Is it feasible to develop a supervised learning algorithm incorporating spinopelvic mobility to predict impingement in patients undergoing total hip arthroplasty? a proof-of-concept study
Aims: Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of o...
Saved in:
| Published in: | Bone & joint open Vol. 5; no. 8; pp. 671 - 680 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
The British Editorial Society of Bone & Joint Surgery
14.08.2024
|
| Subjects: | |
| ISSN: | 2633-1462, 2633-1462 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Aims: Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. Methods: This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy. Results: We identified nine predictors from an analysis of baseline spinopelvic characteristics and surgical planning parameters. Using fivefold cross-validation, the LGBM achieved 70.2% impingement prediction accuracy. With impingement data, the LGBM estimated direction with 85% accuracy, while the support vector machine (SVM) determined impingement type with 72.9% accuracy. After integrating imaging data with a multilayer perceptron (tabular) and a convolutional neural network (radiograph), the LGBM’s prediction was 68.1%. Both combined and LGBM-only had similar impingement direction prediction rates (around 84.5%). Conclusion: This study is a pioneering effort in leveraging AI for impingement prediction in THA, utilizing a comprehensive, real-world clinical dataset. Our machine-learning algorithm demonstrated promising accuracy in predicting impingement, its type, and direction. While the addition of imaging data to our deep-learning algorithm did not boost accuracy, the potential for refined annotations, such as landmark markings, offers avenues for future enhancement. Prior to clinical integration, external validation and larger-scale testing of this algorithm are essential. Cite this article: Bone Jt Open 2024;5(8):671–680. |
|---|---|
| AbstractList | Aims: Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. Methods: This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy. Results: We identified nine predictors from an analysis of baseline spinopelvic characteristics and surgical planning parameters. Using fivefold cross-validation, the LGBM achieved 70.2% impingement prediction accuracy. With impingement data, the LGBM estimated direction with 85% accuracy, while the support vector machine (SVM) determined impingement type with 72.9% accuracy. After integrating imaging data with a multilayer perceptron (tabular) and a convolutional neural network (radiograph), the LGBM’s prediction was 68.1%. Both combined and LGBM-only had similar impingement direction prediction rates (around 84.5%). Conclusion: This study is a pioneering effort in leveraging AI for impingement prediction in THA, utilizing a comprehensive, real-world clinical dataset. Our machine-learning algorithm demonstrated promising accuracy in predicting impingement, its type, and direction. While the addition of imaging data to our deep-learning algorithm did not boost accuracy, the potential for refined annotations, such as landmark markings, offers avenues for future enhancement. Prior to clinical integration, external validation and larger-scale testing of this algorithm are essential. Cite this article: Bone Jt Open 2024;5(8):671–680. |
| Author | Fontalis, Andreas Zhao, Baixiang Plastow, Ricci Mancino, Fabio Zhang, Shuai Putzeys, Pierre Mazomenos, Evangelos Glod, Fabrice Vanspauwen, Thomas Haddad, Fares S. |
| Author_xml | – sequence: 1 givenname: Andreas orcidid: 0000-0001-5547-288X surname: Fontalis fullname: Fontalis, Andreas organization: Department of Trauma and Orthopaedic Surgery, University College Hospital, London, UK, Division of Surgery and Interventional Science, University College London, London, UK, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK – sequence: 2 givenname: Baixiang surname: Zhao fullname: Zhao, Baixiang organization: Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK – sequence: 3 givenname: Pierre surname: Putzeys fullname: Putzeys, Pierre organization: Hôpitaux Robert Schuman, Luxembourg City, Luxembourg – sequence: 4 givenname: Fabio orcidid: 0000-0003-3080-0052 surname: Mancino fullname: Mancino, Fabio organization: Department of Trauma and Orthopaedic Surgery, University College Hospital, London, UK – sequence: 5 givenname: Shuai surname: Zhang fullname: Zhang, Shuai organization: Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK – sequence: 6 givenname: Thomas surname: Vanspauwen fullname: Vanspauwen, Thomas organization: Hôpitaux Robert Schuman, Luxembourg City, Luxembourg – sequence: 7 givenname: Fabrice surname: Glod fullname: Glod, Fabrice organization: Hôpitaux Robert Schuman, Luxembourg City, Luxembourg – sequence: 8 givenname: Ricci surname: Plastow fullname: Plastow, Ricci organization: Department of Trauma and Orthopaedic Surgery, University College Hospital, London, UK – sequence: 9 givenname: Evangelos surname: Mazomenos fullname: Mazomenos, Evangelos organization: Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK – sequence: 10 givenname: Fares S. surname: Haddad fullname: Haddad, Fares S. organization: Department of Trauma and Orthopaedic Surgery, University College Hospital, London, UK, Division of Surgery and Interventional Science, University College London, London, UK |
| BookMark | eNqNkluL1DAUx4usuOu63yEvPnbMrWn7IIsOXkYWFhZ9Dmly2smSNiHJDMzX8ZOaOiquT0Igh3P5nZOc_8vqYvELVNVrgjeEYfqGCsZqwgXdNN3m_Zf7mmLKa4wp3jyQZ9XVn_jFX_ZldZPSIy5ZDSGi5S-qS9aTcjC5qr7vErIZjaCSHRyg7JGBIzgfkELpECAebQKDHKi42GVCyk0-2ryfkV20j8FHlVd_CnbxAdzRajT7wTqbTystRDBWZ2TnkjDBDEuxFxRKVTETOiwG4uRXRPZZObS3pXXM--iDUymfbl9Vz0flEtz8uq-rbx8_fN1-ru_uP-227-5qzbDINeeCdA1pNFe90cT0HAiMCozoRa8x7ZpxaLEYgHeG0ZaMvMOAueJa96o1Pbuudmeu8epRhmhnFU_SKyt_OnycZJnLagdy6Pg4Co2NKvVUj70ZtdZMk6ZXoBkrrNszKxyGGYwuT43KPYE-jSx2Lyd_lIQwSttOFML2TNDRpxRhlNrm8ml-zbdOEixXSch1zXJds2w6WSQhV0nIVRLygRTK238ov0f4v_ofFmfFEA |
| CitedBy_id | crossref_primary_10_1302_0301_620X_106B11_BJJ_2024_0373 crossref_primary_10_1302_2046_3758_149_BJR_2024_0505_R1 crossref_primary_10_1016_j_otsr_2025_104342 |
| Cites_doi | 10.1302/0301-620X.106B1.BJJ-2023-1319 10.1177/09544119211069472 10.1302/2046-3758.127.BJR-2023-0111.R1 10.1016/j.ocl.2022.11.003 10.1016/j.arth.2022.02.028 10.1302/0301-620X.99B1.BJJ-2016-0415.R1 10.1001/jama.2013.281053 10.1302/0301-620X.104B7.BJJ-2021-1628.R1 10.1016/j.arth.2020.07.016 10.1016/j.arth.2020.07.065 10.1016/j.arth.2023.03.025 10.1302/0301-620X.103B7.BJJ-2020-2448.R2 10.1302/0301-620X.106B4.BJJ-2024-00040 10.1302/2046-3758.124.BJR-2022-0335.R1 10.1302/0301-620X.104B8.BJJ-2022-0120.R2 10.21105/joss.05027 10.1097/CORR.0000000000001233 10.1016/j.arth.2022.05.020 10.1530/EOR-23-0049 10.1302/0301-620X.103B11.BJJ-2021-0061.R1 10.1302/0301-620X.106B4.BJJ-2023-1045.R1 10.1148/ryai.220232 10.3390/medicina58111616 10.1302/0301-620X.104B8.BJJ-2022-0416 10.1302/2633-1462.36.BJO-2022-0055 10.1302/0301-620X.105B.BJJ-2023-0272 10.1007/s00264-022-05646-0 10.1007/s11999-015-4432-5 10.5301/hipint.5000318 10.1302/0301-620X.104B12.BJJ-2022-0922.R1 10.1007/s11999.0000000000000051 10.1302/2633-1462.49.BJO-2023-0091.R1 10.1097/CORR.0000000000002706 10.1016/j.arth.2021.03.031 10.1302/0301-620X.97B7.34729 10.1016/j.arth.2019.02.029 10.3748/wjg.v28.i5.605 10.1302/0301-620X.101B8.BJJ-2019-0106.R1 10.1016/j.inffus.2021.11.011 10.1007/s11999-013-3244-8 10.1016/j.ejmp.2021.02.024 10.1007/BF00994018 |
| ContentType | Journal Article |
| Copyright | 2024 Fontalis et al. 2024 |
| Copyright_xml | – notice: 2024 Fontalis et al. 2024 |
| DBID | AAYXX CITATION 5PM DOA |
| DOI | 10.1302/2633-1462.58.BJO-2024-0020.R1 |
| DatabaseName | CrossRef PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2633-1462 |
| EndPage | 680 |
| ExternalDocumentID | oai_doaj_org_article_b84ff6c0da4a42cf9dfccc3c159aec33 PMC11322786 10_1302_2633_1462_58_BJO_2024_0020_R1 |
| GrantInformation_xml | – fundername: ; |
| GroupedDBID | AAYXX ADSNA ALMA_UNASSIGNED_HOLDINGS CITATION EBS GROUPED_DOAJ M~E OK1 RPM W1P W2D 5PM |
| ID | FETCH-LOGICAL-c306t-44618515c4a9dc1d94e1efaed6969c0285fb706be48d3271f480e04a4cc9a7d93 |
| IEDL.DBID | DOA |
| ISSN | 2633-1462 |
| IngestDate | Fri Oct 03 12:45:51 EDT 2025 Thu Aug 21 18:34:37 EDT 2025 Sat Nov 29 01:49:19 EST 2025 Tue Nov 18 21:41:13 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (CC BY-NC-ND 4.0) licence, which permits the copying and redistribution of the work only, and provided the original author and source are credited. See https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-44618515c4a9dc1d94e1efaed6969c0285fb706be48d3271f480e04a4cc9a7d93 |
| Notes | A. Fontalis reports that this work was supported by a scholarship from the Onassis Foundation (F ZR 065-1/2021-2022). A. Fontalis also reports support from Stryker towards the EFORT Robotic Fellowship, and a Freemasons' Royal Arch Fellowship with support from the Arthritis Research Trust, both unrelated to this work. F. S. Haddad reports: multiple research study grants from Stryker, Smith & Nephew, Corin, the National Institute for Health and Care Research (NIHR), and the International Olympic Committee; royalties or licenses from Stryker, Smith & Nephew, Corin, and MatOrtho; consulting fees from Stryker; speaker payments or honoraria from Stryker, Smith & Nephew, Zimmer, AO Recon, and Mathys; and support for attending meetings and/or travel from Stryker, Mathys, AO Recon, and The Bone & Joint Journal, all of which are unrelated to this work. F. S. Haddad is also Editor-in-Chief of The Bone & Joint Journal, President of the International Hip Society, and Vice President of the European Hip Society. E. Mazomenos reports an institutional payment from Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) (203145z/16/z,NS/A000050/1) for this work. R. Plastow reports an unpaid educational role with the Royal College of Surgeons RADAR initiative. P. Putzeys reports royalties from Conmed, and consulting fees, lecture payments, and travel payment for attending meetings from Stryker, all of which are unrelated to this work. S. Zhang reports an institutional payment from NIHR UCLH Biomedical Research Centre (NIHR203328) for this work. B. Zhao reports a Wellcome Trust Innovator Award (223793/21/Z) for this work. |
| ORCID | 0000-0001-5547-288X 0000-0003-3080-0052 |
| OpenAccessLink | https://doaj.org/article/b84ff6c0da4a42cf9dfccc3c159aec33 |
| PMID | 39139101 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b84ff6c0da4a42cf9dfccc3c159aec33 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11322786 crossref_citationtrail_10_1302_2633_1462_58_BJO_2024_0020_R1 crossref_primary_10_1302_2633_1462_58_BJO_2024_0020_R1 |
| PublicationCentury | 2000 |
| PublicationDate | 20240814 |
| PublicationDateYYYYMMDD | 2024-08-14 |
| PublicationDate_xml | – month: 8 year: 2024 text: 20240814 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Bone & joint open |
| PublicationYear | 2024 |
| Publisher | The British Editorial Society of Bone & Joint Surgery |
| Publisher_xml | – name: The British Editorial Society of Bone & Joint Surgery |
| References | Fleischman (2024081407465417918_b3) 2019; 34 Dhawan (2024081407465417918_b6) 2022; 104-B Chandler (2024081407465417918_b34) 1982; 166 Gurung (2024081407465417918_b35) 2022; 104-B Bradshaw (2024081407465417918_b29) 2023; 5 Sharma (2024081407465417918_b38) 2023; 38 Huang (2024081407465417918_b36) 2023; 482 Ke (2024081407465417918_b19) 2017 Polisetty (2024081407465417918_b32) 2022; 104-B Vigdorchik (2024081407465417918_b7) 2021; 36 Aubert (2024081407465417918_b18) 2023; 4 Fontalis (2024081407465417918_b24) 2024; 106-B Widmer (2024081407465417918_b27) 2020; 478 Vigdorchik (2024081407465417918_b31) 2022; 104-B Fontalis (2024081407465417918_b23) 2024; 106-B Heckmann (2024081407465417918_b8) 2022; 37 Ogilvie (2024081407465417918_b14) 2022; 58 Divecha (2024081407465417918_b1) 2021; 103-B Timperley (2024081407465417918_b4) 2016; 26 Ramkumar (2024081407465417918_b15) 2023; 38 Fontalis (2024081407465417918_b5) 2023; 54 Zaurin (2024081407465417918_b20) 2023; 8 Fontalis (2024081407465417918_b10) 2024; 106-B Charilaou (2024081407465417918_b30) 2022; 28 Vigdorchik (2024081407465417918_b12) 2021; 103-B Jang (2024081407465417918_b9) 2022; 3 Lisacek-Kiosoglous (2024081407465417918_b25) 2023; 12 Leopold (2024081407465417918_b44) 2023; 105-B World Medical Association (2024081407465417918_b17) 2013; 310 Pryce (2024081407465417918_b26) 2022; 236 Balagurunathan (2024081407465417918_b33) 2021; 83 Grammatopoulos (2024081407465417918_b39) 2023; 8 Renkawitz (2024081407465417918_b43) 2015; 97-B Abdel (2024081407465417918_b2) 2016; 474 Lukas (2024081407465417918_b37) 2023; 12 Heckmann (2024081407465417918_b40) 2021; 36 Innmann (2024081407465417918_b41) 2019; 101-B Fontalis (2024081407465417918_b13) 2023; 47 Murphy (2024081407465417918_b16) 2018; 476 Innmann (2024081407465417918_b42) 2021; 36 Shwartz-Ziv (2024081407465417918_b21) 2022; 81 Elkins (2024081407465417918_b28) 2014; 472 Cortes (2024081407465417918_b22) 1995; 20 Stefl (2024081407465417918_b11) 2017; 99-B |
| References_xml | – volume: 106-B start-page: 3 issue: 1 year: 2024 ident: 2024081407465417918_b10 article-title: A leap towards personalized orthopaedic surgery and the prediction of spinopelvic mechanics in total hip arthroplasty publication-title: Bone Joint J doi: 10.1302/0301-620X.106B1.BJJ-2023-1319 – volume: 236 start-page: 504 issue: 4 year: 2022 ident: 2024081407465417918_b26 article-title: Impingement in total hip arthroplasty: a geometric model publication-title: Proc Inst Mech Eng H doi: 10.1177/09544119211069472 – volume: 12 issue: 7 year: 2023 ident: 2024081407465417918_b25 article-title: Artificial intelligence in orthopaedic surgery: exploring its applications, limitations, and future direction publication-title: Bone Joint Res doi: 10.1302/2046-3758.127.BJR-2023-0111.R1 – volume: 54 start-page: 121 issue: 2 year: 2023 ident: 2024081407465417918_b5 article-title: Functional component positioning in total hip arthroplasty and the role of robotic-arm assistance in addressing spinopelvic pathology publication-title: Orthop Clin North Am doi: 10.1016/j.ocl.2022.11.003 – volume: 37 start-page: S546 issue: 7 year: 2022 ident: 2024081407465417918_b8 article-title: The Effect of Hip Offset and Spinopelvic Abnormalities on the Risk of Dislocation Following Total Hip Arthroplasty publication-title: J Arthroplasty doi: 10.1016/j.arth.2022.02.028 – volume: 99-B start-page: 37 issue: 1 Supple A year: 2017 ident: 2024081407465417918_b11 article-title: Spinopelvic mobility and acetabular component position for total hip arthroplasty publication-title: Bone Joint J doi: 10.1302/0301-620X.99B1.BJJ-2016-0415.R1 – volume: 310 start-page: 2191 issue: 20 year: 2013 ident: 2024081407465417918_b17 article-title: World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects publication-title: JAMA doi: 10.1001/jama.2013.281053 – volume: 104-B start-page: 820 issue: 7 year: 2022 ident: 2024081407465417918_b6 article-title: Modular dual-mobility articulations in patients with adverse spinopelvic mobility publication-title: Bone Joint J doi: 10.1302/0301-620X.104B7.BJJ-2021-1628.R1 – volume: 36 start-page: 210 issue: 1 year: 2021 ident: 2024081407465417918_b7 article-title: High Offset Stems Are Protective of Dislocation in High-Risk Total Hip Arthroplasty publication-title: J Arthroplasty doi: 10.1016/j.arth.2020.07.016 – volume: 36 start-page: 374 issue: 1 year: 2021 ident: 2024081407465417918_b40 article-title: Functional anatomy of the hip joint publication-title: J Arthroplasty doi: 10.1016/j.arth.2020.07.065 – volume: 38 start-page: 1779 issue: 9 year: 2023 ident: 2024081407465417918_b15 article-title: Patient-specific safe zones for acetabular component positioning in total hip arthroplasty: mathematically accounting for spinopelvic biomechanics publication-title: J Arthroplasty doi: 10.1016/j.arth.2023.03.025 – volume: 103-B start-page: 17 issue: 7 Supple B year: 2021 ident: 2024081407465417918_b12 article-title: 2021 Otto Aufranc Award: a simple hip-spine classification for total hip arthroplasty publication-title: Bone Joint J doi: 10.1302/0301-620X.103B7.BJJ-2020-2448.R2 – volume: 106-B start-page: 323 issue: 4 year: 2024 ident: 2024081407465417918_b23 article-title: Infographic: A prospective RCT comparing CT-based planning with conventional THA vs robotic arm-assisted THA publication-title: Bone Joint J doi: 10.1302/0301-620X.106B4.BJJ-2024-00040 – volume: 12 start-page: 231 issue: 4 year: 2023 ident: 2024081407465417918_b37 article-title: The effect of ethnicity on the age-related changes of spinopelvic characteristics: a systematic review publication-title: Bone Joint Res doi: 10.1302/2046-3758.124.BJR-2022-0335.R1 – volume: 104-B start-page: 929 issue: 8 year: 2022 ident: 2024081407465417918_b35 article-title: Artificial intelligence for image analysis in total hip and total knee arthroplasty: a scoping review publication-title: Bone Joint J doi: 10.1302/0301-620X.104B8.BJJ-2022-0120.R2 – volume: 8 start-page: 5027 issue: 86 year: 2023 ident: 2024081407465417918_b20 article-title: pytorch-widedeep: a flexible package for multimodal deep learning publication-title: JOSS doi: 10.21105/joss.05027 – volume: 478 start-page: 1904 issue: 8 year: 2020 ident: 2024081407465417918_b27 article-title: The impingement-free, prosthesis-specific, and anatomy-adjusted combined target zone for component positioning in THA depends on design and implantation parameters of both components publication-title: Clin Orthop Relat Res doi: 10.1097/CORR.0000000000001233 – volume: 38 start-page: 713 issue: 4 year: 2023 ident: 2024081407465417918_b38 article-title: Sacral slope change from standing to relaxed-seated grossly overpredicts the presence of a stiff spine publication-title: J Arthroplasty doi: 10.1016/j.arth.2022.05.020 – volume: 8 start-page: 298 issue: 5 year: 2023 ident: 2024081407465417918_b39 article-title: Spinopelvic challenges in primary total hip arthroplasty publication-title: EFORT Open Rev doi: 10.1530/EOR-23-0049 – volume: 103-B start-page: 1669 issue: 11 year: 2021 ident: 2024081407465417918_b1 article-title: The effect of cemented acetabular component geometry on the risk of revision for instability or loosening: a study of 224,874 primary hip arthroplasties from the National Joint Registry publication-title: Bone Joint J doi: 10.1302/0301-620X.103B11.BJJ-2021-0061.R1 – volume: 106-B start-page: 324 issue: 4 year: 2024 ident: 2024081407465417918_b24 article-title: A prospective randomized controlled trial comparing CT-based planning with conventional total hip arthroplasty versus robotic arm-assisted total hip arthroplasty publication-title: Bone Joint J doi: 10.1302/0301-620X.106B4.BJJ-2023-1045.R1 – volume: 5 issue: 4 year: 2023 ident: 2024081407465417918_b29 article-title: A guide to cross-validation for artificial intelligence in medical imaging publication-title: Radiol Artif Intell doi: 10.1148/ryai.220232 – volume: 58 issue: 11 year: 2022 ident: 2024081407465417918_b14 article-title: Robotic-arm-assisted total hip arthroplasty: a review of the workflow, outcomes and its role in addressing the challenge of spinopelvic imbalance publication-title: Medicina (Kaunas) doi: 10.3390/medicina58111616 – volume: 104-B start-page: 909 issue: 8 year: 2022 ident: 2024081407465417918_b31 article-title: Deep learning in orthopaedic research: weighing idealism against realism publication-title: Bone Joint J doi: 10.1302/0301-620X.104B8.BJJ-2022-0416 – volume: 3 start-page: 475 issue: 6 year: 2022 ident: 2024081407465417918_b9 article-title: Abnormal spinopelvic mobility as a risk factor for acetabular placement error in total hip arthroplasty using optical computer-assisted surgical navigation system publication-title: Bone Jt Open doi: 10.1302/2633-1462.36.BJO-2022-0055 – volume: 105-B start-page: 585 issue: 6 year: 2023 ident: 2024081407465417918_b44 article-title: Artificial intelligence applications and scholarly publication in orthopaedic surgery publication-title: Bone Joint J doi: 10.1302/0301-620X.105B.BJJ-2023-0272 – volume: 47 start-page: 573 issue: 2 year: 2023 ident: 2024081407465417918_b13 article-title: Functional implant positioning in total hip arthroplasty and the role of robotic-arm assistance publication-title: Int Orthop doi: 10.1007/s00264-022-05646-0 – volume: 474 start-page: 386 issue: 2 year: 2016 ident: 2024081407465417918_b2 article-title: What safe zone? The vast majority of dislocated THAs are within the Lewinnek safe zone for acetabular component position publication-title: Clin Orthop Relat Res doi: 10.1007/s11999-015-4432-5 – volume: 26 start-page: 121 issue: 2 year: 2016 ident: 2024081407465417918_b4 article-title: Dislocation after total hip replacement - there is no such thing as a safe zone for socket placement with the posterior approach publication-title: Hip Int doi: 10.5301/hipint.5000318 – volume: 104-B start-page: 1292 issue: 12 year: 2022 ident: 2024081407465417918_b32 article-title: Concerns surrounding application of artificial intelligence in hip and knee arthroplasty publication-title: Bone Joint J doi: 10.1302/0301-620X.104B12.BJJ-2022-0922.R1 – volume: 476 start-page: 325 issue: 2 year: 2018 ident: 2024081407465417918_b16 article-title: The safe zone range for cup anteversion is narrower than for inclination in THA publication-title: Clin Orthop Relat Res doi: 10.1007/s11999.0000000000000051 – volume: 4 start-page: 668 issue: 9 year: 2023 ident: 2024081407465417918_b18 article-title: Low pelvic incidence with low lordosis and distal apex of lumbar lordosis associated with higher rates of abnormal spinopelvic mobility in patients undergoing THA publication-title: Bone Jt Open doi: 10.1302/2633-1462.49.BJO-2023-0091.R1 – year: 2017 ident: 2024081407465417918_b19 article-title: LightGBM: a highly efficient gradient boosting decision tree – volume: 482 start-page: 143 issue: 1 year: 2023 ident: 2024081407465417918_b36 article-title: Does the presence of missing data affect the performance of the SORG machine-learning algorithm for patients with spinal metastasis? Development of an internet application algorithm publication-title: Clin Orthop Relat Res doi: 10.1097/CORR.0000000000002706 – volume: 36 start-page: 2808 issue: 8 year: 2021 ident: 2024081407465417918_b42 article-title: Differences in spinopelvic characteristics between hip osteoarthritis patients and controls publication-title: J Arthroplasty doi: 10.1016/j.arth.2021.03.031 – volume: 97-B start-page: 890 issue: 7 year: 2015 ident: 2024081407465417918_b43 article-title: Impingement-free range of movement, acetabular component cover and early clinical results comparing “femur-first” navigation and “conventional” minimally invasive total hip arthroplasty: a randomised controlled trial publication-title: Bone Joint J doi: 10.1302/0301-620X.97B7.34729 – volume: 34 start-page: 1255 issue: 6 year: 2019 ident: 2024081407465417918_b3 article-title: Mechanical complications following total hip arthroplasty based on surgical approach: a large, single-institution cohort study publication-title: J Arthroplasty doi: 10.1016/j.arth.2019.02.029 – volume: 28 start-page: 605 issue: 5 year: 2022 ident: 2024081407465417918_b30 article-title: Machine learning models and over-fitting considerations publication-title: World J Gastroenterol doi: 10.3748/wjg.v28.i5.605 – volume: 166 start-page: 284 issue: 166 year: 1982 ident: 2024081407465417918_b34 article-title: Prosthetic hip range of motion and impingement: the effects of head and neck geometry publication-title: Clin Orthop Relat Res – volume: 101-B start-page: 902 issue: 8 year: 2019 ident: 2024081407465417918_b41 article-title: Can spinopelvic mobility be predicted in patients awaiting total hip arthroplasty? A prospective, diagnostic study of patients with end-stage hip osteoarthritis publication-title: Bone Joint J doi: 10.1302/0301-620X.101B8.BJJ-2019-0106.R1 – volume: 81 start-page: 84 year: 2022 ident: 2024081407465417918_b21 article-title: Tabular data: deep learning is not all you need publication-title: Information Fusion doi: 10.1016/j.inffus.2021.11.011 – volume: 472 start-page: 529 issue: 2 year: 2014 ident: 2024081407465417918_b28 article-title: Stability and trunnion wear potential in large-diameter metal-on-metal total hips: a finite element analysis publication-title: Clin Orthop Relat Res doi: 10.1007/s11999-013-3244-8 – volume: 83 start-page: 72 year: 2021 ident: 2024081407465417918_b33 article-title: Requirements and reliability of AI in the medical context publication-title: Phys Med doi: 10.1016/j.ejmp.2021.02.024 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 2024081407465417918_b22 article-title: Support-vector networks publication-title: Mach Learn doi: 10.1007/BF00994018 |
| SSID | ssj0002511674 |
| Score | 2.2924473 |
| Snippet | Aims: Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA).... |
| SourceID | doaj pubmedcentral crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 671 |
| SubjectTerms | acetabular component Arthroplasty artificial intelligence biomechanics flexion Hip hips impingement offset pelvic incidence pelvis prospective cohort study radiographs Reverse Hybrid robotic arm robotic-arm assistance sacral slope spinopelvic mobility supervised learning total hip arthroplasty total hip arthroplasty (tha) virtual range of motion |
| Subtitle | a proof-of-concept study |
| Title | Is it feasible to develop a supervised learning algorithm incorporating spinopelvic mobility to predict impingement in patients undergoing total hip arthroplasty? |
| URI | https://pubmed.ncbi.nlm.nih.gov/PMC11322786 https://doaj.org/article/b84ff6c0da4a42cf9dfccc3c159aec33 |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2633-1462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511674 issn: 2633-1462 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2633-1462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511674 issn: 2633-1462 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yiHgRRcXnquSgx75t0zQfIogru6joKovC3ko6Td4rvNeWtivsxb_MP86Zti7vedGDUHpImSR0JvORZH7D2PMEMqOFMBFAETBAyUJkCgOR1wG0crhG3Iiu_1GfnZmLC_tlp9QX3Qmb4IGnH3dUGBmCgrh00kkBwZYBAFJAM-w8pCPOZ6ztTjBFOpgcZ6XlLfZiKngsjoRK0wjVglhmZnn84TOKh5AReUvL82TPKI3Y_X_ekdwxOqd32Z3ZW-RvplneYzd8fZ_9fN_zauDBOxTnjedDw-fUJ-54f9nS6u99yeeCECvuNqumq4b1lhMUw4RcTO19W9VN6zeoLPi2GW_JXlFvbUenNwOvtpRMNe4fIiWfIVh7Tnln3aqhLoYGnXe-rnDobqy4gM74cPX6Jc4EVXMTInxgyozkI5LtA_bt9OTr23fRXIQhAowmhgjDRTTpSQbS2RKS0kqf-OB8qayygN5JFgodq8JLU6ZCJ0Ga2MfIKwDrdGnTh-ygbmr_iHGnvZWFjF2irAxp7FQhylBYQ_XukRML9uo3F3KYEcqpUMYmn47dRE5MpGBF5JnJkYk5MTEnJubnyYKpa_J2gur4V8JjYvk1ESFujw0oh_ksh_nf5HDBzJ7A7PW2_6Wu1iOOd0I7Adqox_9j_EN2e5Jog1L-hB0M3aV_ym7C96Hqu2fj6sD3px8nvwDAcRuh |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Is+it+feasible+to+develop+a+supervised+learning+algorithm+incorporating+spinopelvic+mobility+to+predict+impingement+in+patients+undergoing+total+hip+arthroplasty%3F%3A+a+proof-of-concept+study&rft.jtitle=Bone+%26+joint+open&rft.au=Andreas+Fontalis&rft.au=Baixiang+Zhao&rft.au=Pierre+Putzeys&rft.au=Fabio+Mancino&rft.date=2024-08-14&rft.pub=The+British+Editorial+Society+of+Bone+%26+Joint+Surgery&rft.eissn=2633-1462&rft.volume=5&rft.issue=8&rft.spage=671&rft.epage=680&rft_id=info:doi/10.1302%2F2633-1462.58.BJO-2024-0020.R1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b84ff6c0da4a42cf9dfccc3c159aec33 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2633-1462&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2633-1462&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2633-1462&client=summon |