Evaluation and improvement of temporal robustness and transfer performance of surface soil moisture estimated by machine learning regression algorithms

•Upper and lower limits on the accuracy of soil moisture estimation are evaluated using advanced regression models with multi-source data.•The three proposed strategies can improve the temporal transfer performance of soil moisture.•Soil parameters are crucial for the temporal robustness and transfe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers and electronics in agriculture Ročník 217; s. 108518
Hlavní autoři: Jiaxin, Qian, Jie, Yang, Weidong, Sun, Lingli, Zhao, Lei, Shi, Chaoya, Dang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.02.2024
Témata:
ISSN:0168-1699, 1872-7107
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Upper and lower limits on the accuracy of soil moisture estimation are evaluated using advanced regression models with multi-source data.•The three proposed strategies can improve the temporal transfer performance of soil moisture.•Soil parameters are crucial for the temporal robustness and transferability of soil moisture estimation.•Factors affecting the accuracy of soil moisture in heterogeneous regions are analyzed. The accurate monitoring of the spatio-temporal distribution of surface soil moisture (SSM) is crucial to understanding Earth's water cycle. The machine learning regression (MLR) algorithm has brought a new breakthrough to SSM remote sensing estimation due to its powerful nonlinear fitting ability. However, the high-precision estimation of temporal SSM still faces challenges. In this study, we evaluated the temporal robustness and transfer performance of six MLR algorithms for SSM estimation and conducted a universality experiment in agricultural areas with abundant land cover types. First, the factors affecting the estimation accuracy of SSM were analyzed from the perspectives of dynamic variables (backscattering, multi-spectrum, and brightness temperature [TB]) and steady variables (soil texture [ST] and soil roughness [SR]). Results showed that radar incidence angle (RIA) is the key factor for estimating SSM accurately from dual polarization backscattering (dual-pol σ) data. The introduction of multi-spectrum data can considerably improve the estimation accuracy of SSM and is better than that of TB data. The physical measures (ST) or geometric measures (SR) can be used as auxiliary features for multi-spectrum or TB data, which improve the accuracy of SSM estimated from dual-pol σ data, with similar improvement effects. Multi-source data can effectively reduce the adverse effects of surface heterogeneity on SSM estimation. Ensemble learning and kernel learning algorithms have similar performance in the case of low-dimensional features and small samples. However, the neural network algorithms can correctly reflect the temporal variation of SSM only in the case of multi-dimensional features and large samples. The optimal accuracy of multi-temporal SSM is estimated by the Gaussian process regression algorithm (RMSE = 0.028 cm3/cm3). Moreover, to address poor transfer performance of temporal SSM in MLR models (RMSE > 0.060 cm3/cm3), this study proposed three strategies including the constraint of target domain samples, scattering model, and clustering model. The optimal error (RMSE) of multi-temporal SSM estimated by the three strategies is 0.032, 0.045, and 0.045 cm3/cm3. Overall, the strategies proposed can mitigate the issue of overestimation or underestimation resulting from the inconsistent distribution of SSM and RIAs at various phases. The soil parameters, acting as the medium across different phases, can notably enhance the temporal transfer performance of SSM regression models. This study introduces a novel framework for achieving high estimation accuracy and transfer performance of temporal SSM at a regional scale.
AbstractList •Upper and lower limits on the accuracy of soil moisture estimation are evaluated using advanced regression models with multi-source data.•The three proposed strategies can improve the temporal transfer performance of soil moisture.•Soil parameters are crucial for the temporal robustness and transferability of soil moisture estimation.•Factors affecting the accuracy of soil moisture in heterogeneous regions are analyzed. The accurate monitoring of the spatio-temporal distribution of surface soil moisture (SSM) is crucial to understanding Earth's water cycle. The machine learning regression (MLR) algorithm has brought a new breakthrough to SSM remote sensing estimation due to its powerful nonlinear fitting ability. However, the high-precision estimation of temporal SSM still faces challenges. In this study, we evaluated the temporal robustness and transfer performance of six MLR algorithms for SSM estimation and conducted a universality experiment in agricultural areas with abundant land cover types. First, the factors affecting the estimation accuracy of SSM were analyzed from the perspectives of dynamic variables (backscattering, multi-spectrum, and brightness temperature [TB]) and steady variables (soil texture [ST] and soil roughness [SR]). Results showed that radar incidence angle (RIA) is the key factor for estimating SSM accurately from dual polarization backscattering (dual-pol σ) data. The introduction of multi-spectrum data can considerably improve the estimation accuracy of SSM and is better than that of TB data. The physical measures (ST) or geometric measures (SR) can be used as auxiliary features for multi-spectrum or TB data, which improve the accuracy of SSM estimated from dual-pol σ data, with similar improvement effects. Multi-source data can effectively reduce the adverse effects of surface heterogeneity on SSM estimation. Ensemble learning and kernel learning algorithms have similar performance in the case of low-dimensional features and small samples. However, the neural network algorithms can correctly reflect the temporal variation of SSM only in the case of multi-dimensional features and large samples. The optimal accuracy of multi-temporal SSM is estimated by the Gaussian process regression algorithm (RMSE = 0.028 cm3/cm3). Moreover, to address poor transfer performance of temporal SSM in MLR models (RMSE > 0.060 cm3/cm3), this study proposed three strategies including the constraint of target domain samples, scattering model, and clustering model. The optimal error (RMSE) of multi-temporal SSM estimated by the three strategies is 0.032, 0.045, and 0.045 cm3/cm3. Overall, the strategies proposed can mitigate the issue of overestimation or underestimation resulting from the inconsistent distribution of SSM and RIAs at various phases. The soil parameters, acting as the medium across different phases, can notably enhance the temporal transfer performance of SSM regression models. This study introduces a novel framework for achieving high estimation accuracy and transfer performance of temporal SSM at a regional scale.
ArticleNumber 108518
Author Jie, Yang
Jiaxin, Qian
Lingli, Zhao
Weidong, Sun
Lei, Shi
Chaoya, Dang
Author_xml – sequence: 1
  givenname: Qian
  surname: Jiaxin
  fullname: Jiaxin, Qian
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430070, China
– sequence: 2
  givenname: Yang
  surname: Jie
  fullname: Jie, Yang
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430070, China
– sequence: 3
  givenname: Sun
  surname: Weidong
  fullname: Weidong, Sun
  email: widensun2012@whu.edu.cn
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430070, China
– sequence: 4
  givenname: Zhao
  surname: Lingli
  fullname: Lingli, Zhao
  organization: College of Remote Sensing Information Engineering, Wuhan University, Wuhan 430070, China
– sequence: 5
  givenname: Shi
  surname: Lei
  fullname: Lei, Shi
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430070, China
– sequence: 6
  givenname: Dang
  surname: Chaoya
  fullname: Chaoya, Dang
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430070, China
BookMark eNqFkM1qGzEUhUVxoHbSN-hCLzDuaH6kmSwCxbhpIZBNshYa6Y4tM5KGK9ngJ-nrVra76qJZ3R_OOdz7rcjCBw-EfGXlmpWMfzusdXCz2q2rsqrzqmtZ94ksWSeqQrBSLMgyy7qC8b7_TFYxHso8951Ykt_bk5qOKtngqfKGWjdjOIEDn2gYaQI3B1QTxTAcY_IQ41WWUPk4AtIZcAzolNdw0ccjjiq3MdiJumBjOiJQiMk6lcDQ4Uyd0nvrgU6g0Fu_owg7zLnXC6ZdQJv2Lj6Qu1FNEb78rffk_cf2bfOzeHl9_rX5_lLouuSpaGplDKu1qLjRvB1EbbgwjWlHbRquu2ro23ZQpRENb03NjOk5q0VVcaGBD7q-J80tV2OIEWGUM-Zb8SxZKS9w5UHe4MoLXHmDm22P_9i0TVeKmYydPjI_3cyQHztZQBm1hUzQWASdpAn2_wF_AIkHn6I
CitedBy_id crossref_primary_10_3390_w17142096
crossref_primary_10_1016_j_agrcom_2024_100060
crossref_primary_10_1016_j_compag_2024_109223
crossref_primary_10_3390_land13122189
crossref_primary_10_3390_rs17020333
crossref_primary_10_3390_agriculture15010008
crossref_primary_10_3390_rs17142397
crossref_primary_10_3390_w17111638
crossref_primary_10_1007_s42729_024_02087_z
crossref_primary_10_1080_01431161_2025_2518507
Cites_doi 10.3390/rs13112099
10.1109/TGE.1978.294586
10.1016/j.rse.2019.111402
10.1016/j.jhydrol.2017.11.023
10.1109/TGRS.2018.2858004
10.3390/rs14163858
10.1029/2021GL092856
10.1016/0034-4257(90)90087-3
10.3390/rs12142303
10.1007/978-3-540-28650-9_4
10.1109/TGRS.1981.350328
10.1109/JSTARS.2021.3096063
10.1109/TGRS.2002.807587
10.1016/j.rse.2019.111215
10.3390/rs13152856
10.1145/3136625
10.1016/j.rse.2020.111958
10.1109/TGRS.2020.2976661
10.1109/JSTARS.2020.3043628
10.1016/j.advwatres.2017.09.010
10.1016/j.rse.2018.12.026
10.3390/s16081308
10.1016/j.rse.2022.113059
10.1016/j.pce.2015.02.009
10.1109/TGRS.2020.3033887
10.1016/j.rse.2021.112485
10.1109/TPAMI.2005.159
10.1109/LGRS.2022.3168982
10.1109/TGRS.2018.2848285
10.1016/j.rse.2016.04.006
10.1016/j.rse.2019.111380
10.1109/TGRS.2011.2168962
10.1371/journal.pone.0169748
10.1016/j.rse.2020.111954
10.1029/JC087iC13p11229
10.1145/2939672.2939785
10.1002/hyp.3360070205
10.1016/j.rse.2016.01.027
10.1016/j.rse.2017.07.015
10.3390/rs10091327
10.1109/TGRS.2014.2364913
10.1016/j.jmp.2018.03.001
10.1016/j.isprsjprs.2021.05.013
10.1016/j.jhydrol.2021.126698
10.1016/j.jhydrol.2013.11.018
10.1109/36.917912
10.1016/j.rse.2020.111716
10.1117/1.JRS.15.018503
10.1016/j.asr.2006.02.032
10.1007/BFb0020217
10.1016/j.advwatres.2017.09.006
10.1016/j.jhydrol.2019.124351
10.1007/s10994-006-6226-1
10.1016/j.catena.2005.08.005
10.1016/j.isprsjprs.2022.01.005
10.1109/JSTARS.2021.3058325
10.1080/15481603.2020.1857123
10.1109/JSTARS.2015.2469717
10.1016/j.rse.2017.06.014
10.1109/36.942542
10.1016/j.rse.2021.112706
10.1016/j.isprsjprs.2022.06.012
10.3390/rs9121292
10.1109/LGRS.2011.2106109
10.1109/JSTARS.2021.3098513
10.1016/j.isprsjprs.2019.06.012
10.1016/j.jhydrol.2015.06.058
10.1109/72.97934
10.2136/sssaj1984.03615995004800010026x
10.1016/S0034-4257(03)00051-8
10.1023/A:1025667309714
10.1109/TGE.1979.294626
10.1111/gcb.16043
10.1109/LGRS.2020.2965558
10.1109/36.628792
10.1016/j.rse.2022.112900
10.1007/s11707-009-0023-7
10.3390/rs14081863
10.1080/01431160500239032
10.3390/rs13193889
10.1016/j.rse.2017.08.025
10.1016/j.earscirev.2010.02.004
10.1016/j.rse.2022.113132
10.1016/j.compeleceng.2013.11.024
10.1016/j.rse.2018.08.003
10.1080/15481603.2018.1489943
10.1109/TGRS.2019.2959239
10.1002/2017GL073904
10.1186/s40537-016-0043-6
10.1016/j.rse.2022.113334
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.compag.2023.108518
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10_1016_j_compag_2023_108518
S0168169923009067
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-43add13c726dc65b73d67d4d5fcd46c82b955ba0d7465d31dd961372267ce6bc3
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001154377200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-1699
IngestDate Sat Nov 29 07:24:02 EST 2025
Tue Nov 18 22:32:58 EST 2025
Sat Feb 17 16:12:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Temporal robustness
SMAPVEX16-MB
Machine learning regression
Transfer learning
Surface soil moisture
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-43add13c726dc65b73d67d4d5fcd46c82b955ba0d7465d31dd961372267ce6bc3
ParticipantIDs crossref_primary_10_1016_j_compag_2023_108518
crossref_citationtrail_10_1016_j_compag_2023_108518
elsevier_sciencedirect_doi_10_1016_j_compag_2023_108518
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Computers and electronics in agriculture
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References He (b0135) 2021; 14
Jackson (b0165) 1993; 7
Baghdadi, Holah, Zribi (b0005) 2006; 27
Dang (b0080) 2021; 28
Hengl (b0145) 2017; 12
Schölkopf, B., Smola, A. and Müller, K.-R., 1997. Kernel principal component analysis, International conference on artificial neural networks. Springer, pp. 583-588.
McNairn (b0275) 2014; 53
Ma, Li, McCabe (b0240) 2020; 12
Ma, Wang, Zhao, Ma (b0245) 2021; 13
He, Zhang, Ren, Sun (b0140) 2016
Yue, Tian, Tian, Xu, Xu (b0490) 2019; 154
Feng (b0110) 2021; 13
Gao (b0115) 2022; 277
Ge, Hang, Liu, Liu (b0120) 2018; 10
Lee, Sohn, Park, Jang (b0195) 2019; 56
Manns, Berg (b0260) 2014; 516
El Hajj, Baghdadi, Zribi, Bazzi (b0105) 2017; 9
Mo, Choudhury, Schmugge, Wang, Jackson (b0290) 1982; 87
Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794.
Nicolai-Shaw, Zscheischler, Hirschi, Gudmundsson, Seneviratne (b0295) 2017; 203
Chan (b0035) 2018; 204
Ulaby, F.T., Moore, R.K., Fung, A.K., 1986. Radar remote sensing and surface scattering and emission theory.
O'Neill, Jackson (b0300) 1990; 31
Owe, de Jeu, Walker (b0305) 2001; 39
Bauer-Marschallinger (b0015) 2018; 57
Dobson, Ulaby (b0095) 1981; 1
Li, W., et al., 2021b. Revisiting global vegetation controls using multi‐layer soil moisture. Geophys. Res. Lett., 48(11), e2021GL092856.
Ma (b0235) 2019; 231
Huang (b0155) 2015; 9
Snoek, J., Larochelle, H., Adams, R.P., 2012. Practical bayesian optimization of machine learning algorithms. Advances in neural information processing systems, 25.
Wang, Azzari, Lobell (b0435) 2019; 222
Chandrashekar, Sahin (b0040) 2014; 40
Zhao (b0515) 2022; 14
Chang, Shoshany, Oh (b0045) 2018; 56
Shi (b0375) 2021; 261
Yu, Zhao (b0475) 2010; 35
Wang (b0430) 2023; 284
McNairn (b0280) 2017
Zhang, Zhou (b0505) 2016; 16
Shi, Wang, Hsu, O'Neill, Engman (b0380) 1997; 35
Bao, Lin, Wu, Deng, Petropoulos (b0010) 2018; 72
Zhang (b0495) 2022; 279
Ulaby, Bradley, Dobson (b0405) 1979; 17
Chen (b0055) 2003; 41
Verrelst, Alonso, Camps-Valls, Delegido, Moreno (b0420) 2012; 50
Yuan (b0480) 2020; 241
Manns, Berg, Colliander (b0265) 2015; 528
Ranjbar (b0330) 2021; 15
Huang, Dumitru, Pan, Lei, Datcu (b0160) 2020; 18
Weiss, Jacob, Duveiller (b0450) 2020; 236
Wigneron (b0465) 2003; 85
Zhang, Liang, Zhu, Ma, He (b0500) 2022; 185
Karthikeyan, Pan, Wanders, Kumar, Wood (b0185) 2017; 109
Wang, Qu (b0445) 2009; 3
Li (b0200) 2017; 50
Weiss, Khoshgoftaar, Wang (b0455) 2016; 3
Bouman, C.A., Shapiro, M., Cook, G., Atkins, C.B, Cheng, H., 1997. Cluster: An unsupervised algorithm for modeling Gaussian mixtures.
Dabrowska-Zielinska, Inoue, Kowalik, Gruszczynska (b0075) 2007; 39
Lievens (b0215) 2017; 44
El Hajj (b0100) 2016; 176
Specht (b0395) 1991; 2
Veloso (b0415) 2017; 199
Chen (b0060) 2021; 104
Schulz, Speekenbrink, Krause (b0365) 2018; 85
Chaubell (b0050) 2020; 58
Parrens (b0315) 2016; 181
De Roo, Du, Ulaby, Dobson (b0090) 2001; 39
Xue, Zhang, Zhang, Li (b0470) 2022; 60
Liu, Qian, Yue (b0225) 2020; 14
Wen (b0460) 2022; 190
Karthikeyan, Pan, Wanders, Kumar, Wood (b0190) 2017; 109
McNairn, H., Gottfried, K., Powers, J., 2018. SMAPVEX16 manitoba land cover classification map. Version 1, Proc. NASA Nat. Snow Ice Data Center Distrib. Act. Arch. Center.
Shirazi, Boersma (b0385) 1984; 48
Bhogapurapu (b0020) 2021; 178
Bhogapurapu (b0025) 2022; 271
Mao (b0270) 2022; 14
Ranjbar, Akhoondzadeh, Brisco, Amani, Hosseini (b0335) 2021; 14
Li (b0205) 2021; 600
Mandal (b0255) 2020; 58
Das (b0085) 2019; 233
Petropoulos, Ireland, Barrett (b0325) 2015; 83
Wang (b0425) 2021; 58
Lievens, Verhoest (b0220) 2011; 8
Palmisano (b0310) 2021; 59
Jarray, Abbes, Farah (b0170) 2022; 19
Greifeneder, Notarnicola, Wagner (b0130) 2021; 13
Mandal (b0250) 2020; 247
Holzman, Rivas, Piccolo (b0150) 2014; 28
Peng, Long, Ding (b0320) 2005; 27
Karthikeyan, Mishra (b0180) 2021; 266
Wang, Magagi, Goïta (b0440) 2018; 217
Zhao (b0510) 2020; 248
Liu, Qian, Yue (b0230) 2021; 14
Sagi, Rokach (b0355) 2018; 8
Robnik-Šikonja, Kononenko (b0345) 2003; 53
Ulaby, Batlivala, Dobson (b0400) 1978; 16
Jester, Klik (b0175) 2005; 64
Geurts, Ernst, Wehenkel (b0125) 2006; 63
Yuan, Xu, Li, Shen, Zhang (b0485) 2020; 580
Rasmussen, C.E., 2003. Gaussian processes in machine learning, Summer school on machine learning. Springer, pp. 63-71.
Rowlandson (b0350) 2018; 556
Cloude (b0070) 2007; 644
Seneviratne (b0370) 2010; 99
Karthikeyan (10.1016/j.compag.2023.108518_b0180) 2021; 266
Liu (10.1016/j.compag.2023.108518_b0225) 2020; 14
Chen (10.1016/j.compag.2023.108518_b0060) 2021; 104
Wang (10.1016/j.compag.2023.108518_b0435) 2019; 222
Palmisano (10.1016/j.compag.2023.108518_b0310) 2021; 59
Yuan (10.1016/j.compag.2023.108518_b0480) 2020; 241
Chandrashekar (10.1016/j.compag.2023.108518_b0040) 2014; 40
Wang (10.1016/j.compag.2023.108518_b0445) 2009; 3
Ma (10.1016/j.compag.2023.108518_b0235) 2019; 231
Weiss (10.1016/j.compag.2023.108518_b0455) 2016; 3
Chen (10.1016/j.compag.2023.108518_b0055) 2003; 41
Peng (10.1016/j.compag.2023.108518_b0320) 2005; 27
Manns (10.1016/j.compag.2023.108518_b0260) 2014; 516
Mao (10.1016/j.compag.2023.108518_b0270) 2022; 14
Dang (10.1016/j.compag.2023.108518_b0080) 2021; 28
Robnik-Šikonja (10.1016/j.compag.2023.108518_b0345) 2003; 53
Cloude (10.1016/j.compag.2023.108518_b0070) 2007; 644
Lievens (10.1016/j.compag.2023.108518_b0220) 2011; 8
Zhang (10.1016/j.compag.2023.108518_b0500) 2022; 185
Ma (10.1016/j.compag.2023.108518_b0240) 2020; 12
El Hajj (10.1016/j.compag.2023.108518_b0105) 2017; 9
Li (10.1016/j.compag.2023.108518_b0200) 2017; 50
Ge (10.1016/j.compag.2023.108518_b0120) 2018; 10
10.1016/j.compag.2023.108518_b0065
10.1016/j.compag.2023.108518_b0340
Yu (10.1016/j.compag.2023.108518_b0475) 2010; 35
Bhogapurapu (10.1016/j.compag.2023.108518_b0020) 2021; 178
Veloso (10.1016/j.compag.2023.108518_b0415) 2017; 199
Huang (10.1016/j.compag.2023.108518_b0155) 2015; 9
Feng (10.1016/j.compag.2023.108518_b0110) 2021; 13
Nicolai-Shaw (10.1016/j.compag.2023.108518_b0295) 2017; 203
Zhang (10.1016/j.compag.2023.108518_b0505) 2016; 16
Jarray (10.1016/j.compag.2023.108518_b0170) 2022; 19
Chan (10.1016/j.compag.2023.108518_b0035) 2018; 204
Wang (10.1016/j.compag.2023.108518_b0430) 2023; 284
10.1016/j.compag.2023.108518_b0210
O'Neill (10.1016/j.compag.2023.108518_b0300) 1990; 31
He (10.1016/j.compag.2023.108518_b0135) 2021; 14
Shi (10.1016/j.compag.2023.108518_b0375) 2021; 261
Wang (10.1016/j.compag.2023.108518_b0425) 2021; 58
Verrelst (10.1016/j.compag.2023.108518_b0420) 2012; 50
Dabrowska-Zielinska (10.1016/j.compag.2023.108518_b0075) 2007; 39
El Hajj (10.1016/j.compag.2023.108518_b0100) 2016; 176
Specht (10.1016/j.compag.2023.108518_b0395) 1991; 2
Baghdadi (10.1016/j.compag.2023.108518_b0005) 2006; 27
Geurts (10.1016/j.compag.2023.108518_b0125) 2006; 63
He (10.1016/j.compag.2023.108518_b0140) 2016
Yue (10.1016/j.compag.2023.108518_b0490) 2019; 154
Ulaby (10.1016/j.compag.2023.108518_b0405) 1979; 17
Ranjbar (10.1016/j.compag.2023.108518_b0330) 2021; 15
Seneviratne (10.1016/j.compag.2023.108518_b0370) 2010; 99
Hengl (10.1016/j.compag.2023.108518_b0145) 2017; 12
Karthikeyan (10.1016/j.compag.2023.108518_b0185) 2017; 109
10.1016/j.compag.2023.108518_b0285
Parrens (10.1016/j.compag.2023.108518_b0315) 2016; 181
Wen (10.1016/j.compag.2023.108518_b0460) 2022; 190
Greifeneder (10.1016/j.compag.2023.108518_b0130) 2021; 13
Rowlandson (10.1016/j.compag.2023.108518_b0350) 2018; 556
Shirazi (10.1016/j.compag.2023.108518_b0385) 1984; 48
Huang (10.1016/j.compag.2023.108518_b0160) 2020; 18
Mo (10.1016/j.compag.2023.108518_b0290) 1982; 87
Schulz (10.1016/j.compag.2023.108518_b0365) 2018; 85
10.1016/j.compag.2023.108518_b0390
Bauer-Marschallinger (10.1016/j.compag.2023.108518_b0015) 2018; 57
Manns (10.1016/j.compag.2023.108518_b0265) 2015; 528
McNairn (10.1016/j.compag.2023.108518_b0275) 2014; 53
Ma (10.1016/j.compag.2023.108518_b0245) 2021; 13
Bao (10.1016/j.compag.2023.108518_b0010) 2018; 72
10.1016/j.compag.2023.108518_b0030
Chang (10.1016/j.compag.2023.108518_b0045) 2018; 56
Jackson (10.1016/j.compag.2023.108518_b0165) 1993; 7
Das (10.1016/j.compag.2023.108518_b0085) 2019; 233
Karthikeyan (10.1016/j.compag.2023.108518_b0190) 2017; 109
Chaubell (10.1016/j.compag.2023.108518_b0050) 2020; 58
Shi (10.1016/j.compag.2023.108518_b0380) 1997; 35
Mandal (10.1016/j.compag.2023.108518_b0255) 2020; 58
Xue (10.1016/j.compag.2023.108518_b0470) 2022; 60
Ulaby (10.1016/j.compag.2023.108518_b0400) 1978; 16
Gao (10.1016/j.compag.2023.108518_b0115) 2022; 277
De Roo (10.1016/j.compag.2023.108518_b0090) 2001; 39
Weiss (10.1016/j.compag.2023.108518_b0450) 2020; 236
Ranjbar (10.1016/j.compag.2023.108518_b0335) 2021; 14
Sagi (10.1016/j.compag.2023.108518_b0355) 2018; 8
Jester (10.1016/j.compag.2023.108518_b0175) 2005; 64
Lievens (10.1016/j.compag.2023.108518_b0215) 2017; 44
McNairn (10.1016/j.compag.2023.108518_b0280) 2017
Bhogapurapu (10.1016/j.compag.2023.108518_b0025) 2022; 271
Holzman (10.1016/j.compag.2023.108518_b0150) 2014; 28
Liu (10.1016/j.compag.2023.108518_b0230) 2021; 14
Zhao (10.1016/j.compag.2023.108518_b0515) 2022; 14
Yuan (10.1016/j.compag.2023.108518_b0485) 2020; 580
10.1016/j.compag.2023.108518_b0410
Zhang (10.1016/j.compag.2023.108518_b0495) 2022; 279
Wigneron (10.1016/j.compag.2023.108518_b0465) 2003; 85
Lee (10.1016/j.compag.2023.108518_b0195) 2019; 56
Wang (10.1016/j.compag.2023.108518_b0440) 2018; 217
Mandal (10.1016/j.compag.2023.108518_b0250) 2020; 247
Li (10.1016/j.compag.2023.108518_b0205) 2021; 600
Petropoulos (10.1016/j.compag.2023.108518_b0325) 2015; 83
Dobson (10.1016/j.compag.2023.108518_b0095) 1981; 1
Owe (10.1016/j.compag.2023.108518_b0305) 2001; 39
Zhao (10.1016/j.compag.2023.108518_b0510) 2020; 248
10.1016/j.compag.2023.108518_b0360
References_xml – volume: 28
  start-page: 181
  year: 2014
  end-page: 192
  ident: b0150
  article-title: Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 203
  start-page: 216
  year: 2017
  end-page: 225
  ident: b0295
  article-title: A drought event composite analysis using satellite remote-sensing based soil moisture
  publication-title: Remote Sens. Environ.
– volume: 41
  start-page: 90
  year: 2003
  end-page: 101
  ident: b0055
  article-title: Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 28
  start-page: 2066
  year: 2021
  end-page: 2080
  ident: b0080
  article-title: Assessment of the importance of increasing temperature and decreasing soil moisture on global ecosystem productivity using solar-induced chlorophyll fluorescence
  publication-title: Glob. Chang. Biol
– volume: 99
  start-page: 125
  year: 2010
  end-page: 161
  ident: b0370
  article-title: Investigating soil moisture–climate interactions in a changing climate: a review
  publication-title: Earth Sci. Rev.
– volume: 31
  start-page: 175
  year: 1990
  end-page: 182
  ident: b0300
  article-title: Observed effects of soil organic matter content on the microwave emissivity of soils
  publication-title: Remote Sens. Environ.
– volume: 72
  start-page: 76
  year: 2018
  end-page: 85
  ident: b0010
  article-title: Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 87
  start-page: 11229
  year: 1982
  end-page: 11237
  ident: b0290
  article-title: A model for microwave emission from vegetation-covered fields
  publication-title: J. Geophys. Res. Oceans
– volume: 64
  start-page: 174
  year: 2005
  end-page: 192
  ident: b0175
  article-title: Soil surface roughness measurement—methods, applicability, and surface representation
  publication-title: Catena
– volume: 190
  start-page: 252
  year: 2022
  end-page: 266
  ident: b0460
  article-title: Mapping corn dynamics using limited but representative samples with adaptive strategies
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 10
  start-page: 1327
  year: 2018
  ident: b0120
  article-title: Comparing the Performance of Neural Network and Deep Convolutional Neural Network in Estimating Soil Moisture from Satellite Observations
  publication-title: Remote Sens. (Basel)
– volume: 14
  start-page: 7448
  year: 2021
  end-page: 7465
  ident: b0230
  article-title: Comprehensive evaluation of Sentinel-2 red edge and shortwave-infrared bands to estimate soil moisture
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 59
  start-page: 7308
  year: 2021
  end-page: 7321
  ident: b0310
  article-title: Sentinel-1 Sensitivity to Soil Moisture at High Incidence Angle and the Impact on Retrieval Over Seasonal Crops
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 14
  start-page: 3858
  year: 2022
  ident: b0270
  article-title: A spatial downscaling method for remote sensing soil moisture based on random forest considering soil moisture memory and mass conservation
  publication-title: Remote Sens. (Basel)
– volume: 19
  start-page: 1
  year: 2022
  end-page: 5
  ident: b0170
  article-title: A Novel Teacher-Student Framework for Soil Moisture Retrieval by Combining Sentinel-1 and Sentinel-2: Application in Arid Regions
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 58
  start-page: 48
  year: 2021
  end-page: 67
  ident: b0425
  article-title: Microwave-based vegetation descriptors in the parameterization of water cloud model at L-band for soil moisture retrieval over croplands
  publication-title: GIScience & Remote Sensing
– volume: 199
  start-page: 415
  year: 2017
  end-page: 426
  ident: b0415
  article-title: Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications
  publication-title: Remote Sens. Environ.
– volume: 104
  year: 2021
  ident: b0060
  article-title: Convolutional neural network model for soil moisture prediction and its transferability analysis based on laboratory Vis-NIR spectral data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– reference: Rasmussen, C.E., 2003. Gaussian processes in machine learning, Summer school on machine learning. Springer, pp. 63-71.
– volume: 2
  start-page: 568
  year: 1991
  end-page: 576
  ident: b0395
  article-title: A general regression neural network
  publication-title: IEEE Trans. Neural Netw.
– volume: 14
  start-page: 2833
  year: 2021
  end-page: 2844
  ident: b0135
  article-title: An improved method for soil moisture monitoring with ensemble learning methods over the Tibetan plateau
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– reference: Li, W., et al., 2021b. Revisiting global vegetation controls using multi‐layer soil moisture. Geophys. Res. Lett., 48(11), e2021GL092856.
– volume: 600
  year: 2021
  ident: b0205
  article-title: Improved daily SMAP satellite soil moisture prediction over China using deep learning model with transfer learning
  publication-title: J. Hydrol.
– volume: 15
  start-page: 018503
  year: 2021
  ident: b0330
  article-title: Machine learning inversion approach for soil parameters estimation over vegetated agricultural areas using a combination of water cloud model and calibrated integral equation model
  publication-title: J. Appl. Remote Sens.
– volume: 85
  start-page: 1
  year: 2018
  end-page: 16
  ident: b0365
  article-title: A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions
  publication-title: J. Math. Psychol.
– volume: 231
  year: 2019
  ident: b0235
  article-title: Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: a comprehensive assessment using global ground-based observations
  publication-title: Remote Sens. Environ.
– volume: 109
  start-page: 236
  year: 2017
  end-page: 252
  ident: b0190
  article-title: Four decades of microwave satellite soil moisture observations: Part 2. Product validation and inter-satellite comparisons
  publication-title: Adv. Water Resour.
– volume: 40
  start-page: 16
  year: 2014
  end-page: 28
  ident: b0040
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
– volume: 39
  start-page: 1643
  year: 2001
  end-page: 1654
  ident: b0305
  article-title: A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Snoek, J., Larochelle, H., Adams, R.P., 2012. Practical bayesian optimization of machine learning algorithms. Advances in neural information processing systems, 25.
– volume: 35
  start-page: 318
  year: 2010
  end-page: 321
  ident: b0475
  article-title: A new method for soil moisture inversion by synthetic aperture radar
  publication-title: Geomatics Inform Sci. Wuhan University
– volume: 16
  start-page: 1308
  year: 2016
  ident: b0505
  article-title: Estimation of soil moisture from optical and thermal remote sensing: A review
  publication-title: Sensors
– volume: 53
  start-page: 2784
  year: 2014
  end-page: 2801
  ident: b0275
  article-title: The soil moisture active passive validation experiment 2012 (SMAPVEX12): Prelaunch calibration and validation of the SMAP soil moisture algorithms
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 53
  start-page: 23
  year: 2003
  end-page: 69
  ident: b0345
  article-title: Theoretical and Empirical Analysis of ReliefF and RReliefF
  publication-title: Mach. Learn.
– volume: 83
  start-page: 36
  year: 2015
  end-page: 56
  ident: b0325
  article-title: Surface soil moisture retrievals from remote sensing: Current status, products & future trends
  publication-title: Phys. Chem. the Earth, Parts A/B/C
– reference: Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794.
– volume: 241
  year: 2020
  ident: b0480
  article-title: Deep learning in environmental remote sensing: Achievements and challenges
  publication-title: Remote Sens. Environ.
– volume: 57
  start-page: 520
  year: 2018
  end-page: 539
  ident: b0015
  article-title: Toward global soil moisture monitoring with Sentinel-1: Harnessing assets and overcoming obstacles
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 556
  start-page: 349
  year: 2018
  end-page: 358
  ident: b0350
  article-title: Temporal transferability of soil moisture calibration equations
  publication-title: J. Hydrol.
– volume: 13
  start-page: 2099
  year: 2021
  ident: b0130
  article-title: A machine learning-based approach for surface soil moisture estimations with google earth engine
  publication-title: Remote Sens. (Basel)
– volume: 18
  start-page: 107
  year: 2020
  end-page: 111
  ident: b0160
  article-title: Classification of large-scale high-resolution SAR images with deep transfer learning
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 580
  year: 2020
  ident: b0485
  article-title: Estimating surface soil moisture from satellite observations using a generalized regression neural network trained on sparse ground-based measurements in the continental US
  publication-title: J. Hydrol.
– volume: 7
  start-page: 139
  year: 1993
  end-page: 152
  ident: b0165
  article-title: III. Measuring surface soil moisture using passive microwave remote sensing
  publication-title: Hydrol. Process.
– volume: 13
  start-page: 3889
  year: 2021
  ident: b0245
  article-title: Global sensitivity analysis of a water cloud model toward soil moisture retrieval over vegetated agricultural fields
  publication-title: Remote Sens. (Basel)
– volume: 154
  start-page: 216
  year: 2019
  end-page: 230
  ident: b0490
  article-title: Development of soil moisture indices from differences in water absorption between shortwave-infrared bands
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2017
  ident: b0280
  article-title: SMAPVEX16 Database Report
– volume: 48
  start-page: 142
  year: 1984
  end-page: 147
  ident: b0385
  article-title: A unifying quantitative analysis of soil texture
  publication-title: Soil Sci. Soc. Am. J.
– volume: 56
  start-page: 7102
  year: 2018
  end-page: 7108
  ident: b0045
  article-title: Polarimetric radar vegetation index for biomass estimation in desert fringe ecosystems
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Schölkopf, B., Smola, A. and Müller, K.-R., 1997. Kernel principal component analysis, International conference on artificial neural networks. Springer, pp. 583-588.
– volume: 16
  start-page: 286
  year: 1978
  end-page: 295
  ident: b0400
  article-title: Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part I-bare soil
  publication-title: IEEE Trans. Geosci. Electron.
– volume: 248
  year: 2020
  ident: b0510
  article-title: Soil moisture retrievals using L-band radiometry from variable angular ground-based and airborne observations
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 2303
  year: 2020
  ident: b0240
  article-title: Retrieval of high-resolution soil moisture through combination of Sentinel-1 and Sentinel-2 data
  publication-title: Remote Sens. (Basel)
– volume: 181
  start-page: 122
  year: 2016
  end-page: 136
  ident: b0315
  article-title: Global-scale surface roughness effects at L-band as estimated from SMOS observations
  publication-title: Remote Sens. Environ.
– volume: 63
  start-page: 3
  year: 2006
  end-page: 42
  ident: b0125
  article-title: Extremely randomized trees
  publication-title: Mach Learn
– volume: 279
  year: 2022
  ident: b0495
  article-title: A machine learning method trained by radiative transfer model inversion for generating seven global land and atmospheric estimates from VIIRS top-of-atmosphere observations
  publication-title: Remote Sens. Environ.
– volume: 50
  start-page: 1
  year: 2017
  end-page: 45
  ident: b0200
  article-title: Feature selection: A data perspective
  publication-title: ACM Computing Surveys (CSUR)
– volume: 204
  start-page: 931
  year: 2018
  end-page: 941
  ident: b0035
  article-title: Development and assessment of the SMAP enhanced passive soil moisture product
  publication-title: Remote Sens. Environ.
– volume: 3
  start-page: 1
  year: 2016
  end-page: 40
  ident: b0455
  article-title: A survey of transfer learning
  publication-title: J. Big data
– volume: 178
  start-page: 20
  year: 2021
  end-page: 35
  ident: b0020
  article-title: Dual-polarimetric descriptors from Sentinel-1 GRD SAR data for crop growth assessment
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: b0320
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 516
  start-page: 297
  year: 2014
  end-page: 303
  ident: b0260
  article-title: Importance of soil organic carbon on surface soil water content variability among agricultural fields
  publication-title: J. Hydrol.
– volume: 261
  year: 2021
  ident: b0375
  article-title: Soil moisture retrieval over agricultural fields from L-band multi-incidence and multitemporal PolSAR observations using polarimetric decomposition techniques
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 740
  year: 2011
  end-page: 744
  ident: b0220
  article-title: On the retrieval of soil moisture in wheat fields from L-band SAR based on water cloud modeling, the IEM, and effective roughness parameters
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 3
  start-page: 237
  year: 2009
  end-page: 247
  ident: b0445
  article-title: Satellite remote sensing applications for surface soil moisture monitoring: A review
  publication-title: Front Earth Sci. China
– volume: 85
  start-page: 489
  year: 2003
  end-page: 506
  ident: b0465
  article-title: Retrieving near-surface soil moisture from microwave radiometric observations: current status and future plans
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: e1249
  year: 2018
  ident: b0355
  article-title: Ensemble learning: A survey
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 13
  start-page: 2856
  year: 2021
  ident: b0110
  article-title: Dynamic Cosine Method for Normalizing Incidence Angle Effect on C-band Radar Backscattering Coefficient for Maize Canopies Based on NDVI
  publication-title: Remote Sens. (Basel)
– volume: 644
  start-page: 2
  year: 2007
  ident: b0070
  article-title: The dual polarization entropy/alpha decomposition: A PALSAR case study
  publication-title: Sci. Appl. SAR Polarimetry Polarimetric Interferometry
– volume: 35
  start-page: 1254
  year: 1997
  end-page: 1266
  ident: b0380
  article-title: Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 271
  year: 2022
  ident: b0025
  article-title: Soil moisture retrieval over croplands using dual-pol L-band GRD SAR data
  publication-title: Remote Sens. Environ.
– volume: 1
  start-page: 51
  year: 1981
  end-page: 61
  ident: b0095
  article-title: Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part III-soil tension
  publication-title: IEEE Trans. Geoscience and Remote Sensing
– reference: Bouman, C.A., Shapiro, M., Cook, G., Atkins, C.B, Cheng, H., 1997. Cluster: An unsupervised algorithm for modeling Gaussian mixtures.
– volume: 17
  start-page: 33
  year: 1979
  end-page: 40
  ident: b0405
  article-title: Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part II-vegetation-covered soil
  publication-title: IEEE Trans. Geosci. Electron.
– volume: 39
  start-page: 864
  year: 2001
  end-page: 872
  ident: b0090
  article-title: A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 109
  start-page: 106
  year: 2017
  end-page: 120
  ident: b0185
  article-title: Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms
  publication-title: Adv. Water Resour.
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0140
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 56
  start-page: 43
  year: 2019
  end-page: 67
  ident: b0195
  article-title: Estimation of soil moisture using deep learning based on satellite data: A case study of South Korea
  publication-title: GIScience Remote Sensing
– volume: 185
  start-page: 32
  year: 2022
  end-page: 47
  ident: b0500
  article-title: Soil moisture content retrieval from Landsat 8 data using ensemble learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 277
  year: 2022
  ident: b0115
  article-title: A deep neural network based SMAP soil moisture product
  publication-title: Remote Sens. Environ.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 17
  ident: b0470
  article-title: Ensemble Learning Embedded With Gaussian Process Regression for Soil Moisture Estimation: A Case Study of the Continental US
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Ulaby, F.T., Moore, R.K., Fung, A.K., 1986. Radar remote sensing and surface scattering and emission theory.
– volume: 284
  year: 2023
  ident: b0430
  article-title: 1-km soil moisture retrieval using multi-temporal dual-channel SAR data from Sentinel-1 A/B satellites in a semi-arid watershed
  publication-title: Remote Sens. Environ.
– volume: 44
  start-page: 6145
  year: 2017
  end-page: 6153
  ident: b0215
  article-title: Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates
  publication-title: Geophys. Res. Lett.
– volume: 9
  start-page: 1292
  year: 2017
  ident: b0105
  article-title: Synergic Use of Sentinel-1 and Sentinel-2 Images for Operational Soil Moisture Mapping at High Spatial Resolution over Agricultural Areas
  publication-title: Remote Sens. (Basel)
– volume: 12
  start-page: e0169748
  year: 2017
  ident: b0145
  article-title: SoilGrids250m: Global gridded soil information based on machine learning
  publication-title: PLoS One
– volume: 217
  start-page: 38
  year: 2018
  end-page: 51
  ident: b0440
  article-title: Potential of a two-component polarimetric decomposition at C-band for soil moisture retrieval over agricultural fields
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 272
  year: 2015
  end-page: 284
  ident: b0155
  article-title: Coherent model of L-band radar scattering by soybean plants: Model development, evaluation, and retrieval
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– reference: McNairn, H., Gottfried, K., Powers, J., 2018. SMAPVEX16 manitoba land cover classification map. Version 1, Proc. NASA Nat. Snow Ice Data Center Distrib. Act. Arch. Center.
– volume: 14
  start-page: 7179
  year: 2021
  end-page: 7197
  ident: b0335
  article-title: Soil Moisture Change Monitoring from C and L-band SAR Interferometric Phase Observations
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 27
  start-page: 1907
  year: 2006
  end-page: 1920
  ident: b0005
  article-title: Soil moisture estimation using multi-incidence and multi-polarization ASAR data
  publication-title: Int. J. Remote Sens.
– volume: 266
  year: 2021
  ident: b0180
  article-title: Multi-layer high-resolution soil moisture estimation using machine learning over the United States
  publication-title: Remote Sens. Environ.
– volume: 236
  year: 2020
  ident: b0450
  article-title: Remote sensing for agricultural applications: A meta-review
  publication-title: Remote Sens. Environ.
– volume: 39
  start-page: 139
  year: 2007
  end-page: 148
  ident: b0075
  article-title: Inferring the effect of plant and soil variables on C- and L-band SAR backscatter over agricultural fields, based on model analysis
  publication-title: Adv. Space Res.
– volume: 58
  start-page: 6321
  year: 2020
  end-page: 6335
  ident: b0255
  article-title: A radar vegetation index for crop monitoring using compact polarimetric SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 14
  start-page: 1863
  year: 2022
  ident: b0515
  article-title: An Overview of the Applications of Earth Observation Satellite Data: Impacts and Future Trends
  publication-title: Remote Sens. (Basel)
– volume: 50
  start-page: 1832
  year: 2012
  end-page: 1843
  ident: b0420
  article-title: Retrieval of Vegetation Biophysical Parameters Using Gaussian Process Techniques
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 528
  start-page: 643
  year: 2015
  end-page: 651
  ident: b0265
  article-title: Soil organic carbon as a factor in passive microwave retrievals of soil water content over agricultural croplands
  publication-title: J. Hydrol.
– volume: 222
  start-page: 303
  year: 2019
  end-page: 317
  ident: b0435
  article-title: Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques
  publication-title: Remote Sens. Environ.
– volume: 176
  start-page: 202
  year: 2016
  end-page: 218
  ident: b0100
  article-title: Soil moisture retrieval over irrigated grassland using X-band SAR data
  publication-title: Remote Sens. Environ.
– volume: 233
  year: 2019
  ident: b0085
  article-title: The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product
  publication-title: Remote Sens. Environ.
– volume: 247
  year: 2020
  ident: b0250
  article-title: Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data
  publication-title: Remote Sens. Environ.
– volume: 58
  start-page: 3894
  year: 2020
  end-page: 3905
  ident: b0050
  article-title: Improved SMAP dual-channel algorithm for the retrieval of soil moisture
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 14
  start-page: 1292
  year: 2020
  end-page: 1310
  ident: b0225
  article-title: Combined Sentinel-1A with Sentinel-2A to estimate soil moisture in farmland
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 13
  start-page: 2099
  issue: 11
  year: 2021
  ident: 10.1016/j.compag.2023.108518_b0130
  article-title: A machine learning-based approach for surface soil moisture estimations with google earth engine
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs13112099
– volume: 16
  start-page: 286
  issue: 4
  year: 1978
  ident: 10.1016/j.compag.2023.108518_b0400
  article-title: Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part I-bare soil
  publication-title: IEEE Trans. Geosci. Electron.
  doi: 10.1109/TGE.1978.294586
– volume: 236
  year: 2020
  ident: 10.1016/j.compag.2023.108518_b0450
  article-title: Remote sensing for agricultural applications: A meta-review
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111402
– volume: 556
  start-page: 349
  year: 2018
  ident: 10.1016/j.compag.2023.108518_b0350
  article-title: Temporal transferability of soil moisture calibration equations
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.11.023
– volume: 57
  start-page: 520
  issue: 1
  year: 2018
  ident: 10.1016/j.compag.2023.108518_b0015
  article-title: Toward global soil moisture monitoring with Sentinel-1: Harnessing assets and overcoming obstacles
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2858004
– volume: 14
  start-page: 3858
  issue: 16
  year: 2022
  ident: 10.1016/j.compag.2023.108518_b0270
  article-title: A spatial downscaling method for remote sensing soil moisture based on random forest considering soil moisture memory and mass conservation
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs14163858
– ident: 10.1016/j.compag.2023.108518_b0410
– volume: 104
  year: 2021
  ident: 10.1016/j.compag.2023.108518_b0060
  article-title: Convolutional neural network model for soil moisture prediction and its transferability analysis based on laboratory Vis-NIR spectral data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2017
  ident: 10.1016/j.compag.2023.108518_b0280
– ident: 10.1016/j.compag.2023.108518_b0210
  doi: 10.1029/2021GL092856
– ident: 10.1016/j.compag.2023.108518_b0285
– volume: 31
  start-page: 175
  issue: 3
  year: 1990
  ident: 10.1016/j.compag.2023.108518_b0300
  article-title: Observed effects of soil organic matter content on the microwave emissivity of soils
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(90)90087-3
– volume: 12
  start-page: 2303
  issue: 14
  year: 2020
  ident: 10.1016/j.compag.2023.108518_b0240
  article-title: Retrieval of high-resolution soil moisture through combination of Sentinel-1 and Sentinel-2 data
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs12142303
– ident: 10.1016/j.compag.2023.108518_b0340
  doi: 10.1007/978-3-540-28650-9_4
– volume: 1
  start-page: 51
  year: 1981
  ident: 10.1016/j.compag.2023.108518_b0095
  article-title: Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part III-soil tension
  publication-title: IEEE Trans. Geoscience and Remote Sensing
  doi: 10.1109/TGRS.1981.350328
– volume: 644
  start-page: 2
  year: 2007
  ident: 10.1016/j.compag.2023.108518_b0070
  article-title: The dual polarization entropy/alpha decomposition: A PALSAR case study
  publication-title: Sci. Appl. SAR Polarimetry Polarimetric Interferometry
– volume: 14
  start-page: 7179
  year: 2021
  ident: 10.1016/j.compag.2023.108518_b0335
  article-title: Soil Moisture Change Monitoring from C and L-band SAR Interferometric Phase Observations
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3096063
– volume: 41
  start-page: 90
  issue: 1
  year: 2003
  ident: 10.1016/j.compag.2023.108518_b0055
  article-title: Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2002.807587
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.compag.2023.108518_b0470
  article-title: Ensemble Learning Embedded With Gaussian Process Regression for Soil Moisture Estimation: A Case Study of the Continental US
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 231
  year: 2019
  ident: 10.1016/j.compag.2023.108518_b0235
  article-title: Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: a comprehensive assessment using global ground-based observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111215
– volume: 13
  start-page: 2856
  issue: 15
  year: 2021
  ident: 10.1016/j.compag.2023.108518_b0110
  article-title: Dynamic Cosine Method for Normalizing Incidence Angle Effect on C-band Radar Backscattering Coefficient for Maize Canopies Based on NDVI
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs13152856
– volume: 50
  start-page: 1
  issue: 6
  year: 2017
  ident: 10.1016/j.compag.2023.108518_b0200
  article-title: Feature selection: A data perspective
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3136625
– volume: 248
  year: 2020
  ident: 10.1016/j.compag.2023.108518_b0510
  article-title: Soil moisture retrievals using L-band radiometry from variable angular ground-based and airborne observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111958
– volume: 58
  start-page: 6321
  issue: 9
  year: 2020
  ident: 10.1016/j.compag.2023.108518_b0255
  article-title: A radar vegetation index for crop monitoring using compact polarimetric SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2976661
– volume: 14
  start-page: 1292
  year: 2020
  ident: 10.1016/j.compag.2023.108518_b0225
  article-title: Combined Sentinel-1A with Sentinel-2A to estimate soil moisture in farmland
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3043628
– volume: 109
  start-page: 236
  year: 2017
  ident: 10.1016/j.compag.2023.108518_b0190
  article-title: Four decades of microwave satellite soil moisture observations: Part 2. Product validation and inter-satellite comparisons
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.09.010
– volume: 222
  start-page: 303
  year: 2019
  ident: 10.1016/j.compag.2023.108518_b0435
  article-title: Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.026
– volume: 16
  start-page: 1308
  issue: 8
  year: 2016
  ident: 10.1016/j.compag.2023.108518_b0505
  article-title: Estimation of soil moisture from optical and thermal remote sensing: A review
  publication-title: Sensors
  doi: 10.3390/s16081308
– volume: 277
  year: 2022
  ident: 10.1016/j.compag.2023.108518_b0115
  article-title: A deep neural network based SMAP soil moisture product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113059
– volume: 83
  start-page: 36
  year: 2015
  ident: 10.1016/j.compag.2023.108518_b0325
  article-title: Surface soil moisture retrievals from remote sensing: Current status, products & future trends
  publication-title: Phys. Chem. the Earth, Parts A/B/C
  doi: 10.1016/j.pce.2015.02.009
– volume: 59
  start-page: 7308
  issue: 9
  year: 2021
  ident: 10.1016/j.compag.2023.108518_b0310
  article-title: Sentinel-1 Sensitivity to Soil Moisture at High Incidence Angle and the Impact on Retrieval Over Seasonal Crops
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3033887
– volume: 261
  year: 2021
  ident: 10.1016/j.compag.2023.108518_b0375
  article-title: Soil moisture retrieval over agricultural fields from L-band multi-incidence and multitemporal PolSAR observations using polarimetric decomposition techniques
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112485
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 10.1016/j.compag.2023.108518_b0320
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– volume: 19
  start-page: 1
  year: 2022
  ident: 10.1016/j.compag.2023.108518_b0170
  article-title: A Novel Teacher-Student Framework for Soil Moisture Retrieval by Combining Sentinel-1 and Sentinel-2: Application in Arid Regions
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2022.3168982
– volume: 56
  start-page: 7102
  issue: 12
  year: 2018
  ident: 10.1016/j.compag.2023.108518_b0045
  article-title: Polarimetric radar vegetation index for biomass estimation in desert fringe ecosystems
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2848285
– volume: 181
  start-page: 122
  year: 2016
  ident: 10.1016/j.compag.2023.108518_b0315
  article-title: Global-scale surface roughness effects at L-band as estimated from SMOS observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.04.006
– volume: 233
  year: 2019
  ident: 10.1016/j.compag.2023.108518_b0085
  article-title: The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111380
– start-page: 770
  year: 2016
  ident: 10.1016/j.compag.2023.108518_b0140
  article-title: Deep residual learning for image recognition
– volume: 50
  start-page: 1832
  issue: 5
  year: 2012
  ident: 10.1016/j.compag.2023.108518_b0420
  article-title: Retrieval of Vegetation Biophysical Parameters Using Gaussian Process Techniques
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2168962
– volume: 12
  start-page: e0169748
  issue: 2
  year: 2017
  ident: 10.1016/j.compag.2023.108518_b0145
  article-title: SoilGrids250m: Global gridded soil information based on machine learning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0169748
– volume: 247
  year: 2020
  ident: 10.1016/j.compag.2023.108518_b0250
  article-title: Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111954
– volume: 87
  start-page: 11229
  issue: C13
  year: 1982
  ident: 10.1016/j.compag.2023.108518_b0290
  article-title: A model for microwave emission from vegetation-covered fields
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/JC087iC13p11229
– ident: 10.1016/j.compag.2023.108518_b0065
  doi: 10.1145/2939672.2939785
– volume: 28
  start-page: 181
  year: 2014
  ident: 10.1016/j.compag.2023.108518_b0150
  article-title: Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 7
  start-page: 139
  issue: 2
  year: 1993
  ident: 10.1016/j.compag.2023.108518_b0165
  article-title: III. Measuring surface soil moisture using passive microwave remote sensing
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.3360070205
– volume: 176
  start-page: 202
  year: 2016
  ident: 10.1016/j.compag.2023.108518_b0100
  article-title: Soil moisture retrieval over irrigated grassland using X-band SAR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.01.027
– volume: 8
  start-page: e1249
  issue: 4
  year: 2018
  ident: 10.1016/j.compag.2023.108518_b0355
  article-title: Ensemble learning: A survey
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 199
  start-page: 415
  year: 2017
  ident: 10.1016/j.compag.2023.108518_b0415
  article-title: Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.015
– volume: 10
  start-page: 1327
  issue: 9
  year: 2018
  ident: 10.1016/j.compag.2023.108518_b0120
  article-title: Comparing the Performance of Neural Network and Deep Convolutional Neural Network in Estimating Soil Moisture from Satellite Observations
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs10091327
– volume: 53
  start-page: 2784
  issue: 5
  year: 2014
  ident: 10.1016/j.compag.2023.108518_b0275
  article-title: The soil moisture active passive validation experiment 2012 (SMAPVEX12): Prelaunch calibration and validation of the SMAP soil moisture algorithms
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2364913
– volume: 85
  start-page: 1
  year: 2018
  ident: 10.1016/j.compag.2023.108518_b0365
  article-title: A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions
  publication-title: J. Math. Psychol.
  doi: 10.1016/j.jmp.2018.03.001
– volume: 178
  start-page: 20
  year: 2021
  ident: 10.1016/j.compag.2023.108518_b0020
  article-title: Dual-polarimetric descriptors from Sentinel-1 GRD SAR data for crop growth assessment
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.05.013
– volume: 600
  year: 2021
  ident: 10.1016/j.compag.2023.108518_b0205
  article-title: Improved daily SMAP satellite soil moisture prediction over China using deep learning model with transfer learning
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126698
– volume: 516
  start-page: 297
  year: 2014
  ident: 10.1016/j.compag.2023.108518_b0260
  article-title: Importance of soil organic carbon on surface soil water content variability among agricultural fields
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.11.018
– volume: 39
  start-page: 864
  issue: 4
  year: 2001
  ident: 10.1016/j.compag.2023.108518_b0090
  article-title: A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.917912
– volume: 241
  year: 2020
  ident: 10.1016/j.compag.2023.108518_b0480
  article-title: Deep learning in environmental remote sensing: Achievements and challenges
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111716
– volume: 15
  start-page: 018503
  issue: 1
  year: 2021
  ident: 10.1016/j.compag.2023.108518_b0330
  article-title: Machine learning inversion approach for soil parameters estimation over vegetated agricultural areas using a combination of water cloud model and calibrated integral equation model
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.15.018503
– volume: 39
  start-page: 139
  issue: 1
  year: 2007
  ident: 10.1016/j.compag.2023.108518_b0075
  article-title: Inferring the effect of plant and soil variables on C- and L-band SAR backscatter over agricultural fields, based on model analysis
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2006.02.032
– ident: 10.1016/j.compag.2023.108518_b0360
  doi: 10.1007/BFb0020217
– volume: 109
  start-page: 106
  year: 2017
  ident: 10.1016/j.compag.2023.108518_b0185
  article-title: Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.09.006
– volume: 580
  year: 2020
  ident: 10.1016/j.compag.2023.108518_b0485
  article-title: Estimating surface soil moisture from satellite observations using a generalized regression neural network trained on sparse ground-based measurements in the continental US
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124351
– volume: 35
  start-page: 318
  issue: 3
  year: 2010
  ident: 10.1016/j.compag.2023.108518_b0475
  article-title: A new method for soil moisture inversion by synthetic aperture radar
  publication-title: Geomatics Inform Sci. Wuhan University
– volume: 63
  start-page: 3
  issue: 1
  year: 2006
  ident: 10.1016/j.compag.2023.108518_b0125
  article-title: Extremely randomized trees
  publication-title: Mach Learn
  doi: 10.1007/s10994-006-6226-1
– ident: 10.1016/j.compag.2023.108518_b0390
– volume: 64
  start-page: 174
  issue: 2
  year: 2005
  ident: 10.1016/j.compag.2023.108518_b0175
  article-title: Soil surface roughness measurement—methods, applicability, and surface representation
  publication-title: Catena
  doi: 10.1016/j.catena.2005.08.005
– volume: 185
  start-page: 32
  year: 2022
  ident: 10.1016/j.compag.2023.108518_b0500
  article-title: Soil moisture content retrieval from Landsat 8 data using ensemble learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.01.005
– volume: 14
  start-page: 2833
  year: 2021
  ident: 10.1016/j.compag.2023.108518_b0135
  article-title: An improved method for soil moisture monitoring with ensemble learning methods over the Tibetan plateau
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3058325
– volume: 58
  start-page: 48
  issue: 1
  year: 2021
  ident: 10.1016/j.compag.2023.108518_b0425
  article-title: Microwave-based vegetation descriptors in the parameterization of water cloud model at L-band for soil moisture retrieval over croplands
  publication-title: GIScience & Remote Sensing
  doi: 10.1080/15481603.2020.1857123
– volume: 9
  start-page: 272
  issue: 1
  year: 2015
  ident: 10.1016/j.compag.2023.108518_b0155
  article-title: Coherent model of L-band radar scattering by soybean plants: Model development, evaluation, and retrieval
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2469717
– volume: 203
  start-page: 216
  year: 2017
  ident: 10.1016/j.compag.2023.108518_b0295
  article-title: A drought event composite analysis using satellite remote-sensing based soil moisture
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.014
– volume: 39
  start-page: 1643
  issue: 8
  year: 2001
  ident: 10.1016/j.compag.2023.108518_b0305
  article-title: A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.942542
– volume: 266
  year: 2021
  ident: 10.1016/j.compag.2023.108518_b0180
  article-title: Multi-layer high-resolution soil moisture estimation using machine learning over the United States
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112706
– volume: 190
  start-page: 252
  year: 2022
  ident: 10.1016/j.compag.2023.108518_b0460
  article-title: Mapping corn dynamics using limited but representative samples with adaptive strategies
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.06.012
– volume: 9
  start-page: 1292
  issue: 12
  year: 2017
  ident: 10.1016/j.compag.2023.108518_b0105
  article-title: Synergic Use of Sentinel-1 and Sentinel-2 Images for Operational Soil Moisture Mapping at High Spatial Resolution over Agricultural Areas
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs9121292
– volume: 8
  start-page: 740
  issue: 4
  year: 2011
  ident: 10.1016/j.compag.2023.108518_b0220
  article-title: On the retrieval of soil moisture in wheat fields from L-band SAR based on water cloud modeling, the IEM, and effective roughness parameters
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2011.2106109
– volume: 14
  start-page: 7448
  year: 2021
  ident: 10.1016/j.compag.2023.108518_b0230
  article-title: Comprehensive evaluation of Sentinel-2 red edge and shortwave-infrared bands to estimate soil moisture
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3098513
– volume: 154
  start-page: 216
  year: 2019
  ident: 10.1016/j.compag.2023.108518_b0490
  article-title: Development of soil moisture indices from differences in water absorption between shortwave-infrared bands
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.06.012
– volume: 528
  start-page: 643
  year: 2015
  ident: 10.1016/j.compag.2023.108518_b0265
  article-title: Soil organic carbon as a factor in passive microwave retrievals of soil water content over agricultural croplands
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.06.058
– volume: 2
  start-page: 568
  issue: 6
  year: 1991
  ident: 10.1016/j.compag.2023.108518_b0395
  article-title: A general regression neural network
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.97934
– volume: 48
  start-page: 142
  issue: 1
  year: 1984
  ident: 10.1016/j.compag.2023.108518_b0385
  article-title: A unifying quantitative analysis of soil texture
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1984.03615995004800010026x
– volume: 85
  start-page: 489
  issue: 4
  year: 2003
  ident: 10.1016/j.compag.2023.108518_b0465
  article-title: Retrieving near-surface soil moisture from microwave radiometric observations: current status and future plans
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00051-8
– volume: 53
  start-page: 23
  issue: 1
  year: 2003
  ident: 10.1016/j.compag.2023.108518_b0345
  article-title: Theoretical and Empirical Analysis of ReliefF and RReliefF
  publication-title: Mach. Learn.
  doi: 10.1023/A:1025667309714
– volume: 17
  start-page: 33
  issue: 2
  year: 1979
  ident: 10.1016/j.compag.2023.108518_b0405
  article-title: Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part II-vegetation-covered soil
  publication-title: IEEE Trans. Geosci. Electron.
  doi: 10.1109/TGE.1979.294626
– volume: 72
  start-page: 76
  year: 2018
  ident: 10.1016/j.compag.2023.108518_b0010
  article-title: Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 28
  start-page: 2066
  year: 2021
  ident: 10.1016/j.compag.2023.108518_b0080
  article-title: Assessment of the importance of increasing temperature and decreasing soil moisture on global ecosystem productivity using solar-induced chlorophyll fluorescence
  publication-title: Glob. Chang. Biol
  doi: 10.1111/gcb.16043
– volume: 18
  start-page: 107
  issue: 1
  year: 2020
  ident: 10.1016/j.compag.2023.108518_b0160
  article-title: Classification of large-scale high-resolution SAR images with deep transfer learning
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.2965558
– volume: 35
  start-page: 1254
  issue: 5
  year: 1997
  ident: 10.1016/j.compag.2023.108518_b0380
  article-title: Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.628792
– volume: 271
  year: 2022
  ident: 10.1016/j.compag.2023.108518_b0025
  article-title: Soil moisture retrieval over croplands using dual-pol L-band GRD SAR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.112900
– volume: 3
  start-page: 237
  issue: 2
  year: 2009
  ident: 10.1016/j.compag.2023.108518_b0445
  article-title: Satellite remote sensing applications for surface soil moisture monitoring: A review
  publication-title: Front Earth Sci. China
  doi: 10.1007/s11707-009-0023-7
– volume: 14
  start-page: 1863
  issue: 8
  year: 2022
  ident: 10.1016/j.compag.2023.108518_b0515
  article-title: An Overview of the Applications of Earth Observation Satellite Data: Impacts and Future Trends
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs14081863
– volume: 27
  start-page: 1907
  issue: 10
  year: 2006
  ident: 10.1016/j.compag.2023.108518_b0005
  article-title: Soil moisture estimation using multi-incidence and multi-polarization ASAR data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160500239032
– volume: 13
  start-page: 3889
  issue: 19
  year: 2021
  ident: 10.1016/j.compag.2023.108518_b0245
  article-title: Global sensitivity analysis of a water cloud model toward soil moisture retrieval over vegetated agricultural fields
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs13193889
– volume: 204
  start-page: 931
  year: 2018
  ident: 10.1016/j.compag.2023.108518_b0035
  article-title: Development and assessment of the SMAP enhanced passive soil moisture product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.08.025
– volume: 99
  start-page: 125
  issue: 3–4
  year: 2010
  ident: 10.1016/j.compag.2023.108518_b0370
  article-title: Investigating soil moisture–climate interactions in a changing climate: a review
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2010.02.004
– volume: 279
  year: 2022
  ident: 10.1016/j.compag.2023.108518_b0495
  article-title: A machine learning method trained by radiative transfer model inversion for generating seven global land and atmospheric estimates from VIIRS top-of-atmosphere observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113132
– ident: 10.1016/j.compag.2023.108518_b0030
– volume: 40
  start-page: 16
  issue: 1
  year: 2014
  ident: 10.1016/j.compag.2023.108518_b0040
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2013.11.024
– volume: 217
  start-page: 38
  year: 2018
  ident: 10.1016/j.compag.2023.108518_b0440
  article-title: Potential of a two-component polarimetric decomposition at C-band for soil moisture retrieval over agricultural fields
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.08.003
– volume: 56
  start-page: 43
  issue: 1
  year: 2019
  ident: 10.1016/j.compag.2023.108518_b0195
  article-title: Estimation of soil moisture using deep learning based on satellite data: A case study of South Korea
  publication-title: GIScience Remote Sensing
  doi: 10.1080/15481603.2018.1489943
– volume: 58
  start-page: 3894
  issue: 6
  year: 2020
  ident: 10.1016/j.compag.2023.108518_b0050
  article-title: Improved SMAP dual-channel algorithm for the retrieval of soil moisture
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2959239
– volume: 44
  start-page: 6145
  issue: 12
  year: 2017
  ident: 10.1016/j.compag.2023.108518_b0215
  article-title: Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL073904
– volume: 3
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.compag.2023.108518_b0455
  article-title: A survey of transfer learning
  publication-title: J. Big data
  doi: 10.1186/s40537-016-0043-6
– volume: 284
  year: 2023
  ident: 10.1016/j.compag.2023.108518_b0430
  article-title: 1-km soil moisture retrieval using multi-temporal dual-channel SAR data from Sentinel-1 A/B satellites in a semi-arid watershed
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113334
SSID ssj0016987
Score 2.4694347
Snippet •Upper and lower limits on the accuracy of soil moisture estimation are evaluated using advanced regression models with multi-source data.•The three proposed...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108518
SubjectTerms Machine learning regression
SMAPVEX16-MB
Surface soil moisture
Temporal robustness
Transfer learning
Title Evaluation and improvement of temporal robustness and transfer performance of surface soil moisture estimated by machine learning regression algorithms
URI https://dx.doi.org/10.1016/j.compag.2023.108518
Volume 217
WOSCitedRecordID wos001154377200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE_t8pIP3KpU3Tzs-FihIuhhBWKRyilKbLebVTZZpemq_BL-Dj-N8SsOLFrYA5coShzHynzxjD0z3yD0hksmJA3zIIzpLIiTQgRFyGnAmUgY41JRkuhiE_TkJF2t2MfR6IfLhbmqaF2n-z27_K-ihmsgbJU6ewtx953CBTgHocMRxA7HfxL8oufvNo4BvWsgnc_fUlFVk7YpdttOT3Q6iFIbsLJVPMZ9JgG03-7ada5oaJuymlw0AArlcVDUHGDqGuv1QsdjSleAYjNp5cZE18IIqk3Tlt2Z5UR3lAi2lIR5ta_Eo2Nz801r-UB6zC3LfG-4Dj4N0Lw0rpWvuVW-2r9UChtj_Hnng41Klaus3TBneTPc5whjFxrttz4JrHeJKafk5u7QJH7a2VdlUpjZ_JpiMHsU51Md2b-ZqqLxU9_8Vx7u3_RjH7XoAuLOM9NLpnrJTC930EFIE5aO0cH8w2K17D1ZhKUmZd-O3qVv6hjD66P5s3k0MHlOH6IHdq2C5wZjj9BI1o_R_bmXzxP03aMNgyzxAG24WWOHNuzRpps5tOEB2lR7izas0IYd2nCPNlx8wxZt2KENe7Rhj7an6Mu7xenb94Gt9RFwWLR2QRyBoj2OOA2J4CQpaCQIFbFI1lzEhKdhwZKkyGeCxiQR0bEQDAxRCosHyiUpePQMjeumlocIw60c7oPiXMPyf0byVDAR0QhUEysSNjtCkfvEGbdE-KoeS5XdJOAjFPRPXRoimL-0p056mTVmjZGaASRvfPL5Ld_0At3z_8tLNO7anXyF7vKrrty2ry0efwLzOs2w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+and+improvement+of+temporal+robustness+and+transfer+performance+of+surface+soil+moisture+estimated+by+machine+learning+regression+algorithms&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Jiaxin%2C+Qian&rft.au=Jie%2C+Yang&rft.au=Weidong%2C+Sun&rft.au=Lingli%2C+Zhao&rft.date=2024-02-01&rft.issn=0168-1699&rft.volume=217&rft.spage=108518&rft_id=info:doi/10.1016%2Fj.compag.2023.108518&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compag_2023_108518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon