Algorithm for automatic optimizing cross-cut saw based on computer vision techniques

The optimization of timber classification by grades and defect detection plays an important role in the production of timbers. Traditionally, a timber is manually cut by a worker according to his experience. Defect detection and classification of a timber are with great subjectivity. Meanwhile, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering Research Express Jg. 5; H. 4; S. 45022 - 45034
Hauptverfasser: Ma, Hailong, Shao, Mingwei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IOP Publishing 01.12.2023
Schlagworte:
ISSN:2631-8695, 2631-8695
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The optimization of timber classification by grades and defect detection plays an important role in the production of timbers. Traditionally, a timber is manually cut by a worker according to his experience. Defect detection and classification of a timber are with great subjectivity. Meanwhile, the action is not safe enough. In this case, an automatic optimizing cross-cut saw to finish these tasks of timber classification by grades and defect detection is built significantly. Related algorithms and detailed procedures for optimizing cross-cut saws are proposed in this paper. Additionally, a vision system is used to capture images of a timber. Captured images are analyzed and processed. First, defects in these images are detected. Then the serviceable part (defect-free) of a timber can be determined. Based on the pretrained network, the timber can be classified. As the homography matrix has been known, the physical position can be confirmed. In our proposed system, the cutting list is transmitted from the industrial control computer to a motion control system, then the timber can be cut according to the cutting list automatically. In this paper, related algorithms and detailed procedures are given. Moreover, a new optimizing cross-cut saw is built. Experiments show that the processing time for each image is about 0.026s and the minimum mean average precision is 94.15%. In this case, it can make the optimizing cross-cut saw efficient, labor-saving and safe. Furthermore, related algorithms are suitable to improve a traditional automatic optimizing cross-cut saw.
AbstractList The optimization of timber classification by grades and defect detection plays an important role in the production of timbers. Traditionally, a timber is manually cut by a worker according to his experience. Defect detection and classification of a timber are with great subjectivity. Meanwhile, the action is not safe enough. In this case, an automatic optimizing cross-cut saw to finish these tasks of timber classification by grades and defect detection is built significantly. Related algorithms and detailed procedures for optimizing cross-cut saws are proposed in this paper. Additionally, a vision system is used to capture images of a timber. Captured images are analyzed and processed. First, defects in these images are detected. Then the serviceable part (defect-free) of a timber can be determined. Based on the pretrained network, the timber can be classified. As the homography matrix has been known, the physical position can be confirmed. In our proposed system, the cutting list is transmitted from the industrial control computer to a motion control system, then the timber can be cut according to the cutting list automatically. In this paper, related algorithms and detailed procedures are given. Moreover, a new optimizing cross-cut saw is built. Experiments show that the processing time for each image is about 0.026s and the minimum mean average precision is 94.15%. In this case, it can make the optimizing cross-cut saw efficient, labor-saving and safe. Furthermore, related algorithms are suitable to improve a traditional automatic optimizing cross-cut saw.
Author Shao, Mingwei
Ma, Hailong
Author_xml – sequence: 1
  givenname: Hailong
  orcidid: 0000-0003-3110-3945
  surname: Ma
  fullname: Ma, Hailong
  organization: (Hechi University) Key Laboratory of AI and Information Processing , Education Department of Guangxi Zhuang Autonomous Region, Hechi University, Hechi, Guangxi, 546300, People’s Republic of China
– sequence: 2
  givenname: Mingwei
  surname: Shao
  fullname: Shao, Mingwei
  organization: University of Technology School of Information and Control Engineering, Qingdao , Qingdao 266000, People’s Republic of China
BookMark eNp9UD1PwzAUtFCRKKU7oycmQp_txHXHquJLqsRSZst2nNaoiYPt8PXrSShCDIjpvXe6e7q7UzRqfGMROidwRUCIGeWMZIIvipkylS70ERr_QKNf-wmaxug05JwTPifzMdos91sfXNrVuPIBqy75WiVnsG-Tq92Ha7bYBB9jZrqEo3rFWkVbYt9g4-u2SzbgFxddfydrdo177mw8Q8eV2kc7_Z4T9HhzvVndZeuH2_vVcp0ZBjxlOQgOakFsJZQQjOaMalMKSmiZW66ZYQq0mFvoQylq8t6w4SBAgy1KAsAmCA5_vxwGW8k2uFqFd0lADsXIIbkckstDMb3k8iBxvpVPvgtNb_A_-sUfdBveZCFzCXkBlMq2rNgnvq51hw
CODEN ERENBL
Cites_doi 10.1109/ACCESS.2023.3293864
10.1038/nature14539
10.1109/34.888718
10.1109/TPAMI.2016.2577031
10.1109/TSMC.1979.4310076
10.48550/arXiv.1911.09070
10.1007/s00226-016-0810-8
10.1145/3065386
10.48550/arXiv.1801.04381
10.1080/00207720802630685
10.1007/s00521-020-04819-5
10.1109/MSP.2018.2832195
10.48550/arXiv.1804.02767
10.1007/s10086-014-1410-6
10.3901/CJME.2010.03.375
10.1515/hf-2021-0051
ContentType Journal Article
Copyright 2023 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2023 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
DOI 10.1088/2631-8695/acfb5b
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
EISSN 2631-8695
ExternalDocumentID 10_1088_2631_8695_acfb5b
erxacfb5b
GrantInformation_xml – fundername: Open Fund Project of Education Department of Guangxi Zhuang Autonomous Region
  grantid: 2022GXZDSY008
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2020QF101
  funderid: https://doi.org/10.13039/501100007129
GroupedDBID ABJNI
ALMA_UNASSIGNED_HOLDINGS
AAYXX
CITATION
ID FETCH-LOGICAL-c306t-40860a91ef8a8832432bcd8212d4e6b3c3a0b87e0acfa2c4717c6080b0e5d1003
IEDL.DBID O3W
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001084650800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2631-8695
IngestDate Thu Oct 16 04:34:46 EDT 2025
Tue Oct 17 22:30:18 EDT 2023
Sat Oct 18 23:06:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-40860a91ef8a8832432bcd8212d4e6b3c3a0b87e0acfa2c4717c6080b0e5d1003
Notes ERX-102631.R4
ORCID 0000-0003-3110-3945
OpenAccessLink https://doi.org/10.1088/2631-8695/acfb5b
PageCount 13
ParticipantIDs iop_journals_10_1088_2631_8695_acfb5b
crossref_primary_10_1088_2631_8695_acfb5b
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering Research Express
PublicationTitleAbbrev ERX
PublicationTitleAlternate Eng. Res. Express
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Alex (erxacfb5bbib12) 2017; 60
Gonzalo (erxacfb5bbib4) 2009; 40
Hartley (erxacfb5bbib14) 2003
Li (erxacfb5bbib2) 2010; 23
Shao (erxacfb5bbib8) 2020; 56
Otsu (erxacfb5bbib10) 1979; 9
Yoshua (erxacfb5bbib11) 2015; 521
Breinig (erxacfb5bbib1) 2015; 61
Tan (erxacfb5bbib16) 2020
Chakravorty (erxacfb5bbib9) 2018; 35
García (erxacfb5bbib3) 2016; 50
Bouguet (erxacfb5bbib19) 2003
Ren (erxacfb5bbib13) 2016; 39
Chen (erxacfb5bbib6) 2020; 32
Han (erxacfb5bbib7) 2023; 11
Hwang (erxacfb5bbib5) 2021; 76
Sandler (erxacfb5bbib15) 2018; 2018
Redmon (erxacfb5bbib17) 2018
Zhang (erxacfb5bbib18) 2003; 22
References_xml – volume: 11
  start-page: 71800
  year: 2023
  ident: erxacfb5bbib7
  article-title: An improved YOLOv5 algorithm for wood defect detection based on attention
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3293864
– volume: 521
  start-page: 436
  year: 2015
  ident: erxacfb5bbib11
  article-title: Deep Learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 22
  start-page: 1330
  year: 2003
  ident: erxacfb5bbib18
  article-title: A flexible new technique for camera calibration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.888718
– volume: 39
  start-page: 1137
  year: 2016
  ident: erxacfb5bbib13
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 9
  start-page: 62
  year: 1979
  ident: erxacfb5bbib10
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– start-page: 1
  year: 2020
  ident: erxacfb5bbib16
  article-title: Efficientdet: scalable and efficient object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR)
  doi: 10.48550/arXiv.1911.09070
– volume: 50
  start-page: 807
  year: 2016
  ident: erxacfb5bbib3
  article-title: Eigenproblems in timber structural elements with uncertain properties
  publication-title: Wood Sci. Technol.
  doi: 10.1007/s00226-016-0810-8
– volume: 60
  start-page: 84
  year: 2017
  ident: erxacfb5bbib12
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 2018
  start-page: 4510
  year: 2018
  ident: erxacfb5bbib15
  article-title: MobileNetV2: Inverted Residuals and Linear Bottlenecks
  publication-title: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.48550/arXiv.1801.04381
– volume: 40
  start-page: 163
  year: 2009
  ident: erxacfb5bbib4
  article-title: Automated visual inspection system for wood defect classification using computational intelligence techniques
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207720802630685
– volume: 32
  start-page: 11229
  year: 2020
  ident: erxacfb5bbib6
  article-title: A robust weakly supervised learning of deep Conv-Nets for surface defect inspection
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-020-04819-5
– volume: 56
  start-page: 123
  year: 2020
  ident: erxacfb5bbib8
  article-title: A new algorithm for automatic optimizing cross-cut saw based on deep learning algorithm
  publication-title: Scientia Silvae Sinicae
– volume: 35
  start-page: 175
  year: 2018
  ident: erxacfb5bbib9
  article-title: What is a signal?
  publication-title: IEEE Signal Process Mag.
  doi: 10.1109/MSP.2018.2832195
– year: 2003
  ident: erxacfb5bbib19
– start-page: 1
  year: 2018
  ident: erxacfb5bbib17
  article-title: YOLOv3: An Incremental Improvement
  publication-title: arXiv e-prints (2018)
  doi: 10.48550/arXiv.1804.02767
– volume: 61
  start-page: 89
  year: 2015
  ident: erxacfb5bbib1
  article-title: Classification of wood surfaces according to visual appearance by multivariate analysis of wood feature data
  publication-title: Journal of Wood Science
  doi: 10.1007/s10086-014-1410-6
– volume: 23
  start-page: 375
  year: 2010
  ident: erxacfb5bbib2
  article-title: Optimization algorithms for fully automatic optimizing cross-cut saw
  publication-title: Chin. J. Mech. Eng.
  doi: 10.3901/CJME.2010.03.375
– volume: 76
  start-page: 1
  year: 2021
  ident: erxacfb5bbib5
  article-title: Classification of wood knots using artificial neural networks with texture and local feature-based image descriptors
  publication-title: Holzforshung
  doi: 10.1515/hf-2021-0051
– year: 2003
  ident: erxacfb5bbib14
SSID ssib046616717
ssib037096498
ssib052001916
Score 2.2533464
Snippet The optimization of timber classification by grades and defect detection plays an important role in the production of timbers. Traditionally, a timber is...
SourceID crossref
iop
SourceType Index Database
Enrichment Source
Publisher
StartPage 45022
SubjectTerms classification
computer vision
deep learning
defect detection
image analysis
Title Algorithm for automatic optimizing cross-cut saw based on computer vision techniques
URI https://iopscience.iop.org/article/10.1088/2631-8695/acfb5b
Volume 5
WOSCitedRecordID wos001084650800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 2631-8695
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib037096498
  issn: 2631-8695
  databaseCode: O3W
  dateStart: 20190711
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5zevDiD1ScP3PQg4e6rk3TFE9DHB5kepi4W8iv6sC1o-1U_Ot9abu5gYjgLYcQHo-8fN9Hku8hdKYFjbWylQbyxyGSRI40Ujqup6iWzN61le76d2G_z4bD6KGBruZ_YdJJffRfwrAyCq5SWD-IY22P-h2H0ShoCxXLQK6gVZ8BjMNmvvefZpvJD4Gck28tQQCI6IJ2sXZDoFVmV5c_LbwEVSsQzgLy9Db_FfMW2qgJJ-5WU7dRwyQ7aNB9fU6zUfEyxkBasZgWaWndilM4QcajT8AzXAblqGmBc_GOLdppnCZY1W0gcPUrHc9NYPNd9Ni7GVzfOnV_BUeBUChAOjLqiqhjYiYYVDbxPak0AzDTxFDpK1-4koXGhZiFpwDGQkWBYUrXBLoDx8EeaiZpYvYRDuIYSjlWEQhGQqSKBFCdSDMqlPU9ClvoYpZKPqlsNHh5_c0Yt7nhNje8yk0LnUMaeV1L-S_zTpfmmeyDB5xwIKlATPhExwd_XOkQrdsu8tUrlSPULLKpOUZr6q0Y5dlJua2-AO1PzbQ
linkProvider IOP Publishing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46Rbz4AxXnr-WgBw913Zqm6XGoQ3HMHSbuFvKrOnDt6DoV_3pf2k43EBG85RDC4yMv3_tI8j2ETrWgkVY200D-OESS0JFGSsdtKqols3dtubt-J-h22WAQ9so-p_lfmGRcHv0XMCyMggsIywdxrN6kXsNhNPTrQkXSl_WxjpbRivUpsdv63nucbSgvgAKdfOsJAmRE5_SLtRwCvTK7vvxp8QW6WoaQ5tinvfnvuLfQRll44lYxfRstmXgH9VsvT0k6zJ5HGIpXLKZZklu44gROktHwA3gN54E5aprhiXjDlvU0TmKsynYQuPidjr_MYCe76KF93b-8cco-C44CwZCBhGTUFWHDREwwyHDiNaXSDEhNE0OlpzzhShYYF-IWTQV0FigKlaZ0ja8bcCzsoUqcxGYfYT-KIKUjFYJwJESqUEDJE2pGhbL-R0EVnc_g5OPCToPn1-CMcYsPt_jwAp8qOgMoeZlTk1_m1RbmmfSd-5xwKFahQOGA8sEfV6qhtd5Vm3duu3eHaN02li8erhyhSpZOzTFaVa_ZcJKe5LvsE4Mh0xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithm+for+automatic+optimizing+cross-cut+saw+based+on+computer+vision+techniques&rft.jtitle=Engineering+Research+Express&rft.au=Ma%2C+Hailong&rft.au=Shao%2C+Mingwei&rft.date=2023-12-01&rft.issn=2631-8695&rft.eissn=2631-8695&rft.volume=5&rft.issue=4&rft.spage=45022&rft_id=info:doi/10.1088%2F2631-8695%2Facfb5b&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2631_8695_acfb5b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-8695&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-8695&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-8695&client=summon