Deep quality-related feature extraction for soft sensing modeling: A deep learning approach with hybrid VW-SAE

Soft sensors have been extensively used to predict difficult-to-measure quality variables for effective modeling, control and optimization of industrial processes. To construct accurate soft sensors, it is significant to carry out feature extraction for massive high-dimensional process data. Recentl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 396; s. 375 - 382
Hlavní autoři: Yuan, Xiaofeng, Ou, Chen, Wang, Yalin, Yang, Chunhua, Gui, Weihua
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 05.07.2020
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Soft sensors have been extensively used to predict difficult-to-measure quality variables for effective modeling, control and optimization of industrial processes. To construct accurate soft sensors, it is significant to carry out feature extraction for massive high-dimensional process data. Recently, deep learning has been introduced for feature representation in process data modeling. However, most of them cannot capture deep quality-related features for output prediction. In this paper, a hybrid variable-wise weighted stacked autoencoder (HVW-SAE) is developed to learn quality-related features for soft sensor modeling. By measuring the linear Pearson and nonlinear Spearman correlations for variables at the input layer with the quality variable at each encoder, a corresponding weighted reconstruction objective function is designed to successively pretrain the deep networks. With the constraint of preferential reconstruction for more quality-related variables, it can ensure that the learned features contain more information for quality prediction. Finally, the effectiveness of the proposed HVW-SAE based soft sensor method is validated on an industrial debutanizer column process.
AbstractList Soft sensors have been extensively used to predict difficult-to-measure quality variables for effective modeling, control and optimization of industrial processes. To construct accurate soft sensors, it is significant to carry out feature extraction for massive high-dimensional process data. Recently, deep learning has been introduced for feature representation in process data modeling. However, most of them cannot capture deep quality-related features for output prediction. In this paper, a hybrid variable-wise weighted stacked autoencoder (HVW-SAE) is developed to learn quality-related features for soft sensor modeling. By measuring the linear Pearson and nonlinear Spearman correlations for variables at the input layer with the quality variable at each encoder, a corresponding weighted reconstruction objective function is designed to successively pretrain the deep networks. With the constraint of preferential reconstruction for more quality-related variables, it can ensure that the learned features contain more information for quality prediction. Finally, the effectiveness of the proposed HVW-SAE based soft sensor method is validated on an industrial debutanizer column process.
Author Gui, Weihua
Yuan, Xiaofeng
Wang, Yalin
Yang, Chunhua
Ou, Chen
Author_xml – sequence: 1
  givenname: Xiaofeng
  orcidid: 0000-0002-9072-7179
  surname: Yuan
  fullname: Yuan, Xiaofeng
  email: yuanxf@csu.edu.cn
– sequence: 2
  givenname: Chen
  surname: Ou
  fullname: Ou, Chen
– sequence: 3
  givenname: Yalin
  surname: Wang
  fullname: Wang, Yalin
– sequence: 4
  givenname: Chunhua
  surname: Yang
  fullname: Yang, Chunhua
– sequence: 5
  givenname: Weihua
  surname: Gui
  fullname: Gui, Weihua
BookMark eNqFkMtqHDEQRUWwIWM7f5CFfqDHKvVD3V4EBj_igMELO8lS6FHKaOiRxpImyfy9u5mssrBXVdziXKhzRk5CDEjIZ2BLYNBdbpYB9yZul5xBvwSYUvGBLKAXvOp5352QBRt4W_Ea-EdylvOGMRDAhwUJN4g7-rJXoy-HKuGoClrqUJV9Qop_S1Km-Bioi4nm6ArNGLIPv-g2Whyn5YquqJ1LRlQpzBe126WozJr-8WVN1wedvKU_flZPq9sLcurUmPHTv3lOvt_dPl_fVw-PX79drx4qU7OuVA1orXvNWyc4YtMMznagbQsaUKAwyvaDahvhDBt05zpbG6uEalnPnLZ1W5-T5thrUsw5oZO75LcqHSQwOTuTG3l0JmdnEmBKxYRd_YcZX9T8_-TBj-_BX44wTo_99phkNh6DQesTmiJt9G8XvAKieY9J
CitedBy_id crossref_primary_10_1016_j_chemolab_2020_104050
crossref_primary_10_1109_JSEN_2023_3274156
crossref_primary_10_3390_pr8091079
crossref_primary_10_1016_j_neucom_2020_12_028
crossref_primary_10_1109_JSEN_2024_3375072
crossref_primary_10_1109_TII_2023_3323675
crossref_primary_10_1109_TNNLS_2019_2951708
crossref_primary_10_3390_s19235255
crossref_primary_10_1109_JSEN_2022_3147306
crossref_primary_10_1002_cjce_25084
crossref_primary_10_1016_j_isatra_2025_02_010
crossref_primary_10_1109_JSEN_2024_3420124
crossref_primary_10_1155_2020_6347625
crossref_primary_10_1109_TIM_2021_3092784
crossref_primary_10_1007_s11633_022_1401_9
crossref_primary_10_1109_TIM_2021_3073702
crossref_primary_10_1016_j_conengprac_2020_104614
crossref_primary_10_1016_j_measurement_2024_114749
crossref_primary_10_1016_j_measurement_2022_111439
crossref_primary_10_1109_TIM_2022_3200088
crossref_primary_10_1109_TIM_2025_3548073
crossref_primary_10_1109_TIM_2022_3214611
crossref_primary_10_1109_TII_2021_3065377
crossref_primary_10_1016_j_asoc_2021_108321
crossref_primary_10_1016_j_neucom_2021_07_086
crossref_primary_10_1109_TIE_2020_2984443
crossref_primary_10_1109_TII_2022_3221219
crossref_primary_10_1109_ACCESS_2023_3334012
crossref_primary_10_1002_apj_2406
crossref_primary_10_1016_j_compchemeng_2020_106964
crossref_primary_10_1155_2021_1497964
crossref_primary_10_1109_TIM_2020_3035464
crossref_primary_10_1016_j_mineng_2023_108179
crossref_primary_10_1109_TASE_2023_3279575
crossref_primary_10_1109_TIM_2020_2977793
crossref_primary_10_1109_ACCESS_2021_3077958
crossref_primary_10_1002_cem_3225
crossref_primary_10_1016_j_ins_2022_02_049
crossref_primary_10_1109_TIM_2024_3502784
crossref_primary_10_1016_j_cherd_2022_01_026
crossref_primary_10_1109_TII_2019_2959784
crossref_primary_10_1109_TIM_2020_2985614
crossref_primary_10_1002_cem_3185
crossref_primary_10_1016_j_asoc_2023_110608
crossref_primary_10_1016_j_psep_2024_08_023
crossref_primary_10_1109_JSEN_2020_3025805
crossref_primary_10_1016_j_conengprac_2024_106143
crossref_primary_10_1016_j_jtice_2025_106328
crossref_primary_10_1109_TII_2024_3371990
crossref_primary_10_1016_j_measurement_2024_116025
crossref_primary_10_1016_j_measurement_2023_113477
crossref_primary_10_1088_1361_6501_ab7bbd
crossref_primary_10_1109_TII_2019_2938890
crossref_primary_10_1002_cem_3529
crossref_primary_10_1109_TCYB_2021_3059002
crossref_primary_10_1002_apj_70048
crossref_primary_10_1002_cjce_70039
crossref_primary_10_1088_1361_6501_ad7483
crossref_primary_10_1109_TIM_2022_3152856
crossref_primary_10_1109_TIM_2022_3225004
crossref_primary_10_1007_s00521_024_09752_5
crossref_primary_10_1016_j_jprocont_2020_05_015
crossref_primary_10_1016_j_engappai_2022_105180
crossref_primary_10_1016_j_conengprac_2019_104187
crossref_primary_10_1016_j_jtice_2024_105666
crossref_primary_10_1016_j_rsase_2021_100643
crossref_primary_10_3390_s21103430
crossref_primary_10_1016_j_jclepro_2024_144132
crossref_primary_10_1016_j_engappai_2023_105988
crossref_primary_10_1109_TII_2021_3110507
crossref_primary_10_1109_TITS_2022_3154750
crossref_primary_10_1109_TNNLS_2019_2957366
crossref_primary_10_3390_s21248471
crossref_primary_10_1016_j_compchemeng_2023_108543
crossref_primary_10_1016_j_neucom_2019_08_006
crossref_primary_10_3390_pr12030495
crossref_primary_10_1088_1361_6501_aba6b9
crossref_primary_10_1109_ACCESS_2023_3336424
crossref_primary_10_1109_JSEN_2025_3580404
crossref_primary_10_1109_TII_2022_3220857
crossref_primary_10_1016_j_asoc_2022_108898
crossref_primary_10_1016_j_istruc_2021_02_069
crossref_primary_10_1016_j_measurement_2023_113491
Cites_doi 10.1109/TNNLS.2016.2599820
10.1109/TIP.2017.2781299
10.1109/TIE.2018.2803727
10.1109/TCST.2016.2579609
10.1109/TII.2015.2509247
10.1109/TIM.2018.2810678
10.1109/TIM.2017.2658158
10.1002/aic.14663
10.1109/TIE.2017.2739691
10.1109/ACCESS.2017.2756872
10.1109/TCYB.2016.2536638
10.1109/TII.2016.2610839
10.1016/j.jprocont.2017.06.002
10.1109/TCST.2016.2550426
10.1109/TIE.2017.2698422
10.1109/TII.2018.2809730
10.1016/j.jprocont.2013.05.007
10.1016/j.conengprac.2004.04.013
10.1016/j.compchemeng.2008.12.012
10.1109/TII.2016.2612640
10.1016/j.compchemeng.2008.05.019
10.1109/TIE.2017.2733501
10.1002/cem.3040
10.1109/TIE.2015.2466557
10.1021/ie4041252
10.1109/TIE.2017.2733443
10.1016/j.jprocont.2013.03.008
10.1109/TIM.2006.887331
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2018.11.107
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 382
ExternalDocumentID 10_1016_j_neucom_2018_11_107
S0925231219304503
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-41bbb8b25f72ee449fd61bd51b1e7e7cad89a547fc09b6f6d3cda7a5080fbd353
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000536806600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:19:26 EST 2025
Tue Nov 18 22:30:01 EST 2025
Fri Feb 23 02:47:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Stacked autoencoder (SAE)
Soft sensor
Hybrid variable-wise weighted SAE (HVW-SAE)
Feature representation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-41bbb8b25f72ee449fd61bd51b1e7e7cad89a547fc09b6f6d3cda7a5080fbd353
ORCID 0000-0002-9072-7179
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_neucom_2018_11_107
crossref_citationtrail_10_1016_j_neucom_2018_11_107
elsevier_sciencedirect_doi_10_1016_j_neucom_2018_11_107
PublicationCentury 2000
PublicationDate 2020-07-05
PublicationDateYYYYMMDD 2020-07-05
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-05
  day: 05
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yu, Hong, Rui, Tao (bib0026) 2018; 65
Samek, Binder, Montavon, Lapuschkin, Muller (bib0028) 2016; 28
Chen, Ding, Peng, Yang, Gui (bib0012) 2018; 65
Fortuna, Graziani, Rizzo, Xibilia (bib0035) 2007
Fortuna, Graziani, Xibilia (bib0034) 2005; 13
Ge, Chen (bib0002) 2017; 12
Jia, Shao, Li, Zhao, Fu (bib0031) 2018
Yuan, Huang, Wang, Yang, Gui (bib0032) 2018; 14
Hauke, Kossowski (bib0033) 2011; 30
Bengio, Lamblin, Popovici, Larocchelle (bib0025) 2006
Liu, Chen (bib0018) 2013; 23
Majumdar, Tripathi (bib0029) 2017
Lee, Chang (bib0027) 2016; 13
Huang, Qi, Murshed (bib0014) 2012
Jiang, Ding, Wang, Yan (bib0004) 2017; 64
Yuan, Wang, Yang, Gui, Ye (bib0013) 2017; 57
Yuan, Ge, Huang, Song (bib0017) 2017; 25
Yuan, Li, Wang (bib0007) 2019
Kadlec, Gabrys, Strandt (bib0006) 2009; 33
Yuan, Zhou, Wang, Yang (bib0020) 2018; 32
Ge, Song, Ding, Huang (bib0009) 2017; 5
Zhou, Zheng, Ge, Song, Shan (bib0003) 2018; 65
Ma, Khatibisepehr, Huang (bib0016) 2014; 61
Khatibisepehr, Huang, Khare (bib0005) 2013; 23
Gonzaga, Meleiro, Kiang, Maciel Filho (bib0019) 2009; 33
Yuan, Ge, Huang, Song, Wang (bib0015) 2017; 13
Jiang, Yan, Huang (bib0010) 2016; 63
Yuan, Ge, Song, Wang, Yang, Zhang (bib0008) 2017; 66
Zhou, Li, Song, Qin (bib0011) 2017; 25
Chen, Dai, Yuan, Gui, Ren, Koivo (bib0021) 2018; 67
Du, Xiong, Wu, Zhang, Zhang, Tao (bib0030) 2016; 47
Yuan, Ge, Song (bib0022) 2014; 53
Rosipal, Trejo (bib0023) 2002; 2
Fortuna, Giannone, Graziani, Xibilia (bib0024) 2007; 56
Yuan, Wang, Yang, Ge, Song, Gui (bib0001) 2018; 65
Gonzaga (10.1016/j.neucom.2018.11.107_bib0019) 2009; 33
Du (10.1016/j.neucom.2018.11.107_bib0030) 2016; 47
Yuan (10.1016/j.neucom.2018.11.107_bib0017) 2017; 25
Yuan (10.1016/j.neucom.2018.11.107_bib0007) 2019
Yu (10.1016/j.neucom.2018.11.107_bib0026) 2018; 65
Yuan (10.1016/j.neucom.2018.11.107_bib0020) 2018; 32
Jiang (10.1016/j.neucom.2018.11.107_bib0010) 2016; 63
Chen (10.1016/j.neucom.2018.11.107_bib0021) 2018; 67
Jiang (10.1016/j.neucom.2018.11.107_bib0004) 2017; 64
Jia (10.1016/j.neucom.2018.11.107_bib0031) 2018
Rosipal (10.1016/j.neucom.2018.11.107_bib0023) 2002; 2
Ge (10.1016/j.neucom.2018.11.107_bib0002) 2017; 12
Fortuna (10.1016/j.neucom.2018.11.107_bib0035) 2007
Ge (10.1016/j.neucom.2018.11.107_bib0009) 2017; 5
Samek (10.1016/j.neucom.2018.11.107_bib0028) 2016; 28
Majumdar (10.1016/j.neucom.2018.11.107_bib0029) 2017
Fortuna (10.1016/j.neucom.2018.11.107_bib0034) 2005; 13
Huang (10.1016/j.neucom.2018.11.107_bib0014) 2012
Bengio (10.1016/j.neucom.2018.11.107_bib0025) 2006
Lee (10.1016/j.neucom.2018.11.107_bib0027) 2016; 13
Yuan (10.1016/j.neucom.2018.11.107_bib0015) 2017; 13
Liu (10.1016/j.neucom.2018.11.107_bib0018) 2013; 23
Fortuna (10.1016/j.neucom.2018.11.107_bib0024) 2007; 56
Yuan (10.1016/j.neucom.2018.11.107_bib0001) 2018; 65
Yuan (10.1016/j.neucom.2018.11.107_bib0032) 2018; 14
Kadlec (10.1016/j.neucom.2018.11.107_bib0006) 2009; 33
Chen (10.1016/j.neucom.2018.11.107_bib0012) 2018; 65
Yuan (10.1016/j.neucom.2018.11.107_bib0013) 2017; 57
Ma (10.1016/j.neucom.2018.11.107_bib0016) 2014; 61
Hauke (10.1016/j.neucom.2018.11.107_bib0033) 2011; 30
Zhou (10.1016/j.neucom.2018.11.107_bib0011) 2017; 25
Yuan (10.1016/j.neucom.2018.11.107_bib0008) 2017; 66
Zhou (10.1016/j.neucom.2018.11.107_bib0003) 2018; 65
Khatibisepehr (10.1016/j.neucom.2018.11.107_bib0005) 2013; 23
Yuan (10.1016/j.neucom.2018.11.107_bib0022) 2014; 53
References_xml – volume: 33
  start-page: 795
  year: 2009
  end-page: 814
  ident: bib0006
  article-title: Data-driven soft sensors in the process industry
  publication-title: Comput. Chem. Eng.
– year: 2012
  ident: bib0014
  article-title: Dynamic modelling and predictive control in solid oxide fuel cells: First principle and data-based approaches
– year: 2019
  ident: bib0007
  article-title: Nonlinear dynamic soft sensor modeling with supervised long short-term memory network
  publication-title: IEEE. T. Ind. Inf.
– year: 2007
  ident: bib0035
  article-title: Soft Sensors for Monitoring and Control of Industrial Processes
– start-page: 1878
  year: 2018
  end-page: 1887
  ident: bib0031
  article-title: Stacked denoising tensor auto-encoder for action recognition with spatiotemporal corruptions
  publication-title: IEEE Trans. Image Process.
– volume: 64
  start-page: 8148
  year: 2017
  end-page: 8157
  ident: bib0004
  article-title: Data-driven distributed local fault detection for large-scale processes based on GA-regularized Canonical Correlation analysis
  publication-title: IEEE Trans. Ind. Electron.
– volume: 65
  start-page: 1559
  year: 2018
  end-page: 1567
  ident: bib0012
  article-title: Fault detection for non-gaussian processes using generalized canonical correlation analysis and randomized algorithms
  publication-title: IEEE Trans. Ind. Electron.
– volume: 32
  start-page: e3040
  year: 2018
  ident: bib0020
  article-title: Multi-similarity measurement driven ensemble just-in-time learning for soft sensing of industrial processes
  publication-title: J. Chemom.
– volume: 14
  start-page: 3235
  year: 2018
  end-page: 3243
  ident: bib0032
  article-title: Deep learning based feature representation and its application for soft sensor modeling with variable-wise weighted SAE
  publication-title: IEEE Trans. Ind. Inform.
– volume: 23
  start-page: 793
  year: 2013
  end-page: 804
  ident: bib0018
  article-title: Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes
  publication-title: J. Process Control
– volume: 65
  start-page: 8184
  year: 2018
  end-page: 8194
  ident: bib0003
  article-title: Multimode process monitoring based on switching autoregressive dynamic latent variable model
  publication-title: IEEE Trans. Ind. Electron.
– volume: 66
  start-page: 837
  year: 2017
  end-page: 845
  ident: bib0008
  article-title: Soft sensor modeling of nonlinear industrial processes based on weighted probabilistic projection regression
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 25
  start-page: 1124
  year: 2017
  end-page: 1132
  ident: bib0017
  article-title: A probabilistic just-in-time learning framework for soft sensor development with missing data
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 13
  start-page: 499
  year: 2005
  end-page: 508
  ident: bib0034
  article-title: Soft sensors for product quality monitoring in debutanizer distillation columns
  publication-title: Control Eng. Pract.
– volume: 57
  start-page: 15
  year: 2017
  end-page: 25
  ident: bib0013
  article-title: Probabilistic density-based regression model for soft sensing of nonlinear industrial processes
  publication-title: J. Process Control
– volume: 23
  start-page: 1575
  year: 2013
  end-page: 1596
  ident: bib0005
  article-title: Design of inferential sensors in the process industry: a review of Bayesian methods
  publication-title: J. Process Control
– volume: 61
  start-page: 518
  year: 2014
  end-page: 529
  ident: bib0016
  article-title: A Bayesian framework for real‐time identification of locally weighted partial least squares
  publication-title: AIChE J.
– volume: 2
  start-page: 97
  year: 2002
  end-page: 123
  ident: bib0023
  article-title: Kernel partial least squares regression in reproducing kernel Hilbert space
  publication-title: J. Mach. Learn. Res.
– volume: 28
  start-page: 2660
  year: 2016
  end-page: 2673
  ident: bib0028
  article-title: Evaluating the visualization of what a deep neural network has learned
  publication-title: IEEE Trans. Neural Netw. Learn. Systems.
– volume: 53
  start-page: 13736
  year: 2014
  end-page: 13749
  ident: bib0022
  article-title: Locally weighted kernel principal component regression model for soft sensing of nonlinear time-variant processes
  publication-title: Ind. Eng. Chem. Res.
– volume: 56
  start-page: 95
  year: 2007
  end-page: 101
  ident: bib0024
  article-title: Virtual instruments based on stacked neural networks to improve product quality monitoring in a refinery
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 30
  start-page: 87
  year: 2011
  end-page: 93
  ident: bib0033
  article-title: Comparison of values of pearson's and spearman's correlation coefficients on the same sets of data
  publication-title: Quaest. Geogr.
– volume: 13
  start-page: 532
  year: 2017
  end-page: 541
  ident: bib0015
  article-title: Semisupervised JITL framework for nonlinear industrial soft sensing based on locally semisupervised weighted PCR
  publication-title: IEEE Trans. Ind. Inform.
– volume: 65
  start-page: 5060
  year: 2018
  end-page: 5068
  ident: bib0026
  article-title: Multi-task autoencoder model for recovering human poses
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 911
  year: 2017
  end-page: 918
  ident: bib0029
  article-title: Asymmetric stacked autoencoder
  publication-title: Proceedings of the International Joint Conference on Neural Networks
– volume: 13
  start-page: 461
  year: 2016
  end-page: 472
  ident: bib0027
  article-title: Oscillometric blood pressure estimation based on deep learning
  publication-title: IEEE Trans. Ind. Inform.
– volume: 67
  start-page: 2001
  year: 2018
  end-page: 2010
  ident: bib0021
  article-title: Temperature prediction model for roller kiln by ALD-based double locally weighted kernel principal component regression
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 65
  start-page: 1508
  year: 2018
  end-page: 1517
  ident: bib0001
  article-title: Weighted linear dynamic system for feature representation and soft sensor application in nonlinear dynamic industrial processes
  publication-title: IEEE Trans. Ind. Electron.
– volume: 33
  start-page: 43
  year: 2009
  end-page: 49
  ident: bib0019
  article-title: ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
  publication-title: Comput. Chem. Eng.
– start-page: 153
  year: 2006
  end-page: 160
  ident: bib0025
  article-title: Greedy layer-wise training of deep networks
  publication-title: Proceedings of the International Conference on Neural Information Processing Systems
– volume: 47
  start-page: 1017
  year: 2016
  end-page: 1027
  ident: bib0030
  article-title: Stacked convolutional denoising auto-encoders for feature representation
  publication-title: IEEE Trans. Cybern.
– volume: 12
  start-page: 310
  year: 2017
  end-page: 321
  ident: bib0002
  article-title: Plant-wide industrial process monitoring: a distributed modeling framework
  publication-title: IEEE Trans. Ind. Inform.
– volume: 63
  start-page: 377
  year: 2016
  end-page: 386
  ident: bib0010
  article-title: Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and bayesian inference
  publication-title: IEEE Trans. Ind. Electron.
– volume: 5
  start-page: 20590
  year: 2017
  end-page: 20616
  ident: bib0009
  article-title: Data mining and analytics in the process industry: the role of machine learning
  publication-title: IEEE Access
– volume: 25
  start-page: 366
  year: 2017
  end-page: 373
  ident: bib0011
  article-title: Autoregressive dynamic latent variable models for process monitoring
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 28
  start-page: 2660
  year: 2016
  ident: 10.1016/j.neucom.2018.11.107_bib0028
  article-title: Evaluating the visualization of what a deep neural network has learned
  publication-title: IEEE Trans. Neural Netw. Learn. Systems.
  doi: 10.1109/TNNLS.2016.2599820
– start-page: 1878
  year: 2018
  ident: 10.1016/j.neucom.2018.11.107_bib0031
  article-title: Stacked denoising tensor auto-encoder for action recognition with spatiotemporal corruptions
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2781299
– volume: 65
  start-page: 8184
  year: 2018
  ident: 10.1016/j.neucom.2018.11.107_bib0003
  article-title: Multimode process monitoring based on switching autoregressive dynamic latent variable model
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2803727
– volume: 25
  start-page: 1124
  year: 2017
  ident: 10.1016/j.neucom.2018.11.107_bib0017
  article-title: A probabilistic just-in-time learning framework for soft sensor development with missing data
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2016.2579609
– volume: 12
  start-page: 310
  year: 2017
  ident: 10.1016/j.neucom.2018.11.107_bib0002
  article-title: Plant-wide industrial process monitoring: a distributed modeling framework
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2015.2509247
– volume: 67
  start-page: 2001
  year: 2018
  ident: 10.1016/j.neucom.2018.11.107_bib0021
  article-title: Temperature prediction model for roller kiln by ALD-based double locally weighted kernel principal component regression
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2810678
– volume: 66
  start-page: 837
  year: 2017
  ident: 10.1016/j.neucom.2018.11.107_bib0008
  article-title: Soft sensor modeling of nonlinear industrial processes based on weighted probabilistic projection regression
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2658158
– volume: 61
  start-page: 518
  year: 2014
  ident: 10.1016/j.neucom.2018.11.107_bib0016
  article-title: A Bayesian framework for real‐time identification of locally weighted partial least squares
  publication-title: AIChE J.
  doi: 10.1002/aic.14663
– volume: 65
  start-page: 5060
  year: 2018
  ident: 10.1016/j.neucom.2018.11.107_bib0026
  article-title: Multi-task autoencoder model for recovering human poses
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2739691
– volume: 5
  start-page: 20590
  year: 2017
  ident: 10.1016/j.neucom.2018.11.107_bib0009
  article-title: Data mining and analytics in the process industry: the role of machine learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2756872
– volume: 2
  start-page: 97
  year: 2002
  ident: 10.1016/j.neucom.2018.11.107_bib0023
  article-title: Kernel partial least squares regression in reproducing kernel Hilbert space
  publication-title: J. Mach. Learn. Res.
– volume: 47
  start-page: 1017
  year: 2016
  ident: 10.1016/j.neucom.2018.11.107_bib0030
  article-title: Stacked convolutional denoising auto-encoders for feature representation
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2536638
– volume: 13
  start-page: 532
  year: 2017
  ident: 10.1016/j.neucom.2018.11.107_bib0015
  article-title: Semisupervised JITL framework for nonlinear industrial soft sensing based on locally semisupervised weighted PCR
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2016.2610839
– volume: 57
  start-page: 15
  year: 2017
  ident: 10.1016/j.neucom.2018.11.107_bib0013
  article-title: Probabilistic density-based regression model for soft sensing of nonlinear industrial processes
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2017.06.002
– start-page: 153
  year: 2006
  ident: 10.1016/j.neucom.2018.11.107_bib0025
  article-title: Greedy layer-wise training of deep networks
– volume: 25
  start-page: 366
  year: 2017
  ident: 10.1016/j.neucom.2018.11.107_bib0011
  article-title: Autoregressive dynamic latent variable models for process monitoring
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2016.2550426
– volume: 64
  start-page: 8148
  year: 2017
  ident: 10.1016/j.neucom.2018.11.107_bib0004
  article-title: Data-driven distributed local fault detection for large-scale processes based on GA-regularized Canonical Correlation analysis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2698422
– volume: 14
  start-page: 3235
  year: 2018
  ident: 10.1016/j.neucom.2018.11.107_bib0032
  article-title: Deep learning based feature representation and its application for soft sensor modeling with variable-wise weighted SAE
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2809730
– volume: 23
  start-page: 1575
  year: 2013
  ident: 10.1016/j.neucom.2018.11.107_bib0005
  article-title: Design of inferential sensors in the process industry: a review of Bayesian methods
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2013.05.007
– volume: 13
  start-page: 499
  year: 2005
  ident: 10.1016/j.neucom.2018.11.107_bib0034
  article-title: Soft sensors for product quality monitoring in debutanizer distillation columns
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2004.04.013
– volume: 33
  start-page: 795
  year: 2009
  ident: 10.1016/j.neucom.2018.11.107_bib0006
  article-title: Data-driven soft sensors in the process industry
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2008.12.012
– volume: 13
  start-page: 461
  year: 2016
  ident: 10.1016/j.neucom.2018.11.107_bib0027
  article-title: Oscillometric blood pressure estimation based on deep learning
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2016.2612640
– volume: 33
  start-page: 43
  year: 2009
  ident: 10.1016/j.neucom.2018.11.107_bib0019
  article-title: ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2008.05.019
– volume: 65
  start-page: 1559
  year: 2018
  ident: 10.1016/j.neucom.2018.11.107_bib0012
  article-title: Fault detection for non-gaussian processes using generalized canonical correlation analysis and randomized algorithms
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2733501
– year: 2012
  ident: 10.1016/j.neucom.2018.11.107_bib0014
– year: 2019
  ident: 10.1016/j.neucom.2018.11.107_bib0007
  article-title: Nonlinear dynamic soft sensor modeling with supervised long short-term memory network
  publication-title: IEEE. T. Ind. Inf.
– volume: 32
  start-page: e3040
  year: 2018
  ident: 10.1016/j.neucom.2018.11.107_bib0020
  article-title: Multi-similarity measurement driven ensemble just-in-time learning for soft sensing of industrial processes
  publication-title: J. Chemom.
  doi: 10.1002/cem.3040
– year: 2007
  ident: 10.1016/j.neucom.2018.11.107_bib0035
– volume: 63
  start-page: 377
  year: 2016
  ident: 10.1016/j.neucom.2018.11.107_bib0010
  article-title: Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and bayesian inference
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2466557
– volume: 53
  start-page: 13736
  year: 2014
  ident: 10.1016/j.neucom.2018.11.107_bib0022
  article-title: Locally weighted kernel principal component regression model for soft sensing of nonlinear time-variant processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie4041252
– volume: 65
  start-page: 1508
  year: 2018
  ident: 10.1016/j.neucom.2018.11.107_bib0001
  article-title: Weighted linear dynamic system for feature representation and soft sensor application in nonlinear dynamic industrial processes
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2733443
– start-page: 911
  year: 2017
  ident: 10.1016/j.neucom.2018.11.107_bib0029
  article-title: Asymmetric stacked autoencoder
– volume: 30
  start-page: 87
  year: 2011
  ident: 10.1016/j.neucom.2018.11.107_bib0033
  article-title: Comparison of values of pearson's and spearman's correlation coefficients on the same sets of data
  publication-title: Quaest. Geogr.
– volume: 23
  start-page: 793
  year: 2013
  ident: 10.1016/j.neucom.2018.11.107_bib0018
  article-title: Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2013.03.008
– volume: 56
  start-page: 95
  year: 2007
  ident: 10.1016/j.neucom.2018.11.107_bib0024
  article-title: Virtual instruments based on stacked neural networks to improve product quality monitoring in a refinery
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2006.887331
SSID ssj0017129
Score 2.568611
Snippet Soft sensors have been extensively used to predict difficult-to-measure quality variables for effective modeling, control and optimization of industrial...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 375
SubjectTerms Deep learning
Feature representation
Hybrid variable-wise weighted SAE (HVW-SAE)
Soft sensor
Stacked autoencoder (SAE)
Title Deep quality-related feature extraction for soft sensing modeling: A deep learning approach with hybrid VW-SAE
URI https://dx.doi.org/10.1016/j.neucom.2018.11.107
Volume 396
WOSCitedRecordID wos000536806600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLZKx4ELjC8xxpAP3CpPzYdjZ7doFG0ITUgM1p4iO3bWTSWr2mbafgt_ltexnWYbGuzAJarcxmn6Pn39-Mn7gdAHWPQTTYG58VhwEheCERklQ8KTxDyIEkGsm64lX9jRER-P06-93i-fC3M5Y1XFr67S-X81NYyBsU3q7APM3U4KA_AajA5HMDsc_8nwH7Weu1zJa9KkqgCnLHVTwHMArnjhuoOb-MIlOOHB0sSwV6e2KY7Lf84Gykwz88KJLz1uddvptcnzGvw4Id-yUZfeNqU-iqZRhJMgsp-mEoMysGslh0ltVdfxmbgotVs6jdBb2wCAdXbaiVOzJ3A37eDEDe5P62pai65uAZtUo4nSrgAZUgLs8oYvjtKuN41sUxW3MEe2S9Edn2_lh_PdStcmAAgYDYeFYNd1071ZYvvW0tcGJPpYt_PczpKbWWB3BKPsEdoIGU15H21kh6Px5_YhFQtCW8rR3YjPzGzCB-9-mz8znw6bOd5ET902BGcWPs9RT1cv0DPf4gM7j_8SVQZN-BaasEMTXqMJA5qwQRN2aMIeTXs4wwZL2GMJeyxhgyVssYQtll6h759Gx_sHxLXoIAXsNVckDqSUXIa0ZKHWcZyWKgmkooEMNNOsEIqngsasLIapTMpERYUSTMCuYFhKFdHoNepXF5V-gzBwY3hHBUCXWKxLnmrJgMBRIVg6THi0hSL_8-WFq19v2qjM8vuMt4VIe9bc1m_5y-eZt0zuOKjlljnA7d4z3z7wStvoyfpv8Q71V4ta76DHxeXqbLl477D2Gy2WrFQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+quality-related+feature+extraction+for+soft+sensing+modeling%3A+A+deep+learning+approach+with+hybrid+VW-SAE&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Yuan%2C+Xiaofeng&rft.au=Ou%2C+Chen&rft.au=Wang%2C+Yalin&rft.au=Yang%2C+Chunhua&rft.date=2020-07-05&rft.issn=0925-2312&rft.volume=396&rft.spage=375&rft.epage=382&rft_id=info:doi/10.1016%2Fj.neucom.2018.11.107&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2018_11_107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon