Deep quality-related feature extraction for soft sensing modeling: A deep learning approach with hybrid VW-SAE
Soft sensors have been extensively used to predict difficult-to-measure quality variables for effective modeling, control and optimization of industrial processes. To construct accurate soft sensors, it is significant to carry out feature extraction for massive high-dimensional process data. Recentl...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 396; s. 375 - 382 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
05.07.2020
|
| Témata: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Soft sensors have been extensively used to predict difficult-to-measure quality variables for effective modeling, control and optimization of industrial processes. To construct accurate soft sensors, it is significant to carry out feature extraction for massive high-dimensional process data. Recently, deep learning has been introduced for feature representation in process data modeling. However, most of them cannot capture deep quality-related features for output prediction. In this paper, a hybrid variable-wise weighted stacked autoencoder (HVW-SAE) is developed to learn quality-related features for soft sensor modeling. By measuring the linear Pearson and nonlinear Spearman correlations for variables at the input layer with the quality variable at each encoder, a corresponding weighted reconstruction objective function is designed to successively pretrain the deep networks. With the constraint of preferential reconstruction for more quality-related variables, it can ensure that the learned features contain more information for quality prediction. Finally, the effectiveness of the proposed HVW-SAE based soft sensor method is validated on an industrial debutanizer column process. |
|---|---|
| ISSN: | 0925-2312 1872-8286 |
| DOI: | 10.1016/j.neucom.2018.11.107 |