istruc.2024.107667_bib23) 2018; 170
Lundberg (10.1016/j.istruc.2024.107667_bib10) 2020; 2
Ganaie (10.1016/j.istruc.2024.107667_bib53) 2022; 115
Abed (10.1016/j.istruc.2024.107667_bib19) 2013; 80
Saleh (10.1016/j.istruc.2024.107667_bib45) 2023; 280
Tao (10.1016/j.istruc.2024.107667_bib22) 2013; 89
Truong (10.1016/j.istruc.2024.107667_bib48) 2022; 143
Shen (10.1016/j.istruc.2024.107667_bib62) 2022; 16
Chitawadagi (10.1016/j.istruc.2024.107667_bib17) 2010; 66
Chou (10.1016/j.istruc.2024.107667_bib46) 2022; 140
Huang (10.1016/j.istruc.2024.107667_bib8) 2019; 25
Wu (10.1016/j.istruc.2024.107667_bib61) 2008; 14
References_xml – volume: 292
  year: 2021
  ident: bib37
  article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: a comparison and optimization of models using ensemble learners
  publication-title: J Clean Prod
– volume: 287
  year: 2022
  ident: bib3
  article-title: Shear capacity prediction of FRP-RC beams using single and ensenble explainable machine learning models
  publication-title: Compos Struct
– volume: 13
  year: 2022
  ident: bib33
  article-title: A review of physics-based machine learning in civil engineering
  publication-title: Results Eng
– volume: 181
  year: 2022
  ident: bib26
  article-title: Axial and bending behaviour of steel tubes infilled with rubberised concrete
  publication-title: Thin-Walled Struct
– volume: 139
  start-page: 24
  year: 2019
  end-page: 38
  ident: bib25
  article-title: Behaviour and design of rubberised concrete filled steel tubes under combined loading conditions
  publication-title: Thin-Walled Struct
– volume: 63
  year: 2023
  ident: bib34
  article-title: Predictive models for concrete properties using machine learning and deep learning approaches: a review
  publication-title: J Build Eng
– volume: 80
  start-page: 429
  year: 2013
  end-page: 439
  ident: bib19
  article-title: Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs)
  publication-title: J Constr Steel Res
– volume: 170
  start-page: 510
  year: 2018
  end-page: 521
  ident: bib23
  article-title: On the sustainability of rubberized concrete filled square steel tubular columns
  publication-title: J Clean Prod
– volume: 21
  start-page: 3777
  year: 2022
  end-page: 3794
  ident: bib47
  article-title: Data-driven compressive strength prediction of steel fiber reinforced concrete (SFRC) subjected to elevated temperatures using stacked machine learning algorithms
  publication-title: J Mater Res Technol
– volume: 34
  year: 2021
  ident: bib31
  article-title: Evaluating structural response of concrete-filled steel tubular columns through machine learning
  publication-title: J Build Eng
– volume: 25
  start-page: 2273
  year: 2021
  end-page: 2280
  ident: bib30
  article-title: Improving deep reinforcement learning with transitional variational autoencoders: a healthcare application
  publication-title: IEEE J Biomed Health Inform
– volume: 148
  year: 2022
  ident: bib1
  article-title: Machine learning for risk and resilience assessment in structural engineering: progress and future trends
  publication-title: J Struct Eng
– volume: 45
  year: 2020
  ident: bib36
  article-title: Failure mode classification and bearing capacity prediction for reinforced concrete columns based on ensemble machine learning algorithm
  publication-title: Adv Eng Inform
– volume: 382
  year: 2023
  ident: bib44
  article-title: Prediction of compressive strength of rice husk ash concrete based on stacking ensemble learning model
  publication-title: J Clean Prod
– reference: L. Xu, M. Skoularidou, A. Cuesta-Infante, K. Veeramachaneni, Modeling Tabular data using Conditional GAN, (n.d.).
– volume: 14
  start-page: 1
  year: 2008
  end-page: 37
  ident: bib61
  article-title: Top 10 algorithms in data mining
  publication-title: Knowl Inf Syst
– volume: 89
  start-page: 121
  year: 2013
  end-page: 131
  ident: bib22
  article-title: Finite element modelling of concrete-filled steel stub columns under axial compression
  publication-title: J Constr Steel Res
– volume: 112
  start-page: 274
  year: 2016
  end-page: 286
  ident: bib24
  article-title: Tests and design of short steel tubes filled with rubberised concrete
  publication-title: Eng Struct
– volume: 356
  year: 2022
  ident: bib42
  article-title: Prediction of the durability of high-performance concrete using an integrated RF-LSSVM model
  publication-title: Constr Build Mater
– volume: 65
  start-page: 2103
  year: 2009
  end-page: 2110
  ident: bib21
  article-title: Influence of concrete strength and length/diameter on the axial capacity of CFT columns
  publication-title: J Constr Steel Res
– volume: 235
  year: 2021
  ident: bib41
  article-title: Implementing ensemble learning methods to predict the shear strength of RC deep beams with/without web reinforcements
  publication-title: Eng Struct
– volume: 140
  year: 2022
  ident: bib46
  article-title: Scour depth prediction at bridge piers using metaheuristics-optimized stacking system
  publication-title: Autom Constr
– volume: 41
  start-page: 887
  year: 2022
  end-page: 907
  ident: bib56
  article-title: Study on axial compressive behavior of circular steel tube confined rubberized concrete stub columns
  publication-title: Structures
– volume: 280
  year: 2023
  ident: bib45
  article-title: Shear capacity prediction for reinforced concrete deep beams with web openings using artificial intelligence methods
  publication-title: Eng Struct
– volume: 251
  year: 2022
  ident: bib4
  article-title: Torsion design of CFRP-CFST columns using a data-driven optimization approach
  publication-title: Eng Struct
– volume: 52
  year: 2022
  ident: bib57
  article-title: Axial compressive behavior of square steel tube confined rubberized concrete stub columns
  publication-title: J Build Eng
– volume: 135
  start-page: 209
  year: 2017
  end-page: 221
  ident: bib20
  article-title: Strength, stiffness and ductility of concrete-filled steel columns under axial compression
  publication-title: Eng Struct
– volume: 99
  start-page: 59
  year: 2015
  end-page: 74
  ident: bib13
  article-title: Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants
  publication-title: J Clean Prod
– volume: 20
  start-page: 8628
  year: 2024
  end-page: 8638
  ident: bib9
  article-title: Transparent operator network: a fully interpretable network incorporating learnable wavelet operator for intelligent fault diagnosis
  publication-title: IEEE Trans Ind Inform
– volume: 162
  year: 2019
  ident: bib54
  article-title: Circular steel tubes filled with rubberised concrete under combined loading
  publication-title: J Constr Steel Res
– volume: 46
  start-page: 4111
  year: 2022
  end-page: 4130
  ident: bib32
  article-title: Application of random forest and multi-layer perceptron ANNS in estimating the axial compression capacity of concrete-filled steel tubes
  publication-title: Iran J Sci Technol Trans Civ Eng
– volume: 23
  start-page: 263
  year: 2023
  end-page: 278
  ident: bib35
  article-title: Practical machine learning application for predicting axial capacity of composite concrete-filled steel tube columns considering effect of cross-sectional shapes
  publication-title: Int J Steel Struct
– volume: 16
  year: 2022
  ident: bib62
  article-title: Axial compressive behavior of rubberized concrete-filled steel tube short columns
  publication-title: Case Stud Constr Mater
– volume: 8
  year: 2018
  ident: bib60
  article-title: Ensemble learning: a survey
  publication-title: WIREs Data Min Knowl Discov
– reference: A. Abid, A. Abdalla, A. Abid, D. Khan, A. Alfozan, J. Zou, Gradio: Hassle-Free Sharing and Testing of ML Models in the Wild, (2019). http://arxiv.org/abs/1906.02569 (accessed July 16, 2024).
– start-page: 80
  year: 2018
  end-page: 89
  ident: bib63
  article-title: Explaining explanations: an overview of interpretability of machine learning
  publication-title: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)
– volume: 359
  year: 2022
  ident: bib40
  article-title: Convolution-based ensemble learning algorithms to estimate the bond strength of the corroded reinforced concrete
  publication-title: Constr Build Mater
– volume: 276
  year: 2021
  ident: bib16
  article-title: Confined rubberised concrete tubular column for high-performance structures – review
  publication-title: Constr Build Mater
– volume: 56
  start-page: 62
  year: 2012
  end-page: 70
  ident: bib27
  article-title: Compressive strength of circular concrete filled steel tube columns
  publication-title: Thin-Walled Struct
– volume: 148
  start-page: 681
  year: 2017
  end-page: 689
  ident: bib15
  article-title: Evaluation of properties and performance of rubber-modified concrete for recycling of waste scrap tire
  publication-title: J Clean Prod
– volume: 50
  year: 2022
  ident: bib38
  article-title: Prediction of failure modes, strength, and deformation capacity of RC shear walls through machine learning
  publication-title: J Build Eng
– volume: 5
  start-page: 241
  year: 1992
  end-page: 259
  ident: bib52
  article-title: Stacked generalization
  publication-title: Neural Netw
– volume: 194
  start-page: 220
  year: 2019
  end-page: 229
  ident: bib6
  article-title: Load-carrying capacity and mode failure simulation of beam-column joint connection: application of self-tuning machine learning model
  publication-title: Eng Struct
– volume: 132
  year: 2021
  ident: bib43
  article-title: Evaluation of interlayer bonding in layered composites based on non-destructive measurements and machine learning: comparative analysis of selected learning algorithms
  publication-title: Autom Constr
– volume: 25
  start-page: 42
  year: 2012
  end-page: 50
  ident: bib12
  article-title: Concrete made with used tyre aggregate: durability-related performance
  publication-title: J Clean Prod
– volume: 2
  start-page: 56
  year: 2020
  end-page: 67
  ident: bib10
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat Mach Intell
– volume: 112
  start-page: 702
  year: 2016
  end-page: 711
  ident: bib14
  article-title: Mechanical and durability properties of waste rubber fiber concrete with and without silica fume
  publication-title: J Clean Prod
– volume: 46
  year: 2022
  ident: bib49
  article-title: Seismic damage state predictions of reinforced concrete structures using stacked long short-term memory neural networks
  publication-title: J Build Eng
– volume: 143
  year: 2022
  ident: bib48
  article-title: Fuzzy adaptive jellyfish search-optimized stacking machine learning for engineering planning and design
  publication-title: Autom Constr
– volume: 66
  start-page: 37
  year: 2014
  end-page: 45
  ident: bib11
  article-title: Environmental impacts and benefits of the end-of-life of building materials – calculation rules, results and contribution to a “cradle to cradle” life cycle
  publication-title: J Clean Prod
– volume: 11
  start-page: 255
  year: 2019
  end-page: 270
  ident: bib55
  article-title: Confinement of six different concretes in CFST columns having different shapes and slenderness
  publication-title: Int J Adv Struct Eng
– volume: 7
  start-page: 397
  year: 1998
  end-page: 416
  ident: bib58
  article-title: Penalized regressions: the bridge versus the Lasso
  publication-title: J Comput Graph Stat
– volume: 25
  year: 2019
  ident: bib8
  article-title: Classification of in-plane failure modes for reinforced concrete frames with infills using machine learning
  publication-title: J Build Eng
– volume: 241
  year: 2024
  ident: bib29
  article-title: DPTVAE: Data-driven prior-based tabular variational autoencoder for credit data synthesizing
  publication-title: Expert Syst Appl
– volume: 292
  year: 2022
  ident: bib7
  article-title: Failure mode classification and deformability evaluation for concrete beams reinforced with FRP bars
  publication-title: Compos Struct
– volume: 273
  year: 2022
  ident: bib5
  article-title: Torsional capacity evaluation of RC beams using an improved bird swarm algorithm optimised 2D convolutional neural network
  publication-title: Eng Struct
– volume: 154
  year: 2024
  ident: bib28
  article-title: Peak and ultimate stress-strain model of confined ultra-high-performance concrete (UHPC) using hybrid machine learning model with conditional tabular generative adversarial network
  publication-title: Appl Soft Comput
– volume: 324
  year: 2022
  ident: bib39
  article-title: High-performance concrete strength prediction based on ensemble learning
  publication-title: Constr Build Mater
– volume: 219
  year: 2022
  ident: bib2
  article-title: Machine learning-based methods in structural reliability analysis: a review
  publication-title: Reliab Eng Syst Saf
– volume: 115
  year: 2022
  ident: bib53
  article-title: Ensemble deep learning: a review
  publication-title: Eng Appl Artif Intell
– volume: 66
  start-page: 1248
  year: 2010
  end-page: 1260
  ident: bib17
  article-title: Axial strength of circular concrete-filled steel tube columns — DOE approach
  publication-title: J Constr Steel Res
– volume: 28
  start-page: 189
  year: 2013
  end-page: 208
  ident: bib59
  article-title: A comparative review of dimension reduction methods in approximate bayesian computation
  publication-title: Stat Sci
– volume: 67
  start-page: 1567
  year: 2011
  end-page: 1577
  ident: bib18
  article-title: Elasto-plastic analysis of circular concrete-filled steel tube stub columns
  publication-title: J Constr Steel Res
– reference: L. Xu, K. Veeramachaneni, Synthesizing Tabular Data using Generative Adversarial Networks, (2018). http://arxiv.org/abs/1811.11264 (accessed June 17, 2024).
– volume: 25
  start-page: 42
  year: 2012
  ident: 10.1016/j.istruc.2024.107667_bib12
  article-title: Concrete made with used tyre aggregate: durability-related performance
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2011.11.066
– volume: 143
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib48
  article-title: Fuzzy adaptive jellyfish search-optimized stacking machine learning for engineering planning and design
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2022.104579
– volume: 46
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib49
  article-title: Seismic damage state predictions of reinforced concrete structures using stacked long short-term memory neural networks
  publication-title: J Build Eng
– ident: 10.1016/j.istruc.2024.107667_bib50
– volume: 235
  year: 2021
  ident: 10.1016/j.istruc.2024.107667_bib41
  article-title: Implementing ensemble learning methods to predict the shear strength of RC deep beams with/without web reinforcements
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2021.111979
– volume: 140
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib46
  article-title: Scour depth prediction at bridge piers using metaheuristics-optimized stacking system
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2022.104297
– volume: 112
  start-page: 702
  year: 2016
  ident: 10.1016/j.istruc.2024.107667_bib14
  article-title: Mechanical and durability properties of waste rubber fiber concrete with and without silica fume
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2015.07.081
– volume: 2
  start-page: 56
  year: 2020
  ident: 10.1016/j.istruc.2024.107667_bib10
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-019-0138-9
– volume: 276
  year: 2021
  ident: 10.1016/j.istruc.2024.107667_bib16
  article-title: Confined rubberised concrete tubular column for high-performance structures – review
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2020.122216
– volume: 135
  start-page: 209
  year: 2017
  ident: 10.1016/j.istruc.2024.107667_bib20
  article-title: Strength, stiffness and ductility of concrete-filled steel columns under axial compression
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2016.12.049
– volume: 219
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib2
  article-title: Machine learning-based methods in structural reliability analysis: a review
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.108223
– volume: 132
  year: 2021
  ident: 10.1016/j.istruc.2024.107667_bib43
  article-title: Evaluation of interlayer bonding in layered composites based on non-destructive measurements and machine learning: comparative analysis of selected learning algorithms
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2021.103977
– volume: 280
  year: 2023
  ident: 10.1016/j.istruc.2024.107667_bib45
  article-title: Shear capacity prediction for reinforced concrete deep beams with web openings using artificial intelligence methods
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2023.115675
– volume: 23
  start-page: 263
  year: 2023
  ident: 10.1016/j.istruc.2024.107667_bib35
  article-title: Practical machine learning application for predicting axial capacity of composite concrete-filled steel tube columns considering effect of cross-sectional shapes
  publication-title: Int J Steel Struct
  doi: 10.1007/s13296-022-00693-0
– volume: 112
  start-page: 274
  year: 2016
  ident: 10.1016/j.istruc.2024.107667_bib24
  article-title: Tests and design of short steel tubes filled with rubberised concrete
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2016.01.018
– volume: 292
  year: 2021
  ident: 10.1016/j.istruc.2024.107667_bib37
  article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: a comparison and optimization of models using ensemble learners
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.126032
– volume: 34
  year: 2021
  ident: 10.1016/j.istruc.2024.107667_bib31
  article-title: Evaluating structural response of concrete-filled steel tubular columns through machine learning
  publication-title: J Build Eng
– volume: 99
  start-page: 59
  year: 2015
  ident: 10.1016/j.istruc.2024.107667_bib13
  article-title: Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2015.03.012
– volume: 25
  start-page: 2273
  year: 2021
  ident: 10.1016/j.istruc.2024.107667_bib30
  article-title: Improving deep reinforcement learning with transitional variational autoencoders: a healthcare application
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2020.3027443
– volume: 56
  start-page: 62
  year: 2012
  ident: 10.1016/j.istruc.2024.107667_bib27
  article-title: Compressive strength of circular concrete filled steel tube columns
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2012.03.008
– volume: 11
  start-page: 255
  year: 2019
  ident: 10.1016/j.istruc.2024.107667_bib55
  article-title: Confinement of six different concretes in CFST columns having different shapes and slenderness
  publication-title: Int J Adv Struct Eng
  doi: 10.1007/s40091-019-0228-2
– volume: 41
  start-page: 887
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib56
  article-title: Study on axial compressive behavior of circular steel tube confined rubberized concrete stub columns
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.05.022
– volume: 273
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib5
  article-title: Torsional capacity evaluation of RC beams using an improved bird swarm algorithm optimised 2D convolutional neural network
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.115066
– volume: 7
  start-page: 397
  year: 1998
  ident: 10.1016/j.istruc.2024.107667_bib58
  article-title: Penalized regressions: the bridge versus the Lasso
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.1998.10474784
– volume: 148
  start-page: 681
  year: 2017
  ident: 10.1016/j.istruc.2024.107667_bib15
  article-title: Evaluation of properties and performance of rubber-modified concrete for recycling of waste scrap tire
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.02.046
– volume: 382
  year: 2023
  ident: 10.1016/j.istruc.2024.107667_bib44
  article-title: Prediction of compressive strength of rice husk ash concrete based on stacking ensemble learning model
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2022.135279
– volume: 67
  start-page: 1567
  year: 2011
  ident: 10.1016/j.istruc.2024.107667_bib18
  article-title: Elasto-plastic analysis of circular concrete-filled steel tube stub columns
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2011.04.001
– volume: 45
  year: 2020
  ident: 10.1016/j.istruc.2024.107667_bib36
  article-title: Failure mode classification and bearing capacity prediction for reinforced concrete columns based on ensemble machine learning algorithm
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2020.101126
– volume: 194
  start-page: 220
  year: 2019
  ident: 10.1016/j.istruc.2024.107667_bib6
  article-title: Load-carrying capacity and mode failure simulation of beam-column joint connection: application of self-tuning machine learning model
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.05.048
– volume: 80
  start-page: 429
  year: 2013
  ident: 10.1016/j.istruc.2024.107667_bib19
  article-title: Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs)
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2012.10.005
– volume: 292
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib7
  article-title: Failure mode classification and deformability evaluation for concrete beams reinforced with FRP bars
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2022.115651
– volume: 13
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib33
  article-title: A review of physics-based machine learning in civil engineering
  publication-title: Results Eng
  doi: 10.1016/j.rineng.2021.100316
– volume: 28
  start-page: 189
  year: 2013
  ident: 10.1016/j.istruc.2024.107667_bib59
  article-title: A comparative review of dimension reduction methods in approximate bayesian computation
  publication-title: Stat Sci
  doi: 10.1214/12-STS406
– volume: 154
  year: 2024
  ident: 10.1016/j.istruc.2024.107667_bib28
  article-title: Peak and ultimate stress-strain model of confined ultra-high-performance concrete (UHPC) using hybrid machine learning model with conditional tabular generative adversarial network
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2024.111353
– volume: 50
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib38
  article-title: Prediction of failure modes, strength, and deformation capacity of RC shear walls through machine learning
  publication-title: J Build Eng
– volume: 148
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib1
  article-title: Machine learning for risk and resilience assessment in structural engineering: progress and future trends
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0003392
– volume: 52
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib57
  article-title: Axial compressive behavior of square steel tube confined rubberized concrete stub columns
  publication-title: J Build Eng
– volume: 287
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib3
  article-title: Shear capacity prediction of FRP-RC beams using single and ensenble explainable machine learning models
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2022.115381
– volume: 25
  year: 2019
  ident: 10.1016/j.istruc.2024.107667_bib8
  article-title: Classification of in-plane failure modes for reinforced concrete frames with infills using machine learning
  publication-title: J Build Eng
– volume: 89
  start-page: 121
  year: 2013
  ident: 10.1016/j.istruc.2024.107667_bib22
  article-title: Finite element modelling of concrete-filled steel stub columns under axial compression
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2013.07.001
– start-page: 80
  year: 2018
  ident: 10.1016/j.istruc.2024.107667_bib63
  article-title: Explaining explanations: an overview of interpretability of machine learning
– volume: 251
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib4
  article-title: Torsion design of CFRP-CFST columns using a data-driven optimization approach
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2021.113479
– volume: 139
  start-page: 24
  year: 2019
  ident: 10.1016/j.istruc.2024.107667_bib25
  article-title: Behaviour and design of rubberised concrete filled steel tubes under combined loading conditions
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2019.02.031
– volume: 46
  start-page: 4111
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib32
  article-title: Application of random forest and multi-layer perceptron ANNS in estimating the axial compression capacity of concrete-filled steel tubes
  publication-title: Iran J Sci Technol Trans Civ Eng
  doi: 10.1007/s40996-022-00893-y
– volume: 356
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib42
  article-title: Prediction of the durability of high-performance concrete using an integrated RF-LSSVM model
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2022.129232
– volume: 181
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib26
  article-title: Axial and bending behaviour of steel tubes infilled with rubberised concrete
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2022.110125
– volume: 8
  year: 2018
  ident: 10.1016/j.istruc.2024.107667_bib60
  article-title: Ensemble learning: a survey
  publication-title: WIREs Data Min Knowl Discov
– volume: 14
  start-page: 1
  year: 2008
  ident: 10.1016/j.istruc.2024.107667_bib61
  article-title: Top 10 algorithms in data mining
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-007-0114-2
– ident: 10.1016/j.istruc.2024.107667_bib51
– volume: 359
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib40
  article-title: Convolution-based ensemble learning algorithms to estimate the bond strength of the corroded reinforced concrete
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2022.129504
– volume: 241
  year: 2024
  ident: 10.1016/j.istruc.2024.107667_bib29
  article-title: DPTVAE: Data-driven prior-based tabular variational autoencoder for credit data synthesizing
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.122071
– volume: 20
  start-page: 8628
  year: 2024
  ident: 10.1016/j.istruc.2024.107667_bib9
  article-title: Transparent operator network: a fully interpretable network incorporating learnable wavelet operator for intelligent fault diagnosis
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2024.3366993
– volume: 66
  start-page: 37
  year: 2014
  ident: 10.1016/j.istruc.2024.107667_bib11
  article-title: Environmental impacts and benefits of the end-of-life of building materials – calculation rules, results and contribution to a “cradle to cradle” life cycle
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2013.10.028
– volume: 170
  start-page: 510
  year: 2018
  ident: 10.1016/j.istruc.2024.107667_bib23
  article-title: On the sustainability of rubberized concrete filled square steel tubular columns
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.09.131
– ident: 10.1016/j.istruc.2024.107667_bib64
– volume: 66
  start-page: 1248
  year: 2010
  ident: 10.1016/j.istruc.2024.107667_bib17
  article-title: Axial strength of circular concrete-filled steel tube columns — DOE approach
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2010.04.006
– volume: 115
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib53
  article-title: Ensemble deep learning: a review
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.105151
– volume: 65
  start-page: 2103
  year: 2009
  ident: 10.1016/j.istruc.2024.107667_bib21
  article-title: Influence of concrete strength and length/diameter on the axial capacity of CFT columns
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2009.07.004
– volume: 324
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib39
  article-title: High-performance concrete strength prediction based on ensemble learning
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2022.126694
– volume: 16
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib62
  article-title: Axial compressive behavior of rubberized concrete-filled steel tube short columns
  publication-title: Case Stud Constr Mater
– volume: 21
  start-page: 3777
  year: 2022
  ident: 10.1016/j.istruc.2024.107667_bib47
  article-title: Data-driven compressive strength prediction of steel fiber reinforced concrete (SFRC) subjected to elevated temperatures using stacked machine learning algorithms
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2022.10.153
– volume: 5
  start-page: 241
  year: 1992
  ident: 10.1016/j.istruc.2024.107667_bib52
  article-title: Stacked generalization
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80023-1
– volume: 162
  year: 2019
  ident: 10.1016/j.istruc.2024.107667_bib54
  article-title: Circular steel tubes filled with rubberised concrete under combined loading
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2019.05.003
– volume: 63
  year: 2023
  ident: 10.1016/j.istruc.2024.107667_bib34
  article-title: Predictive models for concrete properties using machine learning and deep learning approaches: a review
  publication-title: J Build Eng
SSID ssj0002140247
Score 2.3228474
Snippet The application of rubberized concrete filled steel tube (RuCFST) structures can facilitate the recycling of used tires, offering a sustainable solution. In...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107667
SubjectTerms Ensemble learning
Rubberized concrete filled steel tube columns
Stacking
Tabular variational autoencoder
Ultimate bearing capacity
Title Prediction of ultimate bearing capacity for rubberized concrete filled steel tube columns based on Tabular Variational Autoencoder method and Stacking ensemble strategy
URI https://dx.doi.org/10.1016/j.istruc.2024.107667
Volume 70
WOSCitedRecordID wos001365989200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2352-0124
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140247
  issn: 2352-0124
  databaseCode: AIEXJ
  dateStart: 20150201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECVcp4f2UHRFki6YQ2-CjJhaKB2NIEVbFEGAuIHRi0BSIurAkQNbCtJ8Ub-i39bhJitNkDaHXmSDJkeU5pmzcGZIyHvJyixNojhEcWe2GWWYxVyEbJyoJJJpHpvtgpMv7PAwm83yo8Hgl8-FuViwus4uL_Pz_8pqbENm69TZe7C7I4oN-B2ZjldkO17_ifFHK7334hVBHS-ISmkVCHxOk2CL0lHOXZzmqhUC53RV6dy2GhVI7Kh0dmAZIPerRdC0Qoez4wpWrwMt8Uq9uzDlwkSvniBJ70yctM1SF8XUtSnssdQ2KrThUnvjAzSXqzOdprW29XCvbScfmyq27cr6gG0SY89Hcezihr_h55mXtX1v9_53vuxCi1ojVuY_HO6dS4PGvfAQs_JR1AqxwSZXj6pb2tzSbc8ccWsvGrKpPdrjhliwHorT0dwU5R3pe4423a9X4f5DOnYxiz4c7rSwVApNpbBUHpAtypI8G5KtyaeD2efOy0fRfqXmlLtu_j5_0wQZ3pzQ7fpRT-eZPiVPnLECEwuyZ2RQ1c_J414Jyxfk5wZusFTg4QYObuDhBshS2MANPNzAwg0M3EDDDRzcwMANkK6DG_TgBj24gYUbINzAww083MDD7SX5-uFguv8xdKd_hBLN2CaM0z0pBL4-qU34RFGVjvlY6gB_pfYyzhJaqYSrMktinklOxxFNSl1rKWOCqjJ6RYb1sq62CaAkxQGUljFDZqQij5Usk5QpHM85G--QyL_zQrrS-PqElkVxF9N3SNiNOrelYf7Sn3l2Fk69tWprgTC9c-TuPe_0mjza_K3ekCH-Xr0lD-VFM1-v3jmM_gbuqc_8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+ultimate+bearing+capacity+for+rubberized+concrete+filled+steel+tube+columns+based+on+Tabular+Variational+Autoencoder+method+and+Stacking+ensemble+strategy&rft.jtitle=Structures+%28Oxford%29&rft.au=Song%2C+Zongming&rft.au=Zhang%2C+Chao&rft.au=Lu%2C+Yiyan&rft.date=2024-12-01&rft.issn=2352-0124&rft.eissn=2352-0124&rft.volume=70&rft.spage=107667&rft_id=info:doi/10.1016%2Fj.istruc.2024.107667&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_istruc_2024_107667
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0124&client=summon