A survey for solving mixed integer programming via machine learning

Machine learning (ML) has been recently introduced to solving optimization problems, especially for combinatorial optimization (CO) tasks. In this paper, we survey the trend of leveraging ML to solve the mixed-integer programming problem (MIP). Theoretically, MIP is an NP-hard problem, and most CO p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 519; s. 205 - 217
Hlavní autoři: Zhang, Jiayi, Liu, Chang, Li, Xijun, Zhen, Hui-Ling, Yuan, Mingxuan, Li, Yawen, Yan, Junchi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 28.01.2023
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Machine learning (ML) has been recently introduced to solving optimization problems, especially for combinatorial optimization (CO) tasks. In this paper, we survey the trend of leveraging ML to solve the mixed-integer programming problem (MIP). Theoretically, MIP is an NP-hard problem, and most CO problems can be formulated as MIP. Like other CO problems, the human-designed heuristic algorithms for MIP rely on good initial solutions and cost a lot of computational resources. Therefore, researchers consider applying machine learning methods to solve MIP since ML-enhanced approaches can provide the solution based on the typical patterns from the training data. Specifically, we first introduce the formulation and preliminaries of MIP and representative traditional solvers. Then, we show the integration of machine learning and MIP with detailed discussions on related learning-based methods, which can be further classified into exact and heuristic algorithms. Finally, we propose the outlook for learning-based MIP solvers, the direction toward more combinatorial optimization problems beyond MIP, and the mutual embrace of traditional solvers and ML components. We maintain a list of papers that utilize machine learning technologies to solve combinatorial optimization problems, which is available athttps://github.com/Thinklab-SJTU/awesome-ml4co.
AbstractList Machine learning (ML) has been recently introduced to solving optimization problems, especially for combinatorial optimization (CO) tasks. In this paper, we survey the trend of leveraging ML to solve the mixed-integer programming problem (MIP). Theoretically, MIP is an NP-hard problem, and most CO problems can be formulated as MIP. Like other CO problems, the human-designed heuristic algorithms for MIP rely on good initial solutions and cost a lot of computational resources. Therefore, researchers consider applying machine learning methods to solve MIP since ML-enhanced approaches can provide the solution based on the typical patterns from the training data. Specifically, we first introduce the formulation and preliminaries of MIP and representative traditional solvers. Then, we show the integration of machine learning and MIP with detailed discussions on related learning-based methods, which can be further classified into exact and heuristic algorithms. Finally, we propose the outlook for learning-based MIP solvers, the direction toward more combinatorial optimization problems beyond MIP, and the mutual embrace of traditional solvers and ML components. We maintain a list of papers that utilize machine learning technologies to solve combinatorial optimization problems, which is available athttps://github.com/Thinklab-SJTU/awesome-ml4co.
Author Zhang, Jiayi
Li, Xijun
Zhen, Hui-Ling
Yan, Junchi
Li, Yawen
Yuan, Mingxuan
Liu, Chang
Author_xml – sequence: 1
  givenname: Jiayi
  surname: Zhang
  fullname: Zhang, Jiayi
  email: zhangjiayirr@sjtu.edu.cn
  organization: Department of Computer Science and Engineering, and MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
  email: only-changer@sjtu.edu.cn
  organization: Department of Computer Science and Engineering, and MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Xijun
  surname: Li
  fullname: Li, Xijun
  email: xijun.li@huawei.com
  organization: Noah’s Ark Lab, Huawei Ltd., Shenzhen, China
– sequence: 4
  givenname: Hui-Ling
  surname: Zhen
  fullname: Zhen, Hui-Ling
  email: zhenhuiling2@huawei.com
  organization: Noah’s Ark Lab, Huawei Ltd., Shenzhen, China
– sequence: 5
  givenname: Mingxuan
  surname: Yuan
  fullname: Yuan, Mingxuan
  email: yuan.mingxuan@huawei.com
  organization: Noah’s Ark Lab, Huawei Ltd., Shenzhen, China
– sequence: 6
  givenname: Yawen
  surname: Li
  fullname: Li, Yawen
  email: warmly0716@126.com
  organization: School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 7
  givenname: Junchi
  surname: Yan
  fullname: Yan, Junchi
  email: yanjunchi@sjtu.edu.cn
  organization: Department of Computer Science and Engineering, and MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University, Shanghai, China
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wIy5yfykLoRS_IOCG12HNLlTU2aSkkwH-_ZOqSsXurpwLt-B883IxAePhNwCy4FBdbfLPR5M6HLOOM8BcsaLCzIFWfNMcllNyJQteJlxAfyKzFLaMQY18MWUrJY0HeKAR9qESFNoB-e3tHNfaKnzPW4x0n0M26i77vQZnKadNp_OI21RRz-G1-Sy0W3Cm587Jx9Pj--rl2z99vy6Wq4zI1jVZ4UomLGV1cDqTSN0IaGwHKQEjtIuLHIAayzfLLQ0UjPDAUVZs1LoUmxsKebk_txrYkgpYqOM63Xvgu-jdq0Cpk461E6ddaiTDgWgRh0jXPyC99F1Oh7_wx7OGI7DBodRJePQG7QuoumVDe7vgm9h4360
CitedBy_id crossref_primary_10_1016_j_jag_2024_103863
crossref_primary_10_1007_s11425_023_2364_2
crossref_primary_10_1109_TMI_2023_3347258
crossref_primary_10_1016_j_phycom_2025_102802
crossref_primary_10_1109_TPAMI_2025_3562286
crossref_primary_10_1109_TPWRS_2025_3526634
crossref_primary_10_1016_j_neucom_2024_127926
crossref_primary_10_1016_j_asoc_2023_111011
crossref_primary_10_1016_j_ejor_2025_08_029
crossref_primary_10_1016_j_knosys_2025_113216
crossref_primary_10_1109_TITS_2025_3578099
crossref_primary_10_1007_s11633_022_1396_2
crossref_primary_10_1016_j_cie_2025_111203
crossref_primary_10_1016_j_neunet_2025_107784
crossref_primary_10_3390_e25010087
crossref_primary_10_7232_JKIIE_2025_51_4_288
crossref_primary_10_1109_JIOT_2024_3455439
crossref_primary_10_1371_journal_pone_0331663
crossref_primary_10_1016_j_eswa_2024_123275
crossref_primary_10_1016_j_dajour_2025_100632
crossref_primary_10_1021_acs_iecr_4c03887
crossref_primary_10_1109_TMECH_2024_3452509
crossref_primary_10_3390_en18184977
crossref_primary_10_54097_x36b6a94
crossref_primary_10_1016_j_epsr_2025_111582
crossref_primary_10_3390_math13162621
crossref_primary_10_1016_j_jksus_2024_103165
crossref_primary_10_1109_OJCSYS_2025_3601435
crossref_primary_10_1109_TCOMM_2024_3367785
crossref_primary_10_24136_oc_2023_033
crossref_primary_10_1016_j_cor_2024_106886
crossref_primary_10_1007_s10586_024_04859_9
crossref_primary_10_1007_s11067_025_09681_3
crossref_primary_10_1016_j_asoc_2025_112863
crossref_primary_10_1016_j_segan_2025_101861
crossref_primary_10_1016_j_compchemeng_2024_108725
crossref_primary_10_1016_j_epsr_2024_110817
crossref_primary_10_3390_info15040193
crossref_primary_10_1016_j_comnet_2024_110713
crossref_primary_10_1016_j_swevo_2024_101642
Cites_doi 10.1007/s10479-018-3067-9
10.1016/j.artint.2013.10.003
10.1007/978-3-642-13520-0_23
10.1287/opre.2020.1979
10.1016/j.knosys.2022.109455
10.1016/j.ejco.2023.100061
10.1007/s10107-004-0518-7
10.1007/978-3-319-59776-8_16
10.1287/mnsc.2017.2849
10.1007/s12532-011-0025-9
10.2307/1910129
10.1007/s10107-008-0212-2
10.1016/j.disopt.2016.01.005
10.1051/ro/1987210403071
10.1007/978-3-540-72792-7_24
10.1609/aaai.v34i02.5503
10.1109/CVPR52688.2022.00053
10.1609/aaai.v26i1.8141
10.1007/978-3-540-68155-7_27
10.1007/978-3-642-01929-6_23
10.1007/BF01386316
10.1609/aaai.v36i4.20294
10.1609/aaai.v30i1.10080
10.1016/j.disopt.2006.10.004
10.1287/opre.8.1.101
10.1007/BFb0120690
10.1007/s10107-004-0570-3
10.1007/978-3-030-50426-7_33
10.1109/TC.1978.1675141
10.1109/TNN.2008.2005605
10.1145/87252.88081
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2022.11.024
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 217
ExternalDocumentID 10_1016_j_neucom_2022_11_024
S0925231222014035
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-4340cd6da107bf3a4814d218812e8d9de211dcd2b9a8c8a0c21e357053a53bd53
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000904875400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:18:01 EST 2025
Tue Nov 18 22:38:10 EST 2025
Fri Feb 23 02:40:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Combinatorial optimization
Mixed integer programming
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-4340cd6da107bf3a4814d218812e8d9de211dcd2b9a8c8a0c21e357053a53bd53
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2022_11_024
crossref_primary_10_1016_j_neucom_2022_11_024
elsevier_sciencedirect_doi_10_1016_j_neucom_2022_11_024
PublicationCentury 2000
PublicationDate 2023-01-28
PublicationDateYYYYMMDD 2023-01-28
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-28
  day: 28
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Danna, Rothberg, Pape (b0140) 2005; 102
Shen, Sun, Eberhard, Li (b0195) 2021
J.-H. Lange, P. Swoboda, Efficient message passing for 0–1 ilps with binary decision diagrams, in: International Conference on Machine Learning, PMLR, 2021, pp. 6000–6010.
I.I. Cplex, V12. 1: User’s manual for cplex, International Business Machines Corporation 46 (53) (2009) 157.
T. Wu, K. Akartunali, J. Song, L. Shi, Mixed integer programming in production planning with backlogging and setup carryover: Modeling and algorithms, DEDS.
Gurobi Optimization, Gurobi optimizer reference manual.
A.B. Keha, K. Khowala, J.W. Fowler, Mixed integer programming formulations for single machine scheduling problems, Comput. Ind. Eng.
Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (b0325) 2008; 20
Bergman, Cire (b0410) 2018; 64
H. Sun, W. Chen, H. Li, L. Song, Improving learning to branch via reinforcement learning, LMCA.
J. Song, R. Lanka, A. Zhao, Y. Yue, M. Ono, Learning to search via self-imitation with application to risk-aware planning, in: NIPS Workshop, 2017.
Y. Wu, W. Song, Z. Cao, J. Zhang, Learning large neighborhood search policy for integer programming, NeurIPS.
Land, Doig (b0065) 1960; 28
G.D. Liberto, S. Kadioglu, K. Leo, Y. Malitsky, Dash: Dynamic approach for switching heuristics, European Journal of Operation Research.
L. Li, B. Wu, Learning to accelerate approximate methods for solving integer programming via early fixing, arXiv preprint arXiv:2207.02087.
Ho, Ermon (b0310) 2016
C.P. Gomes, W.-J. v. Hoeve, A. Sabharwal, Connections in networks: A hybrid approach, in: International Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming, Springer, 2008, pp. 303–307.
C. Malandraki, M. Daskin, Time dependent vehicle routing problems: Formulations, properties and heuristic algorithms, Transp. Sci.
Akers (b0400) 1978; 27
M. Paulus, G. Zarpellon, A. Krause, L. Charlin, C. Maddison, Learning to cut by looking ahead: Cutting plane selection via imitation learning, in: ICML, 2022.
.
Pochet, Wolsey (b0005) 2010
Dantzig, Wolfe (b0115) 1960; 8
T. Yoon, Confidence threshold neural diving, arXiv preprint arXiv:2202.07506.
A. Paulus, M. Rolínek, V. Musil, B. Amos, G. Martius, Comboptnet: Fit the right np-hard problem by learning integer programming constraints, in: ICML, 2021.
BnnoBRs (b0110) 1962; 4
C.D. Hubbs, H.D. Perez, O. Sarwar, N.V. Sahinidis, I.E. Grossmann, J.M. Wassick, Or-gym: A reinforcement learning library for operations research problems, arXiv preprint arXiv:2008.06319.
L. Huang, X. Chen, W. Huo, J. Wang, F. Zhang, B. Bai, L. Shi, Branch and bound in mixed integer linear programming problems: A survey of techniques and trends, arXiv preprint arXiv:2111.06257.
Conforti, Cornuejols, Zambelli (b0125) 2014
A. Lodi, G. Zarpellon, On learning and branching: a survey, Top.
Song, Lanka, Yue, Ono (b0295) 2020
Yan, Yang, Hancock (b0045) 2020
T. Berthold, M. Francobaldi, G. Hendel, Learning to use local cuts, arXiv preprint arXiv:2206.11618.
Zarpellon, Jo, Lodi, Bengio (b0200) 2021
A.H. Land, A.G. Doig, An automatic method for solving discrete programming problems, 50 Years of Integer Programming 1958–2008: From the Early Years to the State-of-the-Art.
Koch, Achterberg, Andersen, Bastert, Berthold, Bixby, Danna, Gamrath, Gleixner, Heinz (b0505) 2011; 3
M. Qi, M. Wang, Zuo-jun, M. Shen, Reinforcement learning for (mixed) integer programming: Smart feasibility pump, in: RL4RealLife Workshop of ICML, 2021.
S. Kadioglu, Y. Malitsky, M. Sellmann, Non-model-based search guidance for set partitioning problems, in: AAAI, Vol. 26, 2021.
K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. van Doornmalen, L. Eifler, O. Gaul, G. Gamrath, A. Gleixner, L. Gottwald, C. Graczyk, K. Halbig, A. Hoen, C. Hojny, R. van der Hulst, T. Koch, M. Lübbecke, S.J. Maher, F. Matter, E. Mühmer, B. Müller, M.E. Pfetsch, D. Rehfeldt, S. Schlein, F. Schlösser, F. Serrano, Y. Shinano, B. Sofranac, M. Turner, S. Vigerske, F. Wegscheider, P. Wellner, D. Weninger, J. Witzig, The SCIP Optimization Suite 8.0, ZIB-Report 21–41, Zuse Institute Berlin (December 2021).
Achterberg, Berthold (b0165) 2007; 4
Fischetti, Glover, Lodi (b0155) 2005; 104
ravichandra addanki, V. Nair, M. Alizadeh, Neural large neighborhood search, in: Learning Meets Combinatorial Algorithms Workshop of NeurIPS, 2020.
A. Makarova, H. Shen, V. Perrone, A. Klein, J.B. Faddoul, A. Krause, M.W. Seeger, C. Archambeau, Overfitting in bayesian optimization: an empirical study and early-stopping solution, arXiv preprint arXiv:2104.08166.
Grover, Markov, Attia, Jin, Perkins, Cheong, Chen, Yang, Harris, Chueh (b0360) 2018
T. Berthold, Rens - relaxation enforced neighborhood search, 2007.
J.-Y. Ding, C. Zhang, L. Shen, S. Li, B. Wang, Y. Xu, L. Song, Accelerating primal solution findings for mixed integer programs based on solution prediction, in: AAAI, 2020.
M. Gajda, A. Trivella, R. Mansini, D. Pisinger, An optimization approach for a complex real-life container loading problem, Omega.
J. Ding, C. Zhang, L. Shen, S. Li, B. Wang, Y. Xu, L. Song, Optimal solution predictions for mixed integer programs, arXiv preprint arXiv:1906.09575.
Lu, Zhang, Yang (b0440) 2020
Bergman, Cire (b0405) 2016
A.M. Geoffrion, Lagrangean relaxation for integer programming, in: Approaches to integer programming, Springer, 1974, pp. 82–114.
Basso, Ceselli, Tettamanzi (b0280) 2020; 284
Gupta, Gasse, Khalil, Kumar, Lodi, Bengio (b0180) 2020; 33
Guignard, Kim (b0120) 1987; 21
V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki, I. Lobov, B. O’Donoghue, N. Sonnerat, C. Tjandraatmadja, P. Wang, R. Addanki, T. Hapuarachchi, T. Keck, J. Keeling, P. Kohli, I. Ktena, Y. Li, O. Vinyals, Y. Zwols, Solving mixed integer programs using neural networks, arXiv preprint arXiv:2012.13349.
Gamrath, Lübbecke (b0390) 2010
Bonami, Cornuéjols, Lodi, Margot (b0170) 2009; 119
W. Zheng, D. Wang, F. Song, Opengraphgym: A parallel reinforcement learning framework for graph optimization problems, in: International Conference on Computational Science, 2020.
T. Achterberg, T. Berthold, Hybrid branching, in: CPAIOR, 2009.
M. Kruber, M.E. Lübbecke, A. Parmentier, Learning when to use a decomposition, in: International conference on AI and OR techniques in constraint programming for combinatorial optimization problems, Springer, 2017, pp. 202–210.
Etheve, Alès, Bissuel, Juan, Kedad-Sidhoum (b0220) 2020
J. Weiner, A.T. Ernst, X. Li, Y. Sun, Ranking constraint relaxations for mixed integer programs using a machine learning approach (2022).
A. Prouvost, J. Dumouchelle, L. Scavuzzo, M. Gasse, D. Chételat, A. Lodi, Ecole: A gym-like library for machine learning in combinatorial optimization solvers, arXiv preprint arXiv:2011.06069.
A.M. Alvarez, Q. Louveaux, L. Wehenkel, A machine learning-based approximation of strong branching, JOC.
M.-F. Balcan, T. Dick, T. Sandholm, E. Vitercik, Learning to branch, in: ICML, 2018.
N. Sonnerat, P. Wang, I. Ktena, S. Bartunov, V. Nair, Learning a large neighborhood search algorithm for mixed integer programs, arXiv preprint arXiv:2107.10201.
Morrison, Jacobson, Sauppe, Sewell (b0075) 2016; 19
Lozano, Bergman, Smith (b0420) 2020; 68
Barrett, Clements, Foerster, Lvovsky (b0435) 2020
Lin, Zhu, Wang, Zhang (b0245) 2022; 252
K. Yilmaz, N. Yorke-Smith, xxx, Learning efficient search approximation in mixed integer branch and bound, arXiv preprint arXiv:2007.03948.
Hutter, Hoos, Leyton-Brown (b0385) 2011
F. Hutter, H.H. Hoos, K. Leyton-Brown, Automated configuration of mixed integer programming solvers, in: International Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming, Springer, 2010, pp. 186–202.
J. Song, r. lanka, Y. Yue, B. Dilkina, A general large neighborhood search framework for solving integer linear programs, in: NeurIPS, 2020.
Sawik (b0015) 2011
Schouwenaars, De Moor, Feron, How (b0030) 2001
A. Abbas, P. Swoboda, Doge-train: Discrete optimization on gpu with end-to-end training, arXiv preprint arXiv:2205.11638.
G.B. Dantzig, Origins of the simplex method, in: A history of scientific computing, 1990, pp. 141–151.
Applegate, Bixby, Chvatal, Cook (b0080) 1995
Khalil, Dilkina, Nemhauser, Ahmed, Shao (b0355) 2017
Khalil, Bodic, Song, Nemhauser, Dilkina (b0190) 2016
Alvarez, Louveaux, Wehenkel (b0215) 2014
Q. Qu, X. Li, Y. Zhou, J. Zeng, M. Yuan, J. Wang, J. Lv, K. Liu, K. Mao, An improved reinforcement learning algorithm for learning to branch, arXiv preprint arXiv:2201.06213.
Fu, Qiu, Zha (b0445) 2021
T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint arXiv:1609.02907.
Y. Bengio, A. Lodi, A. Prouvost, Machine learning for combinatorial optimization: a methodological tour d’horizon, EJOR.
A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T. Berthold, P.M. Christophel, K. Jarck, T. Koch, J. Linderoth, M. Lübbecke, H.D. Mittelmann, D. Ozyurt, T.K. Ralphs, D. Salvagnin, Y. Shinano, MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library, Mathematical Programming Computation.
Xavier, Qiu, Ahmed (b0375) 2021; 33
M. Bénichou, J.-M. Gauthier, P. Girodet, G. Hentges, G. Ribière, O. Vincent, Experiments in mixed-integer linear programming, Math. Programm.
Hutter, Xu, Hoos, Leyton-Brown (b0455) 2014; 206
Pisinger, Ropke (b0130) 2010
Y. Tang, S. Agrawal, Y. Faenza, Reinforcement learning for integer programming: Learning to cut, in: ICML, 2020.
Z. Huang, K. Wang, F. Liu, H. ling Zhen, W. Zhang, M. Yuan, J. Hao, Y. Yu, J. Wang, Learning to select cuts for efficient mixed-integer programming, Pattern Recognition.
P. Gupta, E.B. Khalil, D. Chet’elat, M. Gasse, Y. Bengio, A. Lodi, M.P. Kumar, Lookback for learning to branch, arXiv preprint arXiv:2206.14987.
