Towards CSI-based diversity activity recognition via LSTM-CNN encoder-decoder neural network

Human activity recognition using WiFi signals is widespread for smart-environment sensing domain in recent years. Existing researches use learning-based methods to obtain several features of activity data and then recognize human activities. As we know, propagation characteristics of WiFi signals ar...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 444; s. 260 - 273
Hlavní autori: Guo, Linlin, Zhang, Hang, Wang, Chao, Guo, Weiyu, Diao, Guangqiang, Lu, Bingxian, Lin, Chuang, Wang, Lei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 15.07.2021
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Human activity recognition using WiFi signals is widespread for smart-environment sensing domain in recent years. Existing researches use learning-based methods to obtain several features of activity data and then recognize human activities. As we know, propagation characteristics of WiFi signals are different for individuals under different place conditions even in the same environment. In this paper, we focus on how to weaken the accuracy differences among individuals on activity recognition and improve the robustness in one indoor environment. Based on this, we design a novel deep learning model called LCED which consists of one LSTM-based Encoder, features image presentation, and one CNN-based Decoder to weaken the accuracy differences among individuals on activity recognition. We first use a low-pass filter to remove high-frequency noise data in time-sequence signal data and design variance-based window method to determine the start and the end of time-sequence signal data corresponding to an activity. After that, we utilize the proposed LCED model to learn informative features space of activity data and improve the accuracy of sixteen activities. Experimental results show that the average accuracy of sixteen activities is high 95% and the accuracy differences among individuals on activity recognition averagely decreases by 3%.
AbstractList Human activity recognition using WiFi signals is widespread for smart-environment sensing domain in recent years. Existing researches use learning-based methods to obtain several features of activity data and then recognize human activities. As we know, propagation characteristics of WiFi signals are different for individuals under different place conditions even in the same environment. In this paper, we focus on how to weaken the accuracy differences among individuals on activity recognition and improve the robustness in one indoor environment. Based on this, we design a novel deep learning model called LCED which consists of one LSTM-based Encoder, features image presentation, and one CNN-based Decoder to weaken the accuracy differences among individuals on activity recognition. We first use a low-pass filter to remove high-frequency noise data in time-sequence signal data and design variance-based window method to determine the start and the end of time-sequence signal data corresponding to an activity. After that, we utilize the proposed LCED model to learn informative features space of activity data and improve the accuracy of sixteen activities. Experimental results show that the average accuracy of sixteen activities is high 95% and the accuracy differences among individuals on activity recognition averagely decreases by 3%.
Author Lin, Chuang
Guo, Linlin
Wang, Chao
Wang, Lei
Zhang, Hang
Diao, Guangqiang
Guo, Weiyu
Lu, Bingxian
Author_xml – sequence: 1
  givenname: Linlin
  surname: Guo
  fullname: Guo, Linlin
  email: linlin.teresa.guo@gmail.com
  organization: School of Software Technology, Dalian University of Technology, China
– sequence: 2
  givenname: Hang
  surname: Zhang
  fullname: Zhang, Hang
  email: hang.zhang1@siat.ac.cn
  organization: Shenzhen Institutes of Advanced Technology Chinese Academcy of Sciences, University of Chinese Academy of Science, China
– sequence: 3
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  email: chao.wang@siat.ac.cn
  organization: Shenzhen Institutes of Advanced Technology Chinese Academcy of Sciences, University of Chinese Academy of Science, China
– sequence: 4
  givenname: Weiyu
  surname: Guo
  fullname: Guo, Weiyu
  email: guoweiyu96@gmail.com
  organization: Shenzhen Institutes of Advanced Technology Chinese Academcy of Sciences, University of Chinese Academy of Science, China
– sequence: 5
  givenname: Guangqiang
  surname: Diao
  fullname: Diao, Guangqiang
  email: dgq@sdyu.edu.cn
  organization: Shandong Youth University of Political Science, China
– sequence: 6
  givenname: Bingxian
  surname: Lu
  fullname: Lu, Bingxian
  email: bingxian.lu@dlut.edu.cn
  organization: School of Software Technology, Dalian University of Technology, China
– sequence: 7
  givenname: Chuang
  surname: Lin
  fullname: Lin, Chuang
  email: chuang.lin@siat.ac.cn
  organization: Shenzhen Institutes of Advanced Technology Chinese Academcy of Sciences, University of Chinese Academy of Science, China
– sequence: 8
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  email: lei.wang@dlut.edu.cn
  organization: School of Software Technology, Dalian University of Technology, China
BookMark eNqFkL1OwzAUhS1UJNrCGzDkBRxs58cJAxKK-KkUytCyIVk3toNc2hjZJlXfnoQyMcB07vId3fPN0KSznUbokpKYEppfbeJOf0q7ixlhJCYspgk_QVNacIYLVuQTNCUlyzBLKDtDM-83hFBOWTlFr2u7B6d8VK0WuAGvVaRMr5034RCBDKYfD6elfetMMLaLegNRvVo_4Wq5jHQnrdIOK_2d0fCHg-0QYW_d-zk6bWHr9cVPztHL_d26esT188Oiuq2xTEgecJpRSThRnLZtAk2SKIAMWsgamSleplwxUGXRyEJJ0qYNgSxVDdeFzAuaa5XMUXrslc5673QrPpzZgTsISsRoSGzE0ZAYDQnCxGBowK5_YdIEGEcGB2b7H3xzhPUwrDfaCS_NoEMrM9gKQlnzd8EXeGOI2A
CitedBy_id crossref_primary_10_1109_JSEN_2025_3572889
crossref_primary_10_1155_2021_9955079
crossref_primary_10_1016_j_dsp_2023_104056
crossref_primary_10_1109_TMC_2025_3573457
crossref_primary_10_1016_j_compbiomed_2024_108232
crossref_primary_10_1016_j_pmcj_2023_101850
crossref_primary_10_1109_JIOT_2024_3375337
crossref_primary_10_3390_ai6010006
crossref_primary_10_1049_rsn2_12280
crossref_primary_10_3390_s24103159
crossref_primary_10_1109_JSEN_2022_3196673
crossref_primary_10_1016_j_neucom_2022_04_035
crossref_primary_10_3390_s23073591
crossref_primary_10_1007_s13042_024_02266_5
crossref_primary_10_3390_s23052612
crossref_primary_10_1016_j_heliyon_2023_e13636
crossref_primary_10_1109_JIOT_2024_3454223
crossref_primary_10_3390_s25103108
Cites_doi 10.1145/3314420
10.1145/3025453.3025678
10.1145/3351279
10.4018/ijaci.2014010102
10.1109/MCOM.2018.1701277
10.1145/3310194
10.1145/3307334.3326081
10.1109/TVT.2016.2555986
10.1145/2543581.2543592
10.1145/2500423.2500436
10.1145/3264958
10.1145/3356250.3360031
10.1145/2632048.2632095
10.1145/3191783
10.1145/3241539.3241548
10.1145/2789168.2790093
10.1145/2702123.2702200
10.1109/CVPR.2018.00768
10.1109/ICCCN.2018.8487345
10.1109/INFOCOM.2014.6847948
10.1145/2639108.2639143
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2020.02.137
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 273
ExternalDocumentID 10_1016_j_neucom_2020_02_137
S092523122031777X
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-451c070d71ff3ab33daa5afa5bc5d7947d2ad98bc8dc0f4b0a54db7e8c6816ed3
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000648645900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 22:40:46 EST 2025
Sat Nov 29 07:13:57 EST 2025
Fri Feb 23 02:45:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords WiFi signals
Human activity recognition
Convolutional neural network
Channel state information
Long short term memory
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-451c070d71ff3ab33daa5afa5bc5d7947d2ad98bc8dc0f4b0a54db7e8c6816ed3
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_neucom_2020_02_137
crossref_citationtrail_10_1016_j_neucom_2020_02_137
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_02_137
PublicationCentury 2000
PublicationDate 2021-07-15
PublicationDateYYYYMMDD 2021-07-15
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ioffe, Szegedy (b0060) 2015
Wang, Zhang, Gao, Yue, Wang (b0125) 2017; 66
W. Wei, X.Liu, A., M, S., Gait Recognition Using Wi-Fi Signals, in: Proc. of ACM UbiComp, 2016.
Halperin, Hu, Sheth, Wetherall (b0050) 2011; 41
Y. Zeng, D. Wu, R. Gao, T. Gu, D. Zhang, FullBreathe: Full Human Respiration Detection Exploiting Complementarity of CSI Phase and Amplitude of WiFi Signals, in: Proc. of ACM Interact. Mob. Wearable Ubiquitous Technol, 2018, pp. 148:1–148:19.
M. Zhao, T. Li, M.A. Alsheikh, Y. Tian, H. Zhao, A. Torralba, D. Katabi, Through-Wall Human Pose Estimation Using Radio Signals, in: Proc. of ACM CVPR, ACM, 2018, pp. 7356–7365.
L. Chen, X. Chen, S.I. Lee, K. Chen, D. Han, D. Fang, Z. Tang, Z. Wang, WIDESEE: Towards Wide-Area Contactless Wireless Sensing, in: Proc. of ACM SenSys, 2019.
H. Zou, J. Yang, Y. Zhou, L. Xie, C.J. Spanos, Robust WiFi-enabled Device-free Gesture Recognition via Unsupervised Adversarial Domain Adaption, in: Proc. of IEEE ICCCN, 2018, pp. 1–8.
B. Fang, N.D. Lane, M. Zhang, A. Boran, F. Kawsar, BodyScan: Enabling Radio-based Sensing on Wearable Devices for Contactless Activity and Vital Sign Monitoring, in: Proc. of IEEE MobiSys, 2016.
N. Yu, W. Wang, A.X. Liu, L. Kong, QGesture: Quantifying Gesture Distance and Direction with WiFi Signals, in: Proc. of ACM Interact. Mob. Wearable Ubiquitous Technol, 2018, pp. 1–23.
Q. Pu, S. Gupta, S. Gollakota, S. Patel, Whole-home Gesture Recognition Using Wireless Signals, in: Proc. of ACM MobiCom, 2013.
Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, H. Liu, E-eyes: Device-free Location-oriented Activity Identification Using Fine-grained WiFi Signatures, in: Proc. of ACM Mobicom, 2014.
Gu, Wang, Kuen, Ma, Shahroudy, Bing, Liu, Wang, Gang (b0035) 2015
Chen, Zhang, Jiang, Cui (b0020) 2018
Sigg, Shi, Ji (b0115) 2014; 6
F. Adib, H. Mao, Z. Kebelac, D. Katabi, C. Miller, Smart Homes That Monitor Breathing and Heart Rate, in: Proc. of ACM CHI, 2015.
W. Jiang, C. Miao, S.Y. Fenglong Ma, Y. Wang, Y. Yuan, H. Xue, C. Song, D.K. Xin Ma, W. Xu, L. Su, Towards Environment Independent Device Free Human Activity Recognition, in: Proc. of ACM MobiCom, 2018, pp. 1–16.
C. Olah, Understanding LSTM Networks, 2015. URL
Niu, Zhang, Jie Xiong, Yi, Zhang (b0095) 2018
Abdelnasser, Youssef, Harras (b0005) 2015
F. Zhang, K. Niu, J. Xiong, B. Jin, T. Gu, Y. Jiang, D. Zhang, Towards a Diffraction-based Sensing Approach on Human Activity Recognition, in: Proc. of ACM Interact. Mob. Wearable Ubiquitous Technol, 2019, pp. 33–57.
Wang, Wang, Mao (b0135) 2018
Z. Yang, Z. Zhou, Y. Liu, From RSSI to CSI: Indoor Localization via Channel Response, ACM Comput. Surv. 46 (2013) 25:1–25:32.
C. Han, K. Wu, Y. Wang, L.M. Ni, WiFall: Device-free fall detection by wireless networks, in: Proc. of IEEE INFOCOM, 2014.
Y. Zheng, Y. Zhang, K. Qian, G. Zhang, Y. Liu, C. Wu, Z. Yang, Zero-Effort Cross-Domain Gesture Recognition with Wi-Fi, in: Proc. of ACM Mobisys, 2019, pp. 1–13.
W. Wang, A.X. Liu, M. Shahzad, K. Ling, S. Lu, Understanding and Modeling of WiFi Signal Based Human Activity Recognition, in: Proc. of ACM MobiCom, 2015.
D. Halperin, W. Hu, A. Sheth, D. Wetherall, Linux 802.11n csi tool, 2010.
Z.C. Lipton, J. Berkowitz, A Critical Review of Recurrent Neural Networks for Sequence Learning, 2015. CoRR abs/1506.00019. URL
.
Wang, Song, Zhang, Han, Huang (b0120) 2019
Guo, Zhang, Wang, Guo, Wang, Lin (b0040) 2019
Y. Ma, G. Zhou, S. Wang, WiFi Sensing with Channel State Information: A Survey, ACM Comput. Surv., 2019. abs/1506.00019, 46:1–46:36. URL:https://doi.org/10.1145/3310194.
K. Qian, Z. Zhou, Y. Zheng, Z. Yang, Y. Liu, Inferring Motion Direction using Commodity WiFi for Interactive Exergames, in: Proc. of ACM CHI, 2017.
P. Melgarejo, X. Zhang, P. Ramanathan, D. Chu, Leveraging Directional Antenna Capabilities for Fine-grained Gesture Recognition, in: Proc. of ACM UbiComp, 2014.
Y. Zeng, D. Wu, J. Xiong, E. Yi, R. Gao, D. Zhang, FarSense: Pushing the Range Limit of WiFi-based Respiration Sensing with CSI Ratio of Two Antennas, in: Proc. of ACM UbiComp, 2019.
Zheng, Wang, Shangguan, Zhou, Liu (b0185) 2016
Guo, Lei Wang, Lu (b0070) 2018
Zou, Zhou, Yang, Jiang, Xie, Spanos (b0195) 2018
H. Chen-Yu, L. Yuchen, K. Zach, H. Rumen, K. Dina, L. Christine, Extracting Gait Velocity and Stride Length from Surrounding Radio Signals, in: Proc. of ACM CHI, 2017.
Liu, Cao, Tang, Wen (b0080) 2014
arXiv:1506.00019.
10.1016/j.neucom.2020.02.137_b0055
Liu (10.1016/j.neucom.2020.02.137_b0080) 2014
10.1016/j.neucom.2020.02.137_b0110
10.1016/j.neucom.2020.02.137_b0010
10.1016/j.neucom.2020.02.137_b0175
10.1016/j.neucom.2020.02.137_b0075
10.1016/j.neucom.2020.02.137_b0130
10.1016/j.neucom.2020.02.137_b0030
10.1016/j.neucom.2020.02.137_b0015
10.1016/j.neucom.2020.02.137_b0155
Niu (10.1016/j.neucom.2020.02.137_b0095) 2018
Ioffe (10.1016/j.neucom.2020.02.137_b0060) 2015
Zou (10.1016/j.neucom.2020.02.137_b0195) 2018
Guo (10.1016/j.neucom.2020.02.137_b0040) 2019
Wang (10.1016/j.neucom.2020.02.137_b0125) 2017; 66
10.1016/j.neucom.2020.02.137_b0190
10.1016/j.neucom.2020.02.137_b0090
Guo (10.1016/j.neucom.2020.02.137_b0070) 2018
Sigg (10.1016/j.neucom.2020.02.137_b0115) 2014; 6
10.1016/j.neucom.2020.02.137_b0150
10.1016/j.neucom.2020.02.137_b0170
10.1016/j.neucom.2020.02.137_b0165
10.1016/j.neucom.2020.02.137_b0065
Wang (10.1016/j.neucom.2020.02.137_b0135) 2018
Chen (10.1016/j.neucom.2020.02.137_b0020) 2018
10.1016/j.neucom.2020.02.137_b0085
10.1016/j.neucom.2020.02.137_b0140
Zheng (10.1016/j.neucom.2020.02.137_b0185) 2016
10.1016/j.neucom.2020.02.137_b0025
Wang (10.1016/j.neucom.2020.02.137_b0120) 2019
10.1016/j.neucom.2020.02.137_b0145
10.1016/j.neucom.2020.02.137_b0045
10.1016/j.neucom.2020.02.137_b0100
10.1016/j.neucom.2020.02.137_b0105
Abdelnasser (10.1016/j.neucom.2020.02.137_b0005) 2015
Gu (10.1016/j.neucom.2020.02.137_b0035) 2015
Halperin (10.1016/j.neucom.2020.02.137_b0050) 2011; 41
10.1016/j.neucom.2020.02.137_b0160
10.1016/j.neucom.2020.02.137_b0180
References_xml – reference: F. Zhang, K. Niu, J. Xiong, B. Jin, T. Gu, Y. Jiang, D. Zhang, Towards a Diffraction-based Sensing Approach on Human Activity Recognition, in: Proc. of ACM Interact. Mob. Wearable Ubiquitous Technol, 2019, pp. 33–57.
– reference: Y. Zeng, D. Wu, J. Xiong, E. Yi, R. Gao, D. Zhang, FarSense: Pushing the Range Limit of WiFi-based Respiration Sensing with CSI Ratio of Two Antennas, in: Proc. of ACM UbiComp, 2019.
– year: 2018
  ident: b0070
  article-title: HuAc: Human Activity Recognition Using Crowdsourced WiFi Signals and Skeleton Data
  publication-title: Wireless Communications and Mobile Computing
– reference: D. Halperin, W. Hu, A. Sheth, D. Wetherall, Linux 802.11n csi tool, 2010.
– reference: Y. Ma, G. Zhou, S. Wang, WiFi Sensing with Channel State Information: A Survey, ACM Comput. Surv., 2019. abs/1506.00019, 46:1–46:36. URL:https://doi.org/10.1145/3310194.
– year: 2015
  ident: b0005
  article-title: WiGest: a ubiquitous WiFi-based gesture recognition system
  publication-title: Proc. of IEEE INFOCOM.
– reference: H. Chen-Yu, L. Yuchen, K. Zach, H. Rumen, K. Dina, L. Christine, Extracting Gait Velocity and Stride Length from Surrounding Radio Signals, in: Proc. of ACM CHI, 2017.
– start-page: 1
  year: 2018
  end-page: 13
  ident: b0095
  article-title: Boosting fine-grained activity sensing by embracing wireless multipath effects
  publication-title: Proc. of ACM CoNEXT
– year: 2016
  ident: b0185
  article-title: Smokey: Ubiquitous Smoking Detection with Commerical WiFi Infrastructures
  publication-title: Proc. of IEEE INFOCOM
– year: 2015
  ident: b0035
  article-title: Recent Advances in Convolutional Neural Networks
– reference: C. Olah, Understanding LSTM Networks, 2015. URL:
– reference: K. Qian, Z. Zhou, Y. Zheng, Z. Yang, Y. Liu, Inferring Motion Direction using Commodity WiFi for Interactive Exergames, in: Proc. of ACM CHI, 2017.
– reference: , arXiv:1506.00019.
– reference: P. Melgarejo, X. Zhang, P. Ramanathan, D. Chu, Leveraging Directional Antenna Capabilities for Fine-grained Gesture Recognition, in: Proc. of ACM UbiComp, 2014.
– reference: Y. Zheng, Y. Zhang, K. Qian, G. Zhang, Y. Liu, C. Wu, Z. Yang, Zero-Effort Cross-Domain Gesture Recognition with Wi-Fi, in: Proc. of ACM Mobisys, 2019, pp. 1–13.
– start-page: 1
  year: 2019
  end-page: 8
  ident: b0040
  article-title: Towards Diversity Activity Recognition Via LSTM-CNN Encoder-Decoder Neural Network
  publication-title: Proc. of ACM IJCAI Workshop
– reference: Y. Zeng, D. Wu, R. Gao, T. Gu, D. Zhang, FullBreathe: Full Human Respiration Detection Exploiting Complementarity of CSI Phase and Amplitude of WiFi Signals, in: Proc. of ACM Interact. Mob. Wearable Ubiquitous Technol, 2018, pp. 148:1–148:19.
– year: 2014
  ident: b0080
  article-title: Wi-Sleep: Contactless Sleep Monitoring via WiFi Signals
  publication-title: Pro of IEEE RTSS
– reference: W. Wei, X.Liu, A., M, S., Gait Recognition Using Wi-Fi Signals, in: Proc. of ACM UbiComp, 2016.
– start-page: 1
  year: 2018
  end-page: 6
  ident: b0195
  article-title: DeepSense: Device-Free Human Activity Recognition via Autoencoder Long-Term Recurrent Convolutional Network
  publication-title: IEEE International Conference on Communications (ICC)
– reference: Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, H. Liu, E-eyes: Device-free Location-oriented Activity Identification Using Fine-grained WiFi Signatures, in: Proc. of ACM Mobicom, 2014.
– reference: W. Jiang, C. Miao, S.Y. Fenglong Ma, Y. Wang, Y. Yuan, H. Xue, C. Song, D.K. Xin Ma, W. Xu, L. Su, Towards Environment Independent Device Free Human Activity Recognition, in: Proc. of ACM MobiCom, 2018, pp. 1–16.
– reference: Z. Yang, Z. Zhou, Y. Liu, From RSSI to CSI: Indoor Localization via Channel Response, ACM Comput. Surv. 46 (2013) 25:1–25:32.
– reference: B. Fang, N.D. Lane, M. Zhang, A. Boran, F. Kawsar, BodyScan: Enabling Radio-based Sensing on Wearable Devices for Contactless Activity and Vital Sign Monitoring, in: Proc. of IEEE MobiSys, 2016.
– reference: N. Yu, W. Wang, A.X. Liu, L. Kong, QGesture: Quantifying Gesture Distance and Direction with WiFi Signals, in: Proc. of ACM Interact. Mob. Wearable Ubiquitous Technol, 2018, pp. 1–23.
– reference: M. Zhao, T. Li, M.A. Alsheikh, Y. Tian, H. Zhao, A. Torralba, D. Katabi, Through-Wall Human Pose Estimation Using Radio Signals, in: Proc. of ACM CVPR, ACM, 2018, pp. 7356–7365.
– volume: 6
  start-page: 20
  year: 2014
  end-page: 34
  ident: b0115
  article-title: Teach your WiFi device: recognize simultaneous activities and gestures from time-domain RF-features
  publication-title: Int. J. Ambient Comput. Intell.
– reference: Q. Pu, S. Gupta, S. Gollakota, S. Patel, Whole-home Gesture Recognition Using Wireless Signals, in: Proc. of ACM MobiCom, 2013.
– start-page: 1
  year: 2019
  end-page: 14
  ident: b0120
  article-title: Temporal Unet: sample level human action recognition using WiFi
  publication-title: Proc. of arXiv
– start-page: 62
  year: 2018
  end-page: 67
  ident: b0135
  article-title: RF Sensing in the internet of things: a general deep learning framework
  publication-title: IEEE Commun. Mag.
– reference: .
– reference: Z.C. Lipton, J. Berkowitz, A Critical Review of Recurrent Neural Networks for Sequence Learning, 2015. CoRR abs/1506.00019. URL:
– year: 2018
  ident: b0020
  article-title: WiFi CSI based passive human activity recognition using attention based BLSTM
  publication-title: IEEE Trans. Mob. Comput.
– year: 2015
  ident: b0060
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: International Conference on International Conference on Machine Learning
– volume: 66
  start-page: 1659
  year: 2017
  end-page: 1669
  ident: b0125
  article-title: Device-free simultaneous wireless localization and activity recognition with wavelet feature
  publication-title: IEEE Trans. Veh. Technol.
– volume: 41
  year: 2011
  ident: b0050
  article-title: Tool Release: Gathering 802.11n Traces with Channel State Information
  publication-title: Proc. of ACM SIGCOMM CCR
– reference: C. Han, K. Wu, Y. Wang, L.M. Ni, WiFall: Device-free fall detection by wireless networks, in: Proc. of IEEE INFOCOM, 2014.
– reference: W. Wang, A.X. Liu, M. Shahzad, K. Ling, S. Lu, Understanding and Modeling of WiFi Signal Based Human Activity Recognition, in: Proc. of ACM MobiCom, 2015.
– reference: L. Chen, X. Chen, S.I. Lee, K. Chen, D. Han, D. Fang, Z. Tang, Z. Wang, WIDESEE: Towards Wide-Area Contactless Wireless Sensing, in: Proc. of ACM SenSys, 2019.
– reference: F. Adib, H. Mao, Z. Kebelac, D. Katabi, C. Miller, Smart Homes That Monitor Breathing and Heart Rate, in: Proc. of ACM CHI, 2015.
– reference: H. Zou, J. Yang, Y. Zhou, L. Xie, C.J. Spanos, Robust WiFi-enabled Device-free Gesture Recognition via Unsupervised Adversarial Domain Adaption, in: Proc. of IEEE ICCCN, 2018, pp. 1–8.
– ident: 10.1016/j.neucom.2020.02.137_b0025
– ident: 10.1016/j.neucom.2020.02.137_b0075
– ident: 10.1016/j.neucom.2020.02.137_b0175
  doi: 10.1145/3314420
– ident: 10.1016/j.neucom.2020.02.137_b0110
  doi: 10.1145/3025453.3025678
– year: 2018
  ident: 10.1016/j.neucom.2020.02.137_b0020
  article-title: WiFi CSI based passive human activity recognition using attention based BLSTM
  publication-title: IEEE Trans. Mob. Comput.
– year: 2018
  ident: 10.1016/j.neucom.2020.02.137_b0070
  article-title: HuAc: Human Activity Recognition Using Crowdsourced WiFi Signals and Skeleton Data
– ident: 10.1016/j.neucom.2020.02.137_b0170
  doi: 10.1145/3351279
– volume: 6
  start-page: 20
  year: 2014
  ident: 10.1016/j.neucom.2020.02.137_b0115
  article-title: Teach your WiFi device: recognize simultaneous activities and gestures from time-domain RF-features
  publication-title: Int. J. Ambient Comput. Intell.
  doi: 10.4018/ijaci.2014010102
– start-page: 62
  year: 2018
  ident: 10.1016/j.neucom.2020.02.137_b0135
  article-title: RF Sensing in the internet of things: a general deep learning framework
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2018.1701277
– ident: 10.1016/j.neucom.2020.02.137_b0145
– year: 2016
  ident: 10.1016/j.neucom.2020.02.137_b0185
  article-title: Smokey: Ubiquitous Smoking Detection with Commerical WiFi Infrastructures
– ident: 10.1016/j.neucom.2020.02.137_b0085
  doi: 10.1145/3310194
– volume: 41
  year: 2011
  ident: 10.1016/j.neucom.2020.02.137_b0050
  article-title: Tool Release: Gathering 802.11n Traces with Channel State Information
  publication-title: Proc. of ACM SIGCOMM CCR
– year: 2015
  ident: 10.1016/j.neucom.2020.02.137_b0005
  article-title: WiGest: a ubiquitous WiFi-based gesture recognition system
  publication-title: Proc. of IEEE INFOCOM.
– ident: 10.1016/j.neucom.2020.02.137_b0160
  doi: 10.1145/3307334.3326081
– ident: 10.1016/j.neucom.2020.02.137_b0030
– volume: 66
  start-page: 1659
  year: 2017
  ident: 10.1016/j.neucom.2020.02.137_b0125
  article-title: Device-free simultaneous wireless localization and activity recognition with wavelet feature
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2016.2555986
– ident: 10.1016/j.neucom.2020.02.137_b0150
  doi: 10.1145/2543581.2543592
– ident: 10.1016/j.neucom.2020.02.137_b0105
  doi: 10.1145/2500423.2500436
– start-page: 1
  year: 2019
  ident: 10.1016/j.neucom.2020.02.137_b0040
  article-title: Towards Diversity Activity Recognition Via LSTM-CNN Encoder-Decoder Neural Network
  publication-title: Proc. of ACM IJCAI Workshop
– ident: 10.1016/j.neucom.2020.02.137_b0165
  doi: 10.1145/3264958
– year: 2015
  ident: 10.1016/j.neucom.2020.02.137_b0035
– year: 2014
  ident: 10.1016/j.neucom.2020.02.137_b0080
  article-title: Wi-Sleep: Contactless Sleep Monitoring via WiFi Signals
– ident: 10.1016/j.neucom.2020.02.137_b0045
– ident: 10.1016/j.neucom.2020.02.137_b0015
  doi: 10.1145/3356250.3360031
– ident: 10.1016/j.neucom.2020.02.137_b0090
  doi: 10.1145/2632048.2632095
– start-page: 1
  year: 2019
  ident: 10.1016/j.neucom.2020.02.137_b0120
  article-title: Temporal Unet: sample level human action recognition using WiFi
  publication-title: Proc. of arXiv
– start-page: 1
  year: 2018
  ident: 10.1016/j.neucom.2020.02.137_b0195
  article-title: DeepSense: Device-Free Human Activity Recognition via Autoencoder Long-Term Recurrent Convolutional Network
  publication-title: IEEE International Conference on Communications (ICC)
– ident: 10.1016/j.neucom.2020.02.137_b0155
  doi: 10.1145/3191783
– ident: 10.1016/j.neucom.2020.02.137_b0065
  doi: 10.1145/3241539.3241548
– ident: 10.1016/j.neucom.2020.02.137_b0100
– ident: 10.1016/j.neucom.2020.02.137_b0130
  doi: 10.1145/2789168.2790093
– ident: 10.1016/j.neucom.2020.02.137_b0010
  doi: 10.1145/2702123.2702200
– ident: 10.1016/j.neucom.2020.02.137_b0180
  doi: 10.1109/CVPR.2018.00768
– ident: 10.1016/j.neucom.2020.02.137_b0190
  doi: 10.1109/ICCCN.2018.8487345
– start-page: 1
  year: 2018
  ident: 10.1016/j.neucom.2020.02.137_b0095
  article-title: Boosting fine-grained activity sensing by embracing wireless multipath effects
  publication-title: Proc. of ACM CoNEXT
– ident: 10.1016/j.neucom.2020.02.137_b0055
  doi: 10.1109/INFOCOM.2014.6847948
– year: 2015
  ident: 10.1016/j.neucom.2020.02.137_b0060
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
– ident: 10.1016/j.neucom.2020.02.137_b0140
  doi: 10.1145/2639108.2639143
SSID ssj0017129
Score 2.447033
Snippet Human activity recognition using WiFi signals is widespread for smart-environment sensing domain in recent years. Existing researches use learning-based...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 260
SubjectTerms Channel state information
Convolutional neural network
Human activity recognition
Long short term memory
WiFi signals
Title Towards CSI-based diversity activity recognition via LSTM-CNN encoder-decoder neural network
URI https://dx.doi.org/10.1016/j.neucom.2020.02.137
Volume 444
WOSCitedRecordID wos000648645900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbpbg-99F26faFDb0bFkqVIPoaw7W5pQyEpzaFgFEmmWbLOkk3C9i_sr96RJbsmKX1BL3YQUSxmPo9Gk5lvEHqdc5HBYadPdF8zwmlJwQ7mglCnrHCCOZWXdbMJORqp6TT_1OtdN7Uw24WsKnV1lV_8V1XDGCjbl87-hbrbH4UB-AxKhyuoHa5_pvg6EfYyGY5Pid-jbGLb3AtfxVA3i2jzhkD527lOPownH8lwNEo8r6V1K2JdfU883yVosQrZ4l1Xtqb1MHVTiBhuGJx71gXrIdaGF95tlvHov5i3OGyj1Cc6bpx1SD-MDb_p5c7sL27-fdONTzDqA5-hQjMEzfYKZ0L0kQkCrmUwxC7YXiVZXdXeNc6c8655Db0H4k7NQhOUvU0gxCPO3oCEfEYQLCr1vKw0sMvs0GuP_VL8ShiYNynl9BY6ZFLkYOQPB6fH0_ftf1KSssDcGJfeFGLW2YL7z_q5o9NxXib30d146sCDgJYHqOeqh-he09EDRwP_CH2N4MEteHALHtyAB3fAgwE8uAEP3gEPDuDBETyP0ee3x5PhCYn9N4iBg-SacEEN7AhW0rLM9CzLrNZCl1rMjLBgx6Vl2uZqZpQ1aclnqRbcs3Ur01e072z2BB1Uy8o9RVgZwyy10mWG89xSLRwvjaHKgH-ZGneEskZYhYnk9L5HyqJoshDPiiDiwou4SFkBIj5CpJ11EchZfvN92eihiA5mcBwLgM4vZz7755nP0Z0fb8ULdLBebdxLdNts1_PL1auIsRvYdKKn
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+CSI-based+diversity+activity+recognition+via+LSTM-CNN+encoder-decoder+neural+network&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Guo%2C+Linlin&rft.au=Zhang%2C+Hang&rft.au=Wang%2C+Chao&rft.au=Guo%2C+Weiyu&rft.date=2021-07-15&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=444&rft.spage=260&rft.epage=273&rft_id=info:doi/10.1016%2Fj.neucom.2020.02.137&rft.externalDocID=S092523122031777X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon