Optimized wind power prediction and energy storage scheduling using genetic algorithm and backpropagation neural network

As renewable energy continues to rise in the global energy mix, wind energy is gradually increasing its share in the power system as a clean, renewable form of energy. However, the volatility and uncertainty of wind power bring new challenges to power system operation, making the need for its effici...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of renewable energy development Ročník 14; číslo 1; s. 146 - 157
Hlavní autori: Wu, Peng, Li, Zongze
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Diponegoro University 01.01.2025
Predmet:
ISSN:2252-4940
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As renewable energy continues to rise in the global energy mix, wind energy is gradually increasing its share in the power system as a clean, renewable form of energy. However, the volatility and uncertainty of wind power bring new challenges to power system operation, making the need for its efficient prediction and intelligent dispatch more and more urgent. Based on this, a method combining genetic algorithm and backpropagation neural network is proposed for wind power prediction and energy storage scheduling. In this study, the improved genetic algorithm-backpropagation algorithm was generated by optimizing the weights and thresholds of the backpropagation neural network through the genetic algorithm, and optimizing the crossover and mutation processes of the genetic algorithm using similar block-order single-point crossover operator and shift mutation operator. Moreover, the improved genetic algorithm-backpropagation Neural Network wind energy prediction model was successfully constructed. Subsequently, the improved genetic algorithm was applied to search for the parameters of support vector machine and an improved genetic algorithm-support vector machine photovoltaic power generation prediction model was established. The experimental results showed that the average absolute percentage error of the improved genetic algorithm backpropagation neural network algorithm was 2.4%, and the accuracy was significantly higher than that of the traditional backpropagation neural network algorithm. The maximum photovoltaic prediction error of the autoregressive integral moving average model was about 80MW, while the photovoltaic prediction error of the improved genetic algorithm support vector machine photovoltaic prediction model was only about 12kW. In addition, the average absolute percentage error of the improved genetic algorithm support vector machine photovoltaic prediction model was only 1.53%, which was only 0.2% higher than the support vector machine prediction model. This study not only improves the stability of the power grid but also provides a practical and feasible method for realizing the large-scale application of clean energy, making a positive contribution to the sustainable development of the energy industry.
AbstractList As renewable energy continues to rise in the global energy mix, wind energy is gradually increasing its share in the power system as a clean, renewable form of energy. However, the volatility and uncertainty of wind power bring new challenges to power system operation, making the need for its efficient prediction and intelligent dispatch more and more urgent. Based on this, a method combining genetic algorithm and backpropagation neural network is proposed for wind power prediction and energy storage scheduling. In this study, the improved genetic algorithm-backpropagation algorithm was generated by optimizing the weights and thresholds of the backpropagation neural network through the genetic algorithm, and optimizing the crossover and mutation processes of the genetic algorithm using similar block-order single-point crossover operator and shift mutation operator. Moreover, the improved genetic algorithm-backpropagation Neural Network wind energy prediction model was successfully constructed. Subsequently, the improved genetic algorithm was applied to search for the parameters of support vector machine and an improved genetic algorithm-support vector machine photovoltaic power generation prediction model was established. The experimental results showed that the average absolute percentage error of the improved genetic algorithm backpropagation neural network algorithm was 2.4%, and the accuracy was significantly higher than that of the traditional backpropagation neural network algorithm. The maximum photovoltaic prediction error of the autoregressive integral moving average model was about 80MW, while the photovoltaic prediction error of the improved genetic algorithm support vector machine photovoltaic prediction model was only about 12kW. In addition, the average absolute percentage error of the improved genetic algorithm support vector machine photovoltaic prediction model was only 1.53%, which was only 0.2% higher than the support vector machine prediction model. This study not only improves the stability of the power grid but also provides a practical and feasible method for realizing the large-scale application of clean energy, making a positive contribution to the sustainable development of the energy industry.
Author Li, Zongze
Wu, Peng
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0009-0006-2843-5411
  surname: Wu
  fullname: Wu, Peng
  organization: Hebei Suntien New Energy Technology Co., Ltd., Zhangjiakou 075000, China
– sequence: 2
  givenname: Zongze
  orcidid: 0009-0000-3020-8097
  surname: Li
  fullname: Li, Zongze
  organization: Hebei Suntien New Energy Technology Co., Ltd., Zhangjiakou 075000, China
BookMark eNo9kMtuwjAQRb2gUinlA7rLD0D9TrKsUB9ISGzYWxNnEgwhjuwgSr--IVTdzJWuZo5G54lMWt8iIS-MLjWTQr26Q8ByySlXS02lkBMy5VzxhcwlfSTzGA-UUiYky6Weku9t17uT-8Eyubi2TDp_wZB0A8LZ3vk2gaHEFkN9TWLvA9SYRLvH8ty4tk7O8TbrYaF3NoGm9sH1-9N4VYA9dsF3UMNIavEcoBmiv_hwfCYPFTQR5385I7uP993qa7HZfq5Xb5uFFVT3C8k0L8osLSykqixSwWnOkWklKpaVlYVM6ZRpm0rJFZWYgVWQUaEVpKikmJH1HVt6OJguuBOEq_HgzFj4UBsIw-8NGsrzihVZlVbKSptCIQEthYKhyItcqYHF7iwbfIwBq38eo2aUb0b55ibfjPLFL1Rrf5Q
Cites_doi 10.1049/gtd2.12855
10.47852/bonviewAIA3202624
10.7500/AEPS20180302002
10.1177/1748006X211021690
10.47852/bonviewAIA3202434
10.1007/s12555-021-0724-6
10.1109/TSTE.2022.3153609
10.1109/TSTE.2021.3068043
10.1049/gtd2.12332
10.1007/s001910050066
10.47852/bonviewJDSIS3202870
10.1007/s11042-022-12017-9
10.1109/TIA.2021.3057356
10.1177/1464419321994986
10.1109/TIA.2020.2974426
10.1049/iet-rpg.2019.1178
10.3837/tiis.2021.07.007
10.1007/s11801-024-3114-5
10.4018/IJAEIS.2020070102
10.1002/we.2816
10.3390/quantum3020021
10.1080/00207543.2023.2280186
10.13652/j.spjx.1003.5788.2022.90072
10.1093/jigpal/jzz054
10.1109/TSG.2020.3004488
10.1049/rpg2.12187
10.1049/rpg2.12384
10.1049/iet-ipr.2019.0761
10.1177/02783649221082115
10.1038/s41586-021-04223-6
10.1016/j.neucom.2020.11.016
10.35833/MPCE.2019.000021
10.1016/j.ijhydene.2021.04.130
10.1007/s11356-022-21414-4
10.1007/s00521-021-06619-x
10.1039/d2ay01874h
10.1002/er.5988
10.1049/iet-cps.2019.0035
10.1109/TSTE.2020.3042385
10.1049/rpg2.12014
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.61435/ijred.2025.60434
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ开放获取期刊资源库
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 157
ExternalDocumentID oai_doaj_org_article_029f1b8f7f5c4c7ab4aec0ab1e39b955
10_61435_ijred_2025_60434
GroupedDBID 5VS
7XC
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ABUWG
ACIWK
ADBBV
AEGXH
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BANNL
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVBZV
CCPQU
CITATION
EDH
EOJEC
GROUPED_DOAJ
HCIFZ
ITG
ITH
KQ8
L6V
M7S
OBODZ
OK1
PATMY
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
RNS
ID FETCH-LOGICAL-c306t-4162bd87bca75db732092e1653f18dfca856716c7442504e8ac5a80365a7e543
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001389842000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2252-4940
IngestDate Mon Oct 20 20:59:27 EDT 2025
Sat Nov 29 04:05:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-4162bd87bca75db732092e1653f18dfca856716c7442504e8ac5a80365a7e543
ORCID 0009-0006-2843-5411
0009-0000-3020-8097
OpenAccessLink https://doaj.org/article/029f1b8f7f5c4c7ab4aec0ab1e39b955
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_029f1b8f7f5c4c7ab4aec0ab1e39b955
crossref_primary_10_61435_ijred_2025_60434
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of renewable energy development
PublicationYear 2025
Publisher Diponegoro University
Publisher_xml – name: Diponegoro University
References 22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
0
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 21
  doi: 10.1049/gtd2.12855
– ident: 12
  doi: 10.47852/bonviewAIA3202624
– ident: 19
  doi: 10.7500/AEPS20180302002
– ident: 2
  doi: 10.1177/1748006X211021690
– ident: 1
  doi: 10.47852/bonviewAIA3202434
– ident: 26
  doi: 10.1007/s12555-021-0724-6
– ident: 36
  doi: 10.1109/TSTE.2022.3153609
– ident: 31
  doi: 10.1109/TSTE.2021.3068043
– ident: 14
  doi: 10.1049/gtd2.12332
– ident: 4
  doi: 10.1007/s001910050066
– ident: 7
  doi: 10.47852/bonviewJDSIS3202870
– ident: 15
  doi: 10.1007/s11042-022-12017-9
– ident: 24
  doi: 10.1109/TIA.2021.3057356
– ident: 27
  doi: 10.1177/1464419321994986
– ident: 34
  doi: 10.1109/TIA.2020.2974426
– ident: 10
  doi: 10.1049/iet-rpg.2019.1178
– ident: 17
  doi: 10.3837/tiis.2021.07.007
– ident: 30
  doi: 10.1007/s11801-024-3114-5
– ident: 0
  doi: 10.4018/IJAEIS.2020070102
– ident: 22
  doi: 10.1002/we.2816
– ident: 32
  doi: 10.3390/quantum3020021
– ident: 6
  doi: 10.1080/00207543.2023.2280186
– ident: 38
  doi: 10.13652/j.spjx.1003.5788.2022.90072
– ident: 8
  doi: 10.1093/jigpal/jzz054
– ident: 25
  doi: 10.1109/TSG.2020.3004488
– ident: 28
  doi: 10.1049/rpg2.12187
– ident: 35
  doi: 10.1049/rpg2.12384
– ident: 11
  doi: 10.1049/iet-ipr.2019.0761
– ident: 18
  doi: 10.1177/02783649221082115
– ident: 33
  doi: 10.1038/s41586-021-04223-6
– ident: 16
  doi: 10.1016/j.neucom.2020.11.016
– ident: 23
  doi: 10.35833/MPCE.2019.000021
– ident: 37
  doi: 10.1016/j.ijhydene.2021.04.130
– ident: 39
  doi: 10.1007/s11356-022-21414-4
– ident: 5
  doi: 10.1007/s00521-021-06619-x
– ident: 13
  doi: 10.1039/d2ay01874h
– ident: 3
  doi: 10.1002/er.5988
– ident: 29
  doi: 10.1049/iet-cps.2019.0035
– ident: 20
  doi: 10.1109/TSTE.2020.3042385
– ident: 9
  doi: 10.1049/rpg2.12014
SSID ssj0001341946
Score 2.2788844
Snippet As renewable energy continues to rise in the global energy mix, wind energy is gradually increasing its share in the power system as a clean, renewable form of...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 146
SubjectTerms backpropagation neural network
energy storage scheduling
genetic algorithm
support vector machine
wind power prediction
Title Optimized wind power prediction and energy storage scheduling using genetic algorithm and backpropagation neural network
URI https://doaj.org/article/029f1b8f7f5c4c7ab4aec0ab1e39b955
Volume 14
WOSCitedRecordID wos001389842000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ开放获取期刊资源库
  issn: 2252-4940
  databaseCode: DOA
  dateStart: 20120101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0001341946
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: East & South Asia Database
  issn: 2252-4940
  databaseCode: BVBZV
  dateStart: 20120201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/eastsouthasia
  omitProxy: false
  ssIdentifier: ssj0001341946
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  issn: 2252-4940
  databaseCode: M7S
  dateStart: 20120201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://search.proquest.com
  omitProxy: false
  ssIdentifier: ssj0001341946
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  issn: 2252-4940
  databaseCode: PATMY
  dateStart: 20120201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://search.proquest.com/environmentalscience
  omitProxy: false
  ssIdentifier: ssj0001341946
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  issn: 2252-4940
  databaseCode: BENPR
  dateStart: 20120201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: false
  ssIdentifier: ssj0001341946
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  issn: 2252-4940
  databaseCode: PIMPY
  dateStart: 20120201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://search.proquest.com/publiccontent
  omitProxy: false
  ssIdentifier: ssj0001341946
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQMMCAeIryqDwwIYUmjh3HY0FULJQOHcoU2Y5dCvShUB7i13PnFFQmFlYriU7fXXx39t13hJxlGFMLyyLuSxFxxVmkvPFRohPDpBLYtxeGTchuNx8MVG9p1BfWhNX0wDVwrZgpn5jcSy8st1Ibrp2NtUlcqowSgb0Uop6lZCqcriBNWejSAXtlKMPiSjPD-KA1eqwc0oQycZHFPOW_nNISd39wMp1tsrWIDmm7lmqHrLjJLtlc4gzcIx938JOPR5-upO-QT9MZjjmjswovXBBkqmHRhY4-ipWPsF9QyGDBo2DjOcU69yEFq8HmRaqfh9NqNH8Yh7eMtk-wocIWE9RFkesSpJnUleL7pN-57l_dRIvxCZGFPGAeQajFTJlLY7UUpZEpixVzSSZSn-SltzoXGWRLVnKOPGYu11boHDya0NIJnh6Q1cl04g4JlbF0eWksZDsQrnirZOpVwgz3WeJi6xrk_Bu-YlaTZBSQXASsi4B1gVgXAesGuUSAfx5EfuuwAFovFlov_tL60X985JhsoFj1gcoJWZ1Xr-6UrNu3-eilagaDapK1Xrt_e_8FuXXTTQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+wind+power+prediction+and+energy+storage+scheduling+using+genetic+algorithm+and+backpropagation+neural+network&rft.jtitle=International+journal+of+renewable+energy+development&rft.au=Peng+Wu&rft.au=Zongze+Li&rft.date=2025-01-01&rft.pub=Diponegoro+University&rft.issn=2252-4940&rft.volume=14&rft.issue=1&rft.spage=146&rft.epage=157&rft_id=info:doi/10.61435%2Fijred.2025.60434&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_029f1b8f7f5c4c7ab4aec0ab1e39b955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2252-4940&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2252-4940&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2252-4940&client=summon