He, Daume, Eisner (b0070) 2014
Gasse, Chételat, Ferroni, Charlin, Lodi (b0175) 2019
D. Liu, M. Fischetti, A. Lodi, Learning to search in local branching, in: AAAI, Vol. 36, 2022.
L. Scavuzzo, F.Y. Chen, D. Chételat, M. Gasse, A. Lodi, N. Yorke-Smith
Schouwenaars (10.1016/j.neucom.2022.11.024_b0030) 2001
He (10.1016/j.neucom.2022.11.024_b0070) 2014
10.1016/j.neucom.2022.11.024_b0270
10.1016/j.neucom.2022.11.024_b0395
10.1016/j.neucom.2022.11.024_b0150
10.1016/j.neucom.2022.11.024_b0035
Shen (10.1016/j.neucom.2022.11.024_b0195) 2021
10.1016/j.neucom.2022.11.024_b0275
10.1016/j.neucom.2022.11.024_b0315
Achterberg (10.1016/j.neucom.2022.11.024_b0165) 2007; 4
Chen (10.1016/j.neucom.2022.11.024_b0430) 2019
Guignard (10.1016/j.neucom.2022.11.024_b0120) 1987; 21
10.1016/j.neucom.2022.11.024_b0380
Alvarez (10.1016/j.neucom.2022.11.024_b0215) 2014
Barrett (10.1016/j.neucom.2022.11.024_b0435) 2020
Bergman (10.1016/j.neucom.2022.11.024_b0410) 2018; 64
Lozano (10.1016/j.neucom.2022.11.024_b0420) 2020; 68
Lu (10.1016/j.neucom.2022.11.024_b0440) 2020
10.1016/j.neucom.2022.11.024_b0020
10.1016/j.neucom.2022.11.024_b0260
10.1016/j.neucom.2022.11.024_b0025
10.1016/j.neucom.2022.11.024_b0300
10.1016/j.neucom.2022.11.024_b0145
10.1016/j.neucom.2022.11.024_b0265
Gupta (10.1016/j.neucom.2022.11.024_b0180) 2020; 33
10.1016/j.neucom.2022.11.024_b0425
Fu (10.1016/j.neucom.2022.11.024_b0445) 2021
10.1016/j.neucom.2022.11.024_b0305
Danna (10.1016/j.neucom.2022.11.024_b0140) 2005; 102
10.1016/j.neucom.2022.11.024_b0090
Basso (10.1016/j.neucom.2022.11.024_b0280) 2020; 284
Ho (10.1016/j.neucom.2022.11.024_b0310) 2016
Fischetti (10.1016/j.neucom.2022.11.024_b0155) 2005; 104
10.1016/j.neucom.2022.11.024_b0490
Pisinger (10.1016/j.neucom.2022.11.024_b0130) 2010
10.1016/j.neucom.2022.11.024_b0010
10.1016/j.neucom.2022.11.024_b0250
10.1016/j.neucom.2022.11.024_b0095
10.1016/j.neucom.2022.11.024_b0370
10.1016/j.neucom.2022.11.024_b0135
Zarpellon (10.1016/j.neucom.2022.11.024_b0200) 2021
10.1016/j.neucom.2022.11.024_b0255
10.1016/j.neucom.2022.11.024_b0495
Land (10.1016/j.neucom.2022.11.024_b0065) 1960; 28
10.1016/j.neucom.2022.11.024_b0415
10.1016/j.neucom.2022.11.024_b0240
10.1016/j.neucom.2022.11.024_b0085
Gamrath (10.1016/j.neucom.2022.11.024_b0390) 2010
10.1016/j.neucom.2022.11.024_b0480
10.1016/j.neucom.2022.11.024_b0365
10.1016/j.neucom.2022.11.024_b0485
Bergman (10.1016/j.neucom.2022.11.024_b0405) 2016
BnnoBRs (10.1016/j.neucom.2022.11.024_b0110) 1962; 4
Etheve (10.1016/j.neucom.2022.11.024_b0220) 2020
Grover (10.1016/j.neucom.2022.11.024_b0360) 2018
Akers (10.1016/j.neucom.2022.11.024_b0400) 1978; 27
10.1016/j.neucom.2022.11.024_b0230
10.1016/j.neucom.2022.11.024_b0350
Yan (10.1016/j.neucom.2022.11.024_b0045) 2020
10.1016/j.neucom.2022.11.024_b0470
10.1016/j.neucom.2022.11.024_b0475
10.1016/j.neucom.2022.11.024_b0235
Lin (10.1016/j.neucom.2022.11.024_b0245) 2022; 252
10.1016/j.neucom.2022.11.024_b0510
Khalil (10.1016/j.neucom.2022.11.024_b0355) 2017
Gasse (10.1016/j.neucom.2022.11.024_b0175) 2019
10.1016/j.neucom.2022.11.024_b0060
10.1016/j.neucom.2022.11.024_b0340
10.1016/j.neucom.2022.11.024_b0185
10.1016/j.neucom.2022.11.024_b0460
10.1016/j.neucom.2022.11.024_b0465
Conforti (10.1016/j.neucom.2022.11.024_b0125) 2014
10.1016/j.neucom.2022.11.024_b0100
10.1016/j.neucom.2022.11.024_b0105
10.1016/j.neucom.2022.11.024_b0225
10.1016/j.neucom.2022.11.024_b0500
10.1016/j.neucom.2022.11.024_b0345
Morrison (10.1016/j.neucom.2022.11.024_b0075) 2016; 19
Scarselli (10.1016/j.neucom.2022.11.024_b0325) 2008; 20
Koch (10.1016/j.neucom.2022.11.024_b0505) 2011; 3
Hutter (10.1016/j.neucom.2022.11.024_b0385) 2011
10.1016/j.neucom.2022.11.024_b0050
Sawik (10.1016/j.neucom.2022.11.024_b0015) 2011
10.1016/j.neucom.2022.11.024_b0290
10.1016/j.neucom.2022.11.024_b0450
Pochet (10.1016/j.neucom.2022.11.024_b0005) 2010
10.1016/j.neucom.2022.11.024_b0210
10.1016/j.neucom.2022.11.024_b0055
10.1016/j.neucom.2022.11.024_b0330
10.1016/j.neucom.2022.11.024_b0335
Khalil (10.1016/j.neucom.2022.11.024_b0190) 2016
Applegate (10.1016/j.neucom.2022.11.024_b0080) 1995
Xavier (10.1016/j.neucom.2022.11.024_b0375) 2021; 33
Hutter (10.1016/j.neucom.2022.11.024_b0455) 2014; 206
Dantzig (10.1016/j.neucom.2022.11.024_b0115) 1960; 8
10.1016/j.neucom.2022.11.024_b0160
Song (10.1016/j.neucom.2022.11.024_b0295) 2020
10.1016/j.neucom.2022.11.024_b0285
Bonami (10.1016/j.neucom.2022.11.024_b0170) 2009; 119
10.1016/j.neucom.2022.11.024_b0040
10.1016/j.neucom.2022.11.024_b0320
10.1016/j.neucom.2022.11.024_b0205
References_xml – reference: C.P. Gomes, W.-J. v. Hoeve, A. Sabharwal, Connections in networks: A hybrid approach, in: International Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming, Springer, 2008, pp. 303–307.
– reference: N. Sonnerat, P. Wang, I. Ktena, S. Bartunov, V. Nair, Learning a large neighborhood search algorithm for mixed integer programs, arXiv preprint arXiv:2107.10201.
– year: 2014
  ident: b0070
  article-title: Learning to search in branch and bound algorithms
– reference: T. Berthold, M. Francobaldi, G. Hendel, Learning to use local cuts, arXiv preprint arXiv:2206.11618.
– reference: M. Kruber, M.E. Lübbecke, A. Parmentier, Learning when to use a decomposition, in: International conference on AI and OR techniques in constraint programming for combinatorial optimization problems, Springer, 2017, pp. 202–210.
– year: 2018
  ident: b0360
  article-title: Best arm identification in multi-armed bandits with delayed feedback
  publication-title: AISTATS
– reference: A. Lodi, G. Zarpellon, On learning and branching: a survey, Top.
– reference: L. Scavuzzo, F.Y. Chen, D. Chételat, M. Gasse, A. Lodi, N. Yorke-Smith, K. Aardal, Learning to branch with tree mdps, arXiv preprint arXiv:2205.11107.
– reference: T. Berthold, Rens - relaxation enforced neighborhood search, 2007.
– volume: 33
  start-page: 18087
  year: 2020
  end-page: 18097
  ident: b0180
  article-title: Hybrid models for learning to branch
  publication-title: Advances in neural information processing systems
– reference: C. Roos, T. Terlaky, J.-P. Vial, Interior point methods for linear optimization.
– volume: 33
  start-page: 739
  year: 2021
  end-page: 756
  ident: b0375
  article-title: Learning to solve large-scale security-constrained unit commitment problems
  publication-title: INFORMS J. Comput.
– volume: 68
  start-page: 1913
  year: 2020
  end-page: 1931
  ident: b0420
  article-title: On the consistent path problem
  publication-title: Oper. Res.
– reference: W. Zheng, D. Wang, F. Song, Opengraphgym: A parallel reinforcement learning framework for graph optimization problems, in: International Conference on Computational Science, 2020.
– volume: 119
  start-page: 331
  year: 2009
  end-page: 352
  ident: b0170
  article-title: A feasibility pump for mixed integer nonlinear programs
  publication-title: Math. Program.
– volume: 64
  start-page: 4700
  year: 2018
  end-page: 4720
  ident: b0410
  article-title: Discrete nonlinear optimization by state-space decompositions
  publication-title: Manage. Sci.
– reference: S. Ghosh, Dins, a mip improvement heuristic, in: International Conference on Integer Programming and Combinatorial Optimization, Springer, 2007, pp. 310–323.
– reference: P. Gupta, E.B. Khalil, D. Chet’elat, M. Gasse, Y. Bengio, A. Lodi, M.P. Kumar, Lookback for learning to branch, arXiv preprint arXiv:2206.14987.
– volume: 102
  start-page: 71
  year: 2005
  end-page: 90
  ident: b0140
  article-title: Exploring relaxation induced neighborhoods to improve mip solutions
  publication-title: Math. Program.
– reference: M. Qi, M. Wang, Zuo-jun, M. Shen, Reinforcement learning for (mixed) integer programming: Smart feasibility pump, in: RL4RealLife Workshop of ICML, 2021.
– reference: T. Achterberg, T. Berthold, Hybrid branching, in: CPAIOR, 2009.
– year: 2021
  ident: b0445
  article-title: Generalize a small pre-trained model to arbitrarily large tsp instances
– reference: G.B. Dantzig, Origins of the simplex method, in: A history of scientific computing, 1990, pp. 141–151.
– year: 1995
  ident: b0080
  article-title: Finding cuts in the tsp
  publication-title: Tech. rep.
– year: 2011
  ident: b0015
  article-title: Scheduling in supply chains using mixed integer programming
– reference: M. Paulus, G. Zarpellon, A. Krause, L. Charlin, C. Maddison, Learning to cut by looking ahead: Cutting plane selection via imitation learning, in: ICML, 2022.
– volume: 21
  start-page: 307
  year: 1987
  end-page: 323
  ident: b0120
  article-title: Lagrangean decomposition for integer programming: theory and applications
  publication-title: RAIRO-Oper. Res.
– year: 2017
  ident: b0355
  article-title: Learning to run heuristics in tree search
  publication-title: IJCAI
– volume: 4
  start-page: 77
  year: 2007
  end-page: 86
  ident: b0165
  article-title: Improving the feasibility pump
  publication-title: Discrete Optim.
– reference: T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint arXiv:1609.02907.
– year: 2020
  ident: b0045
  article-title: Learning graph matching and related combinatorial optimization problems
– reference: D. Liu, M. Fischetti, A. Lodi, Learning to search in local branching, in: AAAI, Vol. 36, 2022.
– volume: 284
  start-page: 501
  year: 2020
  end-page: 526
  ident: b0280
  article-title: Random sampling and machine learning to understand good decompositions
  publication-title: Ann. Oper. Res.
– reference: Y. Wu, W. Song, Z. Cao, J. Zhang, Learning large neighborhood search policy for integer programming, NeurIPS.
– start-page: 45
  year: 2016
  end-page: 54
  ident: b0405
  article-title: Decomposition based on decision diagrams
  publication-title: Integration of AI and OR Techniques in Constraint Programming
– reference: J.-Y. Ding, C. Zhang, L. Shen, S. Li, B. Wang, Y. Xu, L. Song, Accelerating primal solution findings for mixed integer programs based on solution prediction, in: AAAI, 2020.
– start-page: 399
  year: 2010
  end-page: 419
  ident: b0130
  publication-title: Large Neighborhood Search
– reference: F. Hutter, H.H. Hoos, K. Leyton-Brown, Automated configuration of mixed integer programming solvers, in: International Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming, Springer, 2010, pp. 186–202.
– reference: A. Abbas, P. Swoboda, Fastdog: Fast discrete optimization on gpu, in: CVPR, 2022.
– reference: S. Kadioglu, Y. Malitsky, M. Sellmann, Non-model-based search guidance for set partitioning problems, in: AAAI, Vol. 26, 2021.
– volume: 252
  year: 2022
  ident: b0245
  article-title: Learning to branch with tree-aware branching transformers
  publication-title: Knowl.-Based Syst.
– volume: 4
  start-page: 238
  year: 1962
  end-page: 252
  ident: b0110
  article-title: Partitioning procedures for solving mixed-variables programming problems
  publication-title: Numerische mathematik
– reference: Y. Bengio, A. Lodi, A. Prouvost, Machine learning for combinatorial optimization: a methodological tour d’horizon, EJOR.
– year: 2020
  ident: b0295
  article-title: Co-training for policy learning
– volume: 28
  start-page: 497
  year: 1960
  ident: b0065
  article-title: An automatic method of solving discrete programming problems
  publication-title: Econometrica
– reference: M. Bénichou, J.-M. Gauthier, P. Girodet, G. Hentges, G. Ribière, O. Vincent, Experiments in mixed-integer linear programming, Math. Programm.
– reference: G.D. Liberto, S. Kadioglu, K. Leo, Y. Malitsky, Dash: Dynamic approach for switching heuristics, European Journal of Operation Research.
– reference: A.M. Alvarez, Q. Louveaux, L. Wehenkel, A machine learning-based approximation of strong branching, JOC.
– year: 2016
  ident: b0310
  article-title: Generative adversarial imitation learning
  publication-title: NeurIPS
– reference: M. Gajda, A. Trivella, R. Mansini, D. Pisinger, An optimization approach for a complex real-life container loading problem, Omega.
– year: 2020
  ident: b0220
  article-title: Reinforcement learning for variable selection in a branch and bound algorithm
  publication-title: International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research
– volume: 19
  start-page: 79
  year: 2016
  end-page: 102
  ident: b0075
  article-title: Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning
  publication-title: Discrete Optimization
– reference: A. Prouvost, J. Dumouchelle, L. Scavuzzo, M. Gasse, D. Chételat, A. Lodi, Ecole: A gym-like library for machine learning in combinatorial optimization solvers, arXiv preprint arXiv:2011.06069.
– reference: C.D. Hubbs, H.D. Perez, O. Sarwar, N.V. Sahinidis, I.E. Grossmann, J.M. Wassick, Or-gym: A reinforcement learning library for operations research problems, arXiv preprint arXiv:2008.06319.
– year: 2016
  ident: b0190
  article-title: Learning to branch in mixed integer programming
  publication-title: AAAI
– volume: 8
  start-page: 101
  year: 1960
  end-page: 111
  ident: b0115
  article-title: Decomposition principle for linear programs
  publication-title: Oper. Res.
– year: 2021
  ident: b0195
  article-title: Learning primal heuristics for mixed integer programs
– reference: A. Makarova, H. Shen, V. Perrone, A. Klein, J.B. Faddoul, A. Krause, M.W. Seeger, C. Archambeau, Overfitting in bayesian optimization: an empirical study and early-stopping solution, arXiv preprint arXiv:2104.08166.
– year: 2021
  ident: b0200
  article-title: Parameterizing branch-and-bound search trees to learn branching policies
– reference: A.B. Keha, K. Khowala, J.W. Fowler, Mixed integer programming formulations for single machine scheduling problems, Comput. Ind. Eng.
– reference: Y. Tang, S. Agrawal, Y. Faenza, Reinforcement learning for integer programming: Learning to cut, in: ICML, 2020.
– volume: 206
  start-page: 79
  year: 2014
  end-page: 111
  ident: b0455
  article-title: Algorithm runtime prediction: Methods & evaluation
  publication-title: Artif. Intell.
– reference: K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. van Doornmalen, L. Eifler, O. Gaul, G. Gamrath, A. Gleixner, L. Gottwald, C. Graczyk, K. Halbig, A. Hoen, C. Hojny, R. van der Hulst, T. Koch, M. Lübbecke, S.J. Maher, F. Matter, E. Mühmer, B. Müller, M.E. Pfetsch, D. Rehfeldt, S. Schlein, F. Schlösser, F. Serrano, Y. Shinano, B. Sofranac, M. Turner, S. Vigerske, F. Wegscheider, P. Wellner, D. Weninger, J. Witzig, The SCIP Optimization Suite 8.0, ZIB-Report 21–41, Zuse Institute Berlin (December 2021).
– volume: 3
  start-page: 103
  year: 2011
  end-page: 163
  ident: b0505
  article-title: Miplib 2010
  publication-title: Math. Programm. Comput.
– start-page: 239
  year: 2010
  end-page: 252
  ident: b0390
  article-title: Experiments with a generic dantzig-wolfe decomposition for integer programs
  publication-title: Experimental Algorithms
– reference: ravichandra addanki, V. Nair, M. Alizadeh, Neural large neighborhood search, in: Learning Meets Combinatorial Algorithms Workshop of NeurIPS, 2020.
– year: 2010
  ident: b0005
  article-title: Production Planning by Mixed Integer Programming
– volume: 20
  start-page: 61
  year: 2008
  end-page: 80
  ident: b0325
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Networks
– reference: J. Ding, C. Zhang, L. Shen, S. Li, B. Wang, Y. Xu, L. Song, Optimal solution predictions for mixed integer programs, arXiv preprint arXiv:1906.09575.
– reference: A.M. Geoffrion, Lagrangean relaxation for integer programming, in: Approaches to integer programming, Springer, 1974, pp. 82–114.
– reference: J. Song, R. Lanka, A. Zhao, Y. Yue, M. Ono, Learning to search via self-imitation with application to risk-aware planning, in: NIPS Workshop, 2017.
– reference: A.H. Land, A.G. Doig, An automatic method for solving discrete programming problems, 50 Years of Integer Programming 1958–2008: From the Early Years to the State-of-the-Art.
– year: 2019
  ident: b0175
  article-title: Exact combinatorial optimization with graph convolutional neural networks
  publication-title: NeurIPS
– reference: A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T. Berthold, P.M. Christophel, K. Jarck, T. Koch, J. Linderoth, M. Lübbecke, H.D. Mittelmann, D. Ozyurt, T.K. Ralphs, D. Salvagnin, Y. Shinano, MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library, Mathematical Programming Computation.
– reference: J. Song, r. lanka, Y. Yue, B. Dilkina, A general large neighborhood search framework for solving integer linear programs, in: NeurIPS, 2020.
– volume: 104
  start-page: 91
  year: 2005
  end-page: 104
  ident: b0155
  article-title: The feasibility pump
  publication-title: Math. Program.
– reference: T. Wu, K. Akartunali, J. Song, L. Shi, Mixed integer programming in production planning with backlogging and setup carryover: Modeling and algorithms, DEDS.
– year: 2011
  ident: b0385
  article-title: Sequential model-based optimization for general algorithm configuration
  publication-title: International Conference on Learning and Intelligent Optimization
– year: 2020
  ident: b0435
  article-title: Exploratory combinatorial optimization with reinforcement learning
– year: 2019
  ident: b0430
  article-title: Learning to perform local rewriting for combinatorial optimization
– volume: 27
  start-page: 509
  year: 1978
  end-page: 516
  ident: b0400
  article-title: Binary decision diagrams
  publication-title: IEEE Trans. Comput.
– reference: Gurobi Optimization, Gurobi optimizer reference manual.
– year: 2001
  ident: b0030
  article-title: Mixed integer programming for multi-vehicle path planning
– reference: Z. Huang, K. Wang, F. Liu, H. ling Zhen, W. Zhang, M. Yuan, J. Hao, Y. Yu, J. Wang, Learning to select cuts for efficient mixed-integer programming, Pattern Recognition.
– reference: V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki, I. Lobov, B. O’Donoghue, N. Sonnerat, C. Tjandraatmadja, P. Wang, R. Addanki, T. Hapuarachchi, T. Keck, J. Keeling, P. Kohli, I. Ktena, Y. Li, O. Vinyals, Y. Zwols, Solving mixed integer programs using neural networks, arXiv preprint arXiv:2012.13349.
– reference: Q. Qu, X. Li, Y. Zhou, J. Zeng, M. Yuan, J. Wang, J. Lv, K. Liu, K. Mao, An improved reinforcement learning algorithm for learning to branch, arXiv preprint arXiv:2201.06213.
– reference: A. Paulus, M. Rolínek, V. Musil, B. Amos, G. Martius, Comboptnet: Fit the right np-hard problem by learning integer programming constraints, in: ICML, 2021.
– reference: M.-F. Balcan, T. Dick, T. Sandholm, E. Vitercik, Learning to branch, in: ICML, 2018.
– reference: J.-H. Lange, P. Swoboda, Efficient message passing for 0–1 ilps with binary decision diagrams, in: International Conference on Machine Learning, PMLR, 2021, pp. 6000–6010.
– reference: A. Abbas, P. Swoboda, Doge-train: Discrete optimization on gpu with end-to-end training, arXiv preprint arXiv:2205.11638.
– reference: H. Sun, W. Chen, H. Li, L. Song, Improving learning to branch via reinforcement learning, LMCA.
– reference: T. Yoon, Confidence threshold neural diving, arXiv preprint arXiv:2202.07506.
– reference: J. Weiner, A.T. Ernst, X. Li, Y. Sun, Ranking constraint relaxations for mixed integer programs using a machine learning approach (2022).
– reference: C. Malandraki, M. Daskin, Time dependent vehicle routing problems: Formulations, properties and heuristic algorithms, Transp. Sci.
– year: 2014
  ident: b0125
  article-title: Integer Programming
– year: 2020
  ident: b0440
  article-title: A learning-based iterative method for solving vehicle routing problems
– reference: .
– reference: I.I. Cplex, V12. 1: User’s manual for cplex, International Business Machines Corporation 46 (53) (2009) 157.
– reference: L. Huang, X. Chen, W. Huo, J. Wang, F. Zhang, B. Bai, L. Shi, Branch and bound in mixed integer linear programming problems: A survey of techniques and trends, arXiv preprint arXiv:2111.06257.
– reference: L. Li, B. Wu, Learning to accelerate approximate methods for solving integer programming via early fixing, arXiv preprint arXiv:2207.02087.
– year: 2014
  ident: b0215
  article-title: A supervised machine learning approach to variable branching in branch-and-bound
– reference: K. Yilmaz, N. Yorke-Smith, xxx, Learning efficient search approximation in mixed integer branch and bound, arXiv preprint arXiv:2007.03948.
– volume: 284
  start-page: 501
  issue: 2
  year: 2020
  ident: 10.1016/j.neucom.2022.11.024_b0280
  article-title: Random sampling and machine learning to understand good decompositions
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-018-3067-9
– ident: 10.1016/j.neucom.2022.11.024_b0025
– ident: 10.1016/j.neucom.2022.11.024_b0300
– ident: 10.1016/j.neucom.2022.11.024_b0060
– ident: 10.1016/j.neucom.2022.11.024_b0490
– year: 1995
  ident: 10.1016/j.neucom.2022.11.024_b0080
  article-title: Finding cuts in the tsp
  publication-title: Tech. rep.
– volume: 206
  start-page: 79
  year: 2014
  ident: 10.1016/j.neucom.2022.11.024_b0455
  article-title: Algorithm runtime prediction: Methods & evaluation
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2013.10.003
– ident: 10.1016/j.neucom.2022.11.024_b0320
– ident: 10.1016/j.neucom.2022.11.024_b0460
  doi: 10.1007/978-3-642-13520-0_23
– year: 2021
  ident: 10.1016/j.neucom.2022.11.024_b0200
– volume: 33
  start-page: 18087
  year: 2020
  ident: 10.1016/j.neucom.2022.11.024_b0180
  article-title: Hybrid models for learning to branch
  publication-title: Advances in neural information processing systems
– volume: 68
  start-page: 1913
  issue: 6
  year: 2020
  ident: 10.1016/j.neucom.2022.11.024_b0420
  article-title: On the consistent path problem
  publication-title: Oper. Res.
  doi: 10.1287/opre.2020.1979
– volume: 252
  year: 2022
  ident: 10.1016/j.neucom.2022.11.024_b0245
  article-title: Learning to branch with tree-aware branching transformers
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.109455
– ident: 10.1016/j.neucom.2022.11.024_b0240
– ident: 10.1016/j.neucom.2022.11.024_b0395
  doi: 10.1016/j.ejco.2023.100061
– volume: 102
  start-page: 71
  issue: 1
  year: 2005
  ident: 10.1016/j.neucom.2022.11.024_b0140
  article-title: Exploring relaxation induced neighborhoods to improve mip solutions
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0518-7
– ident: 10.1016/j.neucom.2022.11.024_b0305
– year: 2020
  ident: 10.1016/j.neucom.2022.11.024_b0045
– ident: 10.1016/j.neucom.2022.11.024_b0275
  doi: 10.1007/978-3-319-59776-8_16
– ident: 10.1016/j.neucom.2022.11.024_b0160
– ident: 10.1016/j.neucom.2022.11.024_b0290
– ident: 10.1016/j.neucom.2022.11.024_b0470
– ident: 10.1016/j.neucom.2022.11.024_b0340
– volume: 64
  start-page: 4700
  issue: 10
  year: 2018
  ident: 10.1016/j.neucom.2022.11.024_b0410
  article-title: Discrete nonlinear optimization by state-space decompositions
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.2017.2849
– ident: 10.1016/j.neucom.2022.11.024_b0040
– ident: 10.1016/j.neucom.2022.11.024_b0255
– year: 2020
  ident: 10.1016/j.neucom.2022.11.024_b0295
– year: 2018
  ident: 10.1016/j.neucom.2022.11.024_b0360
  article-title: Best arm identification in multi-armed bandits with delayed feedback
  publication-title: AISTATS
– ident: 10.1016/j.neucom.2022.11.024_b0270
– ident: 10.1016/j.neucom.2022.11.024_b0415
– year: 2021
  ident: 10.1016/j.neucom.2022.11.024_b0445
– ident: 10.1016/j.neucom.2022.11.024_b0010
– ident: 10.1016/j.neucom.2022.11.024_b0100
– volume: 3
  start-page: 103
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2022.11.024_b0505
  article-title: Miplib 2010
  publication-title: Math. Programm. Comput.
  doi: 10.1007/s12532-011-0025-9
– ident: 10.1016/j.neucom.2022.11.024_b0085
– year: 2021
  ident: 10.1016/j.neucom.2022.11.024_b0195
– ident: 10.1016/j.neucom.2022.11.024_b0145
– year: 2010
  ident: 10.1016/j.neucom.2022.11.024_b0005
– ident: 10.1016/j.neucom.2022.11.024_b0185
– ident: 10.1016/j.neucom.2022.11.024_b0315
– ident: 10.1016/j.neucom.2022.11.024_b0500
– volume: 28
  start-page: 497
  year: 1960
  ident: 10.1016/j.neucom.2022.11.024_b0065
  article-title: An automatic method of solving discrete programming problems
  publication-title: Econometrica
  doi: 10.2307/1910129
– volume: 119
  start-page: 331
  issue: 2
  year: 2009
  ident: 10.1016/j.neucom.2022.11.024_b0170
  article-title: A feasibility pump for mixed integer nonlinear programs
  publication-title: Math. Program.
  doi: 10.1007/s10107-008-0212-2
– volume: 19
  start-page: 79
  year: 2016
  ident: 10.1016/j.neucom.2022.11.024_b0075
  article-title: Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning
  publication-title: Discrete Optimization
  doi: 10.1016/j.disopt.2016.01.005
– ident: 10.1016/j.neucom.2022.11.024_b0380
– ident: 10.1016/j.neucom.2022.11.024_b0225
– ident: 10.1016/j.neucom.2022.11.024_b0250
– volume: 21
  start-page: 307
  issue: 4
  year: 1987
  ident: 10.1016/j.neucom.2022.11.024_b0120
  article-title: Lagrangean decomposition for integer programming: theory and applications
  publication-title: RAIRO-Oper. Res.
  doi: 10.1051/ro/1987210403071
– ident: 10.1016/j.neucom.2022.11.024_b0150
  doi: 10.1007/978-3-540-72792-7_24
– ident: 10.1016/j.neucom.2022.11.024_b0205
– ident: 10.1016/j.neucom.2022.11.024_b0035
– ident: 10.1016/j.neucom.2022.11.024_b0465
– ident: 10.1016/j.neucom.2022.11.024_b0335
– year: 2019
  ident: 10.1016/j.neucom.2022.11.024_b0175
  article-title: Exact combinatorial optimization with graph convolutional neural networks
  publication-title: NeurIPS
– ident: 10.1016/j.neucom.2022.11.024_b0365
  doi: 10.1609/aaai.v34i02.5503
– ident: 10.1016/j.neucom.2022.11.024_b0425
  doi: 10.1109/CVPR52688.2022.00053
– ident: 10.1016/j.neucom.2022.11.024_b0370
  doi: 10.1609/aaai.v26i1.8141
– ident: 10.1016/j.neucom.2022.11.024_b0510
  doi: 10.1007/978-3-540-68155-7_27
– ident: 10.1016/j.neucom.2022.11.024_b0230
– year: 2014
  ident: 10.1016/j.neucom.2022.11.024_b0125
– ident: 10.1016/j.neucom.2022.11.024_b0090
  doi: 10.1007/978-3-642-01929-6_23
– volume: 4
  start-page: 238
  issue: 1
  year: 1962
  ident: 10.1016/j.neucom.2022.11.024_b0110
  article-title: Partitioning procedures for solving mixed-variables programming problems
  publication-title: Numerische mathematik
  doi: 10.1007/BF01386316
– ident: 10.1016/j.neucom.2022.11.024_b0350
  doi: 10.1609/aaai.v36i4.20294
– year: 2016
  ident: 10.1016/j.neucom.2022.11.024_b0190
  article-title: Learning to branch in mixed integer programming
  publication-title: AAAI
  doi: 10.1609/aaai.v30i1.10080
– volume: 4
  start-page: 77
  issue: 1
  year: 2007
  ident: 10.1016/j.neucom.2022.11.024_b0165
  article-title: Improving the feasibility pump
  publication-title: Discrete Optim.
  doi: 10.1016/j.disopt.2006.10.004
– volume: 33
  start-page: 739
  issue: 2
  year: 2021
  ident: 10.1016/j.neucom.2022.11.024_b0375
  article-title: Learning to solve large-scale security-constrained unit commitment problems
  publication-title: INFORMS J. Comput.
– ident: 10.1016/j.neucom.2022.11.024_b0485
– ident: 10.1016/j.neucom.2022.11.024_b0055
– ident: 10.1016/j.neucom.2022.11.024_b0330
– year: 2011
  ident: 10.1016/j.neucom.2022.11.024_b0015
– start-page: 239
  year: 2010
  ident: 10.1016/j.neucom.2022.11.024_b0390
  article-title: Experiments with a generic dantzig-wolfe decomposition for integer programs
– volume: 8
  start-page: 101
  issue: 1
  year: 1960
  ident: 10.1016/j.neucom.2022.11.024_b0115
  article-title: Decomposition principle for linear programs
  publication-title: Oper. Res.
  doi: 10.1287/opre.8.1.101
– ident: 10.1016/j.neucom.2022.11.024_b0135
– year: 2017
  ident: 10.1016/j.neucom.2022.11.024_b0355
  article-title: Learning to run heuristics in tree search
  publication-title: IJCAI
– ident: 10.1016/j.neucom.2022.11.024_b0105
  doi: 10.1007/BFb0120690
– ident: 10.1016/j.neucom.2022.11.024_b0210
– start-page: 399
  year: 2010
  ident: 10.1016/j.neucom.2022.11.024_b0130
  publication-title: Large Neighborhood Search
– ident: 10.1016/j.neucom.2022.11.024_b0050
– year: 2014
  ident: 10.1016/j.neucom.2022.11.024_b0070
– volume: 104
  start-page: 91
  issue: 1
  year: 2005
  ident: 10.1016/j.neucom.2022.11.024_b0155
  article-title: The feasibility pump
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0570-3
– ident: 10.1016/j.neucom.2022.11.024_b0480
– year: 2020
  ident: 10.1016/j.neucom.2022.11.024_b0220
  article-title: Reinforcement learning for variable selection in a branch and bound algorithm
– ident: 10.1016/j.neucom.2022.11.024_b0495
  doi: 10.1007/978-3-030-50426-7_33
– year: 2019
  ident: 10.1016/j.neucom.2022.11.024_b0430
– year: 2014
  ident: 10.1016/j.neucom.2022.11.024_b0215
– ident: 10.1016/j.neucom.2022.11.024_b0020
– ident: 10.1016/j.neucom.2022.11.024_b0235
– ident: 10.1016/j.neucom.2022.11.024_b0450
– ident: 10.1016/j.neucom.2022.11.024_b0265
– year: 2020
  ident: 10.1016/j.neucom.2022.11.024_b0440
– volume: 27
  start-page: 509
  issue: 06
  year: 1978
  ident: 10.1016/j.neucom.2022.11.024_b0400
  article-title: Binary decision diagrams
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.1978.1675141
– start-page: 45
  year: 2016
  ident: 10.1016/j.neucom.2022.11.024_b0405
  article-title: Decomposition based on decision diagrams
– volume: 20
  start-page: 61
  issue: 1
  year: 2008
  ident: 10.1016/j.neucom.2022.11.024_b0325
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2008.2005605
– ident: 10.1016/j.neucom.2022.11.024_b0345
– ident: 10.1016/j.neucom.2022.11.024_b0475
– ident: 10.1016/j.neucom.2022.11.024_b0260
– year: 2020
  ident: 10.1016/j.neucom.2022.11.024_b0435
– ident: 10.1016/j.neucom.2022.11.024_b0285
– ident: 10.1016/j.neucom.2022.11.024_b0095
  doi: 10.1145/87252.88081
– year: 2016
  ident: 10.1016/j.neucom.2022.11.024_b0310
  article-title: Generative adversarial imitation learning
  publication-title: NeurIPS
– year: 2011
  ident: 10.1016/j.neucom.2022.11.024_b0385
  article-title: Sequential model-based optimization for general algorithm configuration
– year: 2001
  ident: 10.1016/j.neucom.2022.11.024_b0030
SSID ssj0017129
Score 2.6572373
Snippet Machine learning (ML) has been recently introduced to solving optimization problems, especially for combinatorial optimization (CO) tasks. In this paper, we...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 205
SubjectTerms Combinatorial optimization
Machine learning
Mixed integer programming
Title A survey for solving mixed integer programming via machine learning
URI https://dx.doi.org/10.1016/j.neucom.2022.11.024
Volume 519
WOSCitedRecordID wos000904875400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYocOgFSmlVSlv50BsyShybJMcIUVGEUA9U2lvk2AZl1U3R7ma1_PuO7XFYSsXj0EsUOfE4yXyazIznQchXzq2yjSyZblTOnI-BNVxIZlWihCyVyeWVbzaRX1wUo1H5A7diZr6dQN51xXJZ3vxXVsMYMNulzr6A3QNRGIBzYDocge1wfBbjq4NZP13YEIgJS3mPwaRdWhNqQ9hpDMqauCuLVh1MfESljS0krlc1Vl-9Q_veD-hVqCauuIJxSBq8CIPf-axVt-0Q5dP2uKWPNP2YGxq14767mxxk32nfsvO4PHoiuIvDipnd6FLkkoG-eE-6SpSIKB8TufKr5SFt84EUDw6F8WFnexfSA2vxQ1dqNWRb3y-a_dfPbAgxjNFr4zpQqR0VsHdqoPKKbPBcliAEN6rvJ6OzYdspT3kozogvEnMtfUDgw6f5ty6zop9cviFbaFjQKgBih6zZ7i3Zjk07KMrwXXJc0YAPCvigiA_q8UERH3QFHxTwQREfNOLjHfn57eTy-JRhJw2mwSScM5GJRJsjo8DYb64yJYpUGFDuQLuzhSmN5WlqtOFNqQpdqETz1GYyBwGtZNYYmb0n693vzn4gtNCZsEkjG5D8QoI9arjlPNXyKFOgPIs9ksVvUmssM--6nfyqH-PIHmHDrJtQZuWJ-_P4uWtUFYMKWAOGHp358YUr7ZPXd1j_RNbn095-Jpt6MW9n0y8IoD-14otu
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+for+solving+mixed+integer+programming+via+machine+learning&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhang%2C+Jiayi&rft.au=Liu%2C+Chang&rft.au=Li%2C+Xijun&rft.au=Zhen%2C+Hui-Ling&rft.date=2023-01-28&rft.issn=0925-2312&rft.volume=519&rft.spage=205&rft.epage=217&rft_id=info:doi/10.1016%2Fj.neucom.2022.11.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2022_11_024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon