FP-ELM: An online sequential learning algorithm for dealing with concept drift

The online sequential extreme learning machine (OS-ELM) algorithm is an on-line and incremental learning method, which can learn data one-by-one or chunk-by-chunk with a fixed or varying chunk size. And OS-ELM achieves the same learning performance as ELM trained by the complete set of data. However...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 207; s. 322 - 334
Hlavní autoři: Liu, Dong, Wu, YouXi, Jiang, He
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 26.09.2016
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The online sequential extreme learning machine (OS-ELM) algorithm is an on-line and incremental learning method, which can learn data one-by-one or chunk-by-chunk with a fixed or varying chunk size. And OS-ELM achieves the same learning performance as ELM trained by the complete set of data. However, in on-line learning environments, the concepts to be learned may change with time, a feature referred to as concept drift. To use ELMs in such non-stationary environments, a forgetting parameters extreme learning machine (FP-ELM) is proposed in this paper. The proposed FP-ELM can achieve incremental and on-line learning, just like OS-ELM. Furthermore, FP-ELM will assign a forgetting parameter to the previous training data according to the current performance to adapt to possible changes after a new chunk comes. The regularized optimization method is used to avoid estimator windup. Performance comparisons between FP-ELM and two frequently used ensemble approaches are carried out on several regression and classification problems with concept drift. The experimental results show that FP-ELM produces comparable or better performance with lower training time.
AbstractList The online sequential extreme learning machine (OS-ELM) algorithm is an on-line and incremental learning method, which can learn data one-by-one or chunk-by-chunk with a fixed or varying chunk size. And OS-ELM achieves the same learning performance as ELM trained by the complete set of data. However, in on-line learning environments, the concepts to be learned may change with time, a feature referred to as concept drift. To use ELMs in such non-stationary environments, a forgetting parameters extreme learning machine (FP-ELM) is proposed in this paper. The proposed FP-ELM can achieve incremental and on-line learning, just like OS-ELM. Furthermore, FP-ELM will assign a forgetting parameter to the previous training data according to the current performance to adapt to possible changes after a new chunk comes. The regularized optimization method is used to avoid estimator windup. Performance comparisons between FP-ELM and two frequently used ensemble approaches are carried out on several regression and classification problems with concept drift. The experimental results show that FP-ELM produces comparable or better performance with lower training time.
Author Jiang, He
Wu, YouXi
Liu, Dong
Author_xml – sequence: 1
  givenname: Dong
  surname: Liu
  fullname: Liu, Dong
  email: dongliu05@gmail.com
  organization: School of Software, Dalian University of Technology, Dalian 116621, China
– sequence: 2
  givenname: YouXi
  surname: Wu
  fullname: Wu, YouXi
  email: wuc@scse.hebut.edu.cn
  organization: School of Computer Science and Software, Hebei University of Technology, Tianjin 300130, China
– sequence: 3
  givenname: He
  surname: Jiang
  fullname: Jiang, He
  email: jianghe@dlut.edu.cn
  organization: School of Software, Dalian University of Technology, Dalian 116621, China
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wNSbTExmuhBKaVWoPwtdh5C5qSnTpGZSxbd3Sl25UDhwuQe-A-eMyCDEgIRcMpgwYPJqMwm4t3E74f03AdGrPCFDVileVLySAzKEml8XvGT8jIy6bgPAFOP1kDwun4vF6mFKZ4HG0PqAtMP3PYbsTUtbNCn4sKamXcfk89uWuphog6Y9uJ-9Q20MFneZNsm7fE5OnWk7vPi5Y_K6XLzM74rV0-39fLYqbAkyFwJ4zWuHvBHSMolV6ZSSNbdGYC0VA-4UVIBSIjpUxoKAWjgBTpYKK1GOiTjm2hS7LqHTu-S3Jn1pBvqwid7o4yb6sIkG0avssekvzPpsso8hJ-Pb_-CbI4x9sQ-PSXfWY1--8Qlt1k30fwd8A_BpgWs
CitedBy_id crossref_primary_10_1016_j_arthro_2024_12_011
crossref_primary_10_1109_TC_2020_2973631
crossref_primary_10_1007_s11063_018_9865_x
crossref_primary_10_3390_sym15101934
crossref_primary_10_1177_1748302619895421
crossref_primary_10_1016_j_neucom_2017_04_076
crossref_primary_10_1016_j_ast_2022_107797
crossref_primary_10_3390_aerospace10120994
crossref_primary_10_1007_s10489_022_03489_1
crossref_primary_10_1145_3532193
crossref_primary_10_7717_peerj_cs_1732
crossref_primary_10_1080_01969722_2019_1645996
crossref_primary_10_3389_frai_2022_955314
crossref_primary_10_1109_ACCESS_2022_3169785
crossref_primary_10_1109_TKDE_2024_3438274
crossref_primary_10_3390_info15120786
crossref_primary_10_1016_j_jksuci_2021_11_006
crossref_primary_10_1109_JIOT_2023_3265012
crossref_primary_10_3390_sym11060801
crossref_primary_10_1016_j_eswa_2017_11_042
crossref_primary_10_1016_j_engappai_2023_105927
crossref_primary_10_1155_2018_6794067
crossref_primary_10_1016_j_asoc_2018_11_009
crossref_primary_10_1016_j_energy_2022_123622
crossref_primary_10_1080_19479832_2020_1821100
crossref_primary_10_1109_TKDE_2018_2876857
crossref_primary_10_1016_j_neucom_2019_03_079
crossref_primary_10_1109_TKDE_2023_3272911
crossref_primary_10_1007_s11042_023_17039_5
crossref_primary_10_1007_s10489_021_02912_3
crossref_primary_10_1007_s10462_020_09844_3
crossref_primary_10_1007_s11063_019_09995_7
crossref_primary_10_1111_coin_12520
Cites_doi 10.1109/TKDE.2014.2324590
10.1109/TNN.2011.2160459
10.1162/neco.1991.3.2.246
10.1016/j.eswa.2012.07.063
10.1016/j.neucom.2012.02.041
10.1016/j.neucom.2012.08.010
10.1007/s10207-014-0238-9
10.1007/s00500-012-0825-5
10.1109/TKDE.2009.156
10.1007/s00521-012-0873-x
10.1109/TNN.2006.880583
10.1109/IJCNN.2009.5178779
10.1016/j.neucom.2005.12.126
10.1145/1102351.1102408
10.1016/j.ins.2013.12.011
10.1145/502512.502568
10.1137/1.9781611972771.1
10.1016/S0893-6080(05)80131-5
10.1016/j.neucom.2010.11.030
10.1016/j.neucom.2009.02.013
10.1016/j.jss.2014.07.010
10.1016/j.patcog.2009.11.024
10.1016/j.engappai.2014.10.003
10.1016/j.eswa.2014.11.053
10.1109/TSMCB.2011.2168604
10.1016/j.neucom.2010.06.037
10.1109/TSMCB.2012.2198812
10.1145/1014052.1014069
10.1109/TCYB.2014.2307349
10.1016/j.neucom.2012.06.013
10.1016/j.neucom.2015.07.035
10.1109/TSMCB.2012.2218804
10.1016/j.neucom.2012.02.003
10.1016/j.eswa.2014.07.019
10.1109/TKDE.2011.58
10.1145/502512.502529
10.1007/s10489-015-0675-9
10.1016/0893-6080(91)90009-T
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2016.04.043
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 334
ExternalDocumentID 10_1016_j_neucom_2016_04_043
S0925231216303125
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-402929fe2d46c16e83f77692ca4e967102f7080e66eefe7ac04094f40f637e843
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382794500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 03:02:42 EST 2025
Tue Nov 18 20:53:25 EST 2025
Fri Feb 23 02:28:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Online/incremental learning
Extreme learning machine
Concept drift
Regularized optimization method
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-402929fe2d46c16e83f77692ca4e967102f7080e66eefe7ac04094f40f637e843
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_neucom_2016_04_043
crossref_citationtrail_10_1016_j_neucom_2016_04_043
elsevier_sciencedirect_doi_10_1016_j_neucom_2016_04_043
PublicationCentury 2000
PublicationDate 2016-09-26
PublicationDateYYYYMMDD 2016-09-26
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-26
  day: 26
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Leshno, Lin, Pinkus, Schocken (bib4) 1993; 6
I. Žliobaitė, Learning under concept drift: an overview, 2010.
Gonçalves, Santos, Barros, Vieira (bib41) 2014; 41
Hornik (bib3) 1991; 4
Zong, Huang, Chen (bib10) 2013; 101
J. Gao, W. Fan, J. Han, P.S. Yu, A general framework for mining concept-drifting data streams with skewed distributions, in: Proceedings of the 2007 SIAM International Conference on Data Mining, 2007, pp. 3–14.
Elwell, Polikar (bib29) 2011; 22

Xuan, Jiang, Hu, Ren, Zou, Luo, Wu (bib18) 2015; 27
Liu, Dang, Huang (bib2) 2013; 43
Zhao, Wang, Park (bib36) 2012; 87
Lim, Lee, Pang (bib38) 2013; 22
Frank, Asuncion (bib39) 2010
Yang, Fong (bib21) 2015; 102
J.Z. Kolter, M.A. Maloof, Using additive expert ensembles to cope with concept drift, in: Proceedings of the 22nd International Conference on Machine Learning, 2005, pp. 449–456.
R. Elwell, R. Polikar, Incremental learning in nonstationary environments with controlled forgetting, in: Proceedings of the International Joint Conference on Neural Networks, 2009, pp. 771–778.
Brzezinski, Stefanowski (bib25) 2014; 265
Soares, Araújo (bib31) 2016; 171
Nie, Jiang, Ren, Sun, Li (bib15) 2016
Jiang, Ren, Xuan, Wu (bib14) 2013; 99
Martínez-Rego, Pérez-Sánchez, Fontenla-Romero, Alonso-Betanzos (bib23) 2011; 74
Taweewat, Wutiwiwatchai (bib1) 2013; 40
Huang, Zhou, Ding, Zhang (bib35) 2012; 42
G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams, in: Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining, 2001, pp. 97–106.
Soares, Araújo (bib27) 2015; 37
Lan, Soh, Huang (bib17) 2009; 72
Minku, White, Yao (bib32) 2010; 22
M. Mike, Statistical Datasets, Department of Statistics, University of Carnegie Mellon, 1989
Chen, Gong, Hong (bib13) 2013; 43
.
Wang, Cao, Yuan (bib7) 2011; 74
W.N. Street, Y.S. Kim, A streaming ensemble algorithm (SEA) for large-scale classification, in: Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining, 2001, pp. 377–382.
Shi, Lu (bib8) 2013; 102
Zhao, Park, Lee, Cao (bib9) 2012; 16
Liang, Huang, Saratchandran, Sundararajan (bib16) 2006; 17
Park, Sandberg (bib5) 1991; 3
W. Fan, Systematic data selection to mine concept-drifting data streams, in: Proceedings of the Tenth International Conference on Knowledge Discovery and Data Mining, 2004, pp. 128–137.
Minku, Yao (bib33) 2012; 24
Fontenla-Romero, Guijarro-Berdinãs, Pérez-Sánchez, Alonso-Betanzos (bib12) 2010; 43
Huang, Zhu, Siew (bib6) 2006; 70
Sen (bib22) 2014; 13
Soares, Araújo (bib26) 2015; 42
Huang, Song, Gupta, Wu (bib11) 2014; 44
Han, Giraud-Carrier, Li (bib30) 2015; 44
Leshno (10.1016/j.neucom.2016.04.043_bib4) 1993; 6
Zong (10.1016/j.neucom.2016.04.043_bib10) 2013; 101
Gonçalves (10.1016/j.neucom.2016.04.043_bib41) 2014; 41
Minku (10.1016/j.neucom.2016.04.043_bib33) 2012; 24
Chen (10.1016/j.neucom.2016.04.043_bib13) 2013; 43
10.1016/j.neucom.2016.04.043_bib20
Zhao (10.1016/j.neucom.2016.04.043_bib36) 2012; 87
10.1016/j.neucom.2016.04.043_bib42
Jiang (10.1016/j.neucom.2016.04.043_bib14) 2013; 99
Elwell (10.1016/j.neucom.2016.04.043_bib29) 2011; 22
Zhao (10.1016/j.neucom.2016.04.043_bib9) 2012; 16
10.1016/j.neucom.2016.04.043_bib40
10.1016/j.neucom.2016.04.043_bib34
Liu (10.1016/j.neucom.2016.04.043_bib2) 2013; 43
Hornik (10.1016/j.neucom.2016.04.043_bib3) 1991; 4
Liang (10.1016/j.neucom.2016.04.043_bib16) 2006; 17
Xuan (10.1016/j.neucom.2016.04.043_bib18) 2015; 27
Brzezinski (10.1016/j.neucom.2016.04.043_bib25) 2014; 265
Lan (10.1016/j.neucom.2016.04.043_bib17) 2009; 72
Wang (10.1016/j.neucom.2016.04.043_bib7) 2011; 74
10.1016/j.neucom.2016.04.043_bib37
Huang (10.1016/j.neucom.2016.04.043_bib11) 2014; 44
Frank (10.1016/j.neucom.2016.04.043_bib39) 2010
Shi (10.1016/j.neucom.2016.04.043_bib8) 2013; 102
10.1016/j.neucom.2016.04.043_bib19
Park (10.1016/j.neucom.2016.04.043_bib5) 1991; 3
Huang (10.1016/j.neucom.2016.04.043_bib6) 2006; 70
Martínez-Rego (10.1016/j.neucom.2016.04.043_bib23) 2011; 74
Soares (10.1016/j.neucom.2016.04.043_bib27) 2015; 37
Nie (10.1016/j.neucom.2016.04.043_bib15) 2016
Soares (10.1016/j.neucom.2016.04.043_bib31) 2016; 171
Lim (10.1016/j.neucom.2016.04.043_bib38) 2013; 22
Sen (10.1016/j.neucom.2016.04.043_bib22) 2014; 13
Soares (10.1016/j.neucom.2016.04.043_bib26) 2015; 42
Taweewat (10.1016/j.neucom.2016.04.043_bib1) 2013; 40
10.1016/j.neucom.2016.04.043_bib24
Han (10.1016/j.neucom.2016.04.043_bib30) 2015; 44
Minku (10.1016/j.neucom.2016.04.043_bib32) 2010; 22
Huang (10.1016/j.neucom.2016.04.043_bib35) 2012; 42
10.1016/j.neucom.2016.04.043_bib28
Fontenla-Romero (10.1016/j.neucom.2016.04.043_bib12) 2010; 43
Yang (10.1016/j.neucom.2016.04.043_bib21) 2015; 102
References_xml – volume: 40
  start-page: 575
  year: 2013
  end-page: 589
  ident: bib1
  article-title: Musical pitch estimation using a supervised single hidden layer feed-forward neural network
  publication-title: Expert Syst. Appl.
– volume: 44
  start-page: 773
  year: 2015
  end-page: 785
  ident: bib30
  article-title: Efficient mining of high-speed uncertain data streams
  publication-title: Appl. Intell.
– volume: 171
  start-page: 693
  year: 2016
  end-page: 707
  ident: bib31
  article-title: An adaptive ensemble of on-line extreme learning machines with variable forgetting factor for dynamic system prediction
  publication-title: Neurocomputing
– reference: R. Elwell, R. Polikar, Incremental learning in nonstationary environments with controlled forgetting, in: Proceedings of the International Joint Conference on Neural Networks, 2009, pp. 771–778.
– volume: 13
  start-page: 583
  year: 2014
  end-page: 590
  ident: bib22
  article-title: Using instance-weighted naive Bayes for adapting concept drift in masquerade detection
  publication-title: Int. J. Inf. Secur.
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: bib6
  article-title: Extreme learning machine
  publication-title: Neurocomputing
– volume: 3
  start-page: 246
  year: 1991
  end-page: 257
  ident: bib5
  article-title: Universal approximation using radial basis-function networks
  publication-title: Neural Comput.
– volume: 44
  start-page: 2405
  year: 2014
  end-page: 2417
  ident: bib11
  article-title: Semi-supervised and unsupervised extreme learning machines
  publication-title: IEEE Trans. Cybern.
– volume: 87
  start-page: 79
  year: 2012
  end-page: 89
  ident: bib36
  article-title: Online sequential extreme learning machine with forgetting mechanism
  publication-title: Neurocomputing
– volume: 6
  start-page: 861
  year: 1993
  end-page: 867
  ident: bib4
  article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
  publication-title: Neural Netw.
– volume: 43
  start-page: 935
  year: 2013
  end-page: 947
  ident: bib13
  article-title: Online modeling with tunable RBF network
  publication-title: IEEE Trans. Cybern.
– volume: 4
  start-page: 251
  year: 1991
  end-page: 257
  ident: bib3
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Netw.
– volume: 101
  start-page: 229
  year: 2013
  end-page: 242
  ident: bib10
  article-title: Weighted extreme learning machine for imbalance learning
  publication-title: Neurocomputing
– volume: 22
  start-page: 1517
  year: 2011
  end-page: 1531
  ident: bib29
  article-title: Incremental learning of concept drift in nonstationary environments
  publication-title: IEEE Trans. Neural Netw.
– reference: W. Fan, Systematic data selection to mine concept-drifting data streams, in: Proceedings of the Tenth International Conference on Knowledge Discovery and Data Mining, 2004, pp. 128–137.
– reference: W.N. Street, Y.S. Kim, A streaming ensemble algorithm (SEA) for large-scale classification, in: Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining, 2001, pp. 377–382.
– volume: 74
  start-page: 2483
  year: 2011
  end-page: 2490
  ident: bib7
  article-title: A study on effectiveness of extreme learning machine
  publication-title: Neurocomputing
– volume: 37
  start-page: 392
  year: 2015
  end-page: 406
  ident: bib27
  article-title: An on-line weighted ensemble of regressor models to handle concept drifts
  publication-title: Eng. Appl. Artif. Intell.
– volume: 72
  start-page: 3391
  year: 2009
  end-page: 3395
  ident: bib17
  article-title: Ensemble of online sequential extreme learning machine
  publication-title: Neurocomputing
– reference: 〉.
– volume: 102
  start-page: 158
  year: 2015
  end-page: 166
  ident: bib21
  article-title: Countering the concept-drift problems in big data by an incrementally optimized stream mining model
  publication-title: J. Syst. Softw.
– volume: 16
  start-page: 1503
  year: 2012
  end-page: 1514
  ident: bib9
  article-title: Generalized extreme learning machine acting on a metric space
  publication-title: Soft Comput.
– volume: 42
  start-page: 513
  year: 2012
  end-page: 529
  ident: bib35
  article-title: Extreme learning machine for regression and multi-class classification
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 27
  start-page: 264
  year: 2015
  end-page: 280
  ident: bib18
  article-title: Towards effective bug triage with software data reduction techniques
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2010
  ident: bib39
  publication-title: UCI Machine Learning Repository, School of Information and Computer Sciences
– volume: 74
  start-page: 1800
  year: 2011
  end-page: 1808
  ident: bib23
  article-title: A robust incremental learning method for non-stationary environments
  publication-title: Neurocomputing
– reference:
– reference: M. Mike, Statistical Datasets, Department of Statistics, University of Carnegie Mellon, 1989 〈
– volume: 43
  start-page: 14
  year: 2013
  end-page: 23
  ident: bib2
  article-title: A one-layer recurrent neural network for real-time portfolio optimization with probability criterion
  publication-title: IEEE Trans. Cybern.
– volume: 102
  start-page: 135
  year: 2013
  end-page: 143
  ident: bib8
  article-title: EEG-based vigilance estimation using extreme learning machines
  publication-title: Neurocomputing
– volume: 41
  start-page: 8144
  year: 2014
  end-page: 8156
  ident: bib41
  article-title: A comparative study on concept drift detectors
  publication-title: Expert Syst. Appl.
– volume: 43
  start-page: 1984
  year: 2010
  end-page: 1992
  ident: bib12
  article-title: A new convex objective function for the supervised learning of single-layer neural networks
  publication-title: Pattern Recognit.
– volume: 265
  start-page: 50
  year: 2014
  end-page: 67
  ident: bib25
  article-title: Combining block-based and online methods in learning ensembles from concept drifting data streams
  publication-title: Inf. Sci.
– reference: G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams, in: Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining, 2001, pp. 97–106.
– reference: J. Gao, W. Fan, J. Han, P.S. Yu, A general framework for mining concept-drifting data streams with skewed distributions, in: Proceedings of the 2007 SIAM International Conference on Data Mining, 2007, pp. 3–14.
– volume: 22
  start-page: 730
  year: 2010
  end-page: 742
  ident: bib32
  article-title: The impact of diversity on online ensemble learning in the presence of concept drift
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 17
  start-page: 1411
  year: 2006
  end-page: 1423
  ident: bib16
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 24
  start-page: 619
  year: 2012
  end-page: 633
  ident: bib33
  article-title: DDD
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 99
  start-page: 124
  year: 2013
  end-page: 133
  ident: bib14
  article-title: Extracting elite pairwise constraints for clustering
  publication-title: Neurocomputing
– year: 2016
  ident: bib15
  article-title: QECK
  publication-title: IEEE Trans. Serv. Comput.
– volume: 42
  start-page: 2935
  year: 2015
  end-page: 2948
  ident: bib26
  article-title: A dynamic and on-line ensemble regression for changing environments
  publication-title: Expert Syst. Appl.
– reference: J.Z. Kolter, M.A. Maloof, Using additive expert ensembles to cope with concept drift, in: Proceedings of the 22nd International Conference on Machine Learning, 2005, pp. 449–456.
– reference: I. Žliobaitė, Learning under concept drift: an overview, 2010. 〈
– volume: 22
  start-page: 569
  year: 2013
  end-page: 576
  ident: bib38
  article-title: Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations
  publication-title: Neural Comput. Appl.
– volume: 27
  start-page: 264
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2016.04.043_bib18
  article-title: Towards effective bug triage with software data reduction techniques
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2014.2324590
– volume: 22
  start-page: 1517
  issue: 10
  year: 2011
  ident: 10.1016/j.neucom.2016.04.043_bib29
  article-title: Incremental learning of concept drift in nonstationary environments
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2011.2160459
– volume: 3
  start-page: 246
  year: 1991
  ident: 10.1016/j.neucom.2016.04.043_bib5
  article-title: Universal approximation using radial basis-function networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.2.246
– volume: 40
  start-page: 575
  issue: 2
  year: 2013
  ident: 10.1016/j.neucom.2016.04.043_bib1
  article-title: Musical pitch estimation using a supervised single hidden layer feed-forward neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.07.063
– volume: 102
  start-page: 135
  year: 2013
  ident: 10.1016/j.neucom.2016.04.043_bib8
  article-title: EEG-based vigilance estimation using extreme learning machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.041
– volume: 101
  start-page: 229
  year: 2013
  ident: 10.1016/j.neucom.2016.04.043_bib10
  article-title: Weighted extreme learning machine for imbalance learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.08.010
– volume: 13
  start-page: 583
  issue: 6
  year: 2014
  ident: 10.1016/j.neucom.2016.04.043_bib22
  article-title: Using instance-weighted naive Bayes for adapting concept drift in masquerade detection
  publication-title: Int. J. Inf. Secur.
  doi: 10.1007/s10207-014-0238-9
– volume: 16
  start-page: 1503
  issue: 9
  year: 2012
  ident: 10.1016/j.neucom.2016.04.043_bib9
  article-title: Generalized extreme learning machine acting on a metric space
  publication-title: Soft Comput.
  doi: 10.1007/s00500-012-0825-5
– volume: 22
  start-page: 730
  issue: 5
  year: 2010
  ident: 10.1016/j.neucom.2016.04.043_bib32
  article-title: The impact of diversity on online ensemble learning in the presence of concept drift
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.156
– volume: 22
  start-page: 569
  issue: 3–4
  year: 2013
  ident: 10.1016/j.neucom.2016.04.043_bib38
  article-title: Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-0873-x
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  ident: 10.1016/j.neucom.2016.04.043_bib16
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.880583
– ident: 10.1016/j.neucom.2016.04.043_bib37
  doi: 10.1109/IJCNN.2009.5178779
– volume: 70
  start-page: 489
  year: 2006
  ident: 10.1016/j.neucom.2016.04.043_bib6
  article-title: Extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– ident: 10.1016/j.neucom.2016.04.043_bib28
  doi: 10.1145/1102351.1102408
– volume: 265
  start-page: 50
  year: 2014
  ident: 10.1016/j.neucom.2016.04.043_bib25
  article-title: Combining block-based and online methods in learning ensembles from concept drifting data streams
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.12.011
– ident: 10.1016/j.neucom.2016.04.043_bib24
  doi: 10.1145/502512.502568
– ident: 10.1016/j.neucom.2016.04.043_bib34
  doi: 10.1137/1.9781611972771.1
– volume: 6
  start-page: 861
  year: 1993
  ident: 10.1016/j.neucom.2016.04.043_bib4
  article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80131-5
– year: 2016
  ident: 10.1016/j.neucom.2016.04.043_bib15
  article-title: QECK
  publication-title: IEEE Trans. Serv. Comput.
– volume: 74
  start-page: 2483
  issue: 16
  year: 2011
  ident: 10.1016/j.neucom.2016.04.043_bib7
  article-title: A study on effectiveness of extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.030
– volume: 72
  start-page: 3391
  year: 2009
  ident: 10.1016/j.neucom.2016.04.043_bib17
  article-title: Ensemble of online sequential extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.02.013
– volume: 102
  start-page: 158
  year: 2015
  ident: 10.1016/j.neucom.2016.04.043_bib21
  article-title: Countering the concept-drift problems in big data by an incrementally optimized stream mining model
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2014.07.010
– volume: 43
  start-page: 1984
  year: 2010
  ident: 10.1016/j.neucom.2016.04.043_bib12
  article-title: A new convex objective function for the supervised learning of single-layer neural networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.11.024
– volume: 37
  start-page: 392
  year: 2015
  ident: 10.1016/j.neucom.2016.04.043_bib27
  article-title: An on-line weighted ensemble of regressor models to handle concept drifts
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2014.10.003
– volume: 42
  start-page: 2935
  issue: 6
  year: 2015
  ident: 10.1016/j.neucom.2016.04.043_bib26
  article-title: A dynamic and on-line ensemble regression for changing environments
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.11.053
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: 10.1016/j.neucom.2016.04.043_bib35
  article-title: Extreme learning machine for regression and multi-class classification
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMCB.2011.2168604
– volume: 74
  start-page: 1800
  year: 2011
  ident: 10.1016/j.neucom.2016.04.043_bib23
  article-title: A robust incremental learning method for non-stationary environments
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.06.037
– volume: 43
  start-page: 14
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2016.04.043_bib2
  article-title: A one-layer recurrent neural network for real-time portfolio optimization with probability criterion
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2198812
– ident: 10.1016/j.neucom.2016.04.043_bib20
  doi: 10.1145/1014052.1014069
– volume: 44
  start-page: 2405
  issue: 12
  year: 2014
  ident: 10.1016/j.neucom.2016.04.043_bib11
  article-title: Semi-supervised and unsupervised extreme learning machines
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2307349
– year: 2010
  ident: 10.1016/j.neucom.2016.04.043_bib39
– volume: 99
  start-page: 124
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2016.04.043_bib14
  article-title: Extracting elite pairwise constraints for clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.06.013
– volume: 171
  start-page: 693
  year: 2016
  ident: 10.1016/j.neucom.2016.04.043_bib31
  article-title: An adaptive ensemble of on-line extreme learning machines with variable forgetting factor for dynamic system prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.035
– volume: 43
  start-page: 935
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2016.04.043_bib13
  article-title: Online modeling with tunable RBF network
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2218804
– volume: 87
  start-page: 79
  year: 2012
  ident: 10.1016/j.neucom.2016.04.043_bib36
  article-title: Online sequential extreme learning machine with forgetting mechanism
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.003
– ident: 10.1016/j.neucom.2016.04.043_bib42
– ident: 10.1016/j.neucom.2016.04.043_bib19
– volume: 41
  start-page: 8144
  issue: 18
  year: 2014
  ident: 10.1016/j.neucom.2016.04.043_bib41
  article-title: A comparative study on concept drift detectors
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.07.019
– volume: 24
  start-page: 619
  issue: 4
  year: 2012
  ident: 10.1016/j.neucom.2016.04.043_bib33
  article-title: DDD
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.58
– ident: 10.1016/j.neucom.2016.04.043_bib40
  doi: 10.1145/502512.502529
– volume: 44
  start-page: 773
  issue: 4
  year: 2015
  ident: 10.1016/j.neucom.2016.04.043_bib30
  article-title: Efficient mining of high-speed uncertain data streams
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-015-0675-9
– volume: 4
  start-page: 251
  year: 1991
  ident: 10.1016/j.neucom.2016.04.043_bib3
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(91)90009-T
SSID ssj0017129
Score 2.3988926
Snippet The online sequential extreme learning machine (OS-ELM) algorithm is an on-line and incremental learning method, which can learn data one-by-one or...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 322
SubjectTerms Concept drift
Extreme learning machine
Online/incremental learning
Regularized optimization method
Title FP-ELM: An online sequential learning algorithm for dealing with concept drift
URI https://dx.doi.org/10.1016/j.neucom.2016.04.043
Volume 207
WOSCitedRecordID wos000382794500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELbK48BlHyyIsuzKh72hrBIntZO9VasiQN2KA0g9EdWODUEloG5a8fMZZ-xAAcFyWKmKKidx2syX8cyXeRDyo8cl7OFRICU8TWD_h0GqBDzuocyKpBBc6iZReChGo3Q8zk46nXOfC7OYiqpK7-6y2_8qahgDYdvU2XeIu50UBuA7CB22IHbY_pPgD06CwfCPI_ywEMY-BkzXlh2fei5kMr24mZX15XUTaViAwdjysgpzGfeLWWmWuPumlIdqGkE4iqF_bSstFBZWLaUwLOdom7tV0er8ZgRUy7hsY3ZKR1Uf6sfUQ8RtnATmt3sOkfUCMBCX1CnDLrZOIcaYdezW1hiJy2dqGxmEq5-VntsYHnutpgAtVnBarpL9ZPVqYwp9uNpVjrPkdpY8TOATr5A1JnoZaL21_tFgfNy-ZxIRw2qM7o_45MomAvD5r3nZeHlkkJx-Ih-cJ0H7iIDPpKOrTfLRd-mgTml_ISMExC_aryjCgT7AgXo40BYOFOBAHRyohQN1cKANHLbI2cHg9Pdh4LpoBArcwdoSBGACG82KhKuI6zQ2QvCMqUmiM24NTCPAbdCca220mKjQuvwmCQ2PhU6TeJusVjeV3iE0kQo0tjEZk-AJyEiyUCc9ITSzRZki1SWxvz25ciXmbaeTaf6acLokaM-6xRIrbxwv_J3PnZmI5l8OcHr1zN13Xukr2XiA_R5ZrWdz_Y2sq0Vd_p19d1i6Bx0CiFY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FP-ELM%3A+An+online+sequential+learning+algorithm+for+dealing+with+concept+drift&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Liu%2C+Dong&rft.au=Wu%2C+YouXi&rft.au=Jiang%2C+He&rft.date=2016-09-26&rft.issn=0925-2312&rft.volume=207&rft.spage=322&rft.epage=334&rft_id=info:doi/10.1016%2Fj.neucom.2016.04.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2016_04_043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon