FP-ELM: An online sequential learning algorithm for dealing with concept drift
The online sequential extreme learning machine (OS-ELM) algorithm is an on-line and incremental learning method, which can learn data one-by-one or chunk-by-chunk with a fixed or varying chunk size. And OS-ELM achieves the same learning performance as ELM trained by the complete set of data. However...
Uložené v:
| Vydané v: | Neurocomputing (Amsterdam) Ročník 207; s. 322 - 334 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
26.09.2016
|
| Predmet: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The online sequential extreme learning machine (OS-ELM) algorithm is an on-line and incremental learning method, which can learn data one-by-one or chunk-by-chunk with a fixed or varying chunk size. And OS-ELM achieves the same learning performance as ELM trained by the complete set of data. However, in on-line learning environments, the concepts to be learned may change with time, a feature referred to as concept drift. To use ELMs in such non-stationary environments, a forgetting parameters extreme learning machine (FP-ELM) is proposed in this paper. The proposed FP-ELM can achieve incremental and on-line learning, just like OS-ELM. Furthermore, FP-ELM will assign a forgetting parameter to the previous training data according to the current performance to adapt to possible changes after a new chunk comes. The regularized optimization method is used to avoid estimator windup. Performance comparisons between FP-ELM and two frequently used ensemble approaches are carried out on several regression and classification problems with concept drift. The experimental results show that FP-ELM produces comparable or better performance with lower training time. |
|---|---|
| AbstractList | The online sequential extreme learning machine (OS-ELM) algorithm is an on-line and incremental learning method, which can learn data one-by-one or chunk-by-chunk with a fixed or varying chunk size. And OS-ELM achieves the same learning performance as ELM trained by the complete set of data. However, in on-line learning environments, the concepts to be learned may change with time, a feature referred to as concept drift. To use ELMs in such non-stationary environments, a forgetting parameters extreme learning machine (FP-ELM) is proposed in this paper. The proposed FP-ELM can achieve incremental and on-line learning, just like OS-ELM. Furthermore, FP-ELM will assign a forgetting parameter to the previous training data according to the current performance to adapt to possible changes after a new chunk comes. The regularized optimization method is used to avoid estimator windup. Performance comparisons between FP-ELM and two frequently used ensemble approaches are carried out on several regression and classification problems with concept drift. The experimental results show that FP-ELM produces comparable or better performance with lower training time. |
| Author | Jiang, He Wu, YouXi Liu, Dong |
| Author_xml | – sequence: 1 givenname: Dong surname: Liu fullname: Liu, Dong email: dongliu05@gmail.com organization: School of Software, Dalian University of Technology, Dalian 116621, China – sequence: 2 givenname: YouXi surname: Wu fullname: Wu, YouXi email: wuc@scse.hebut.edu.cn organization: School of Computer Science and Software, Hebei University of Technology, Tianjin 300130, China – sequence: 3 givenname: He surname: Jiang fullname: Jiang, He email: jianghe@dlut.edu.cn organization: School of Software, Dalian University of Technology, Dalian 116621, China |
| BookMark | eNqFkM1KAzEUhYNUsK2-gYu8wNSbTExmuhBKaVWoPwtdh5C5qSnTpGZSxbd3Sl25UDhwuQe-A-eMyCDEgIRcMpgwYPJqMwm4t3E74f03AdGrPCFDVileVLySAzKEml8XvGT8jIy6bgPAFOP1kDwun4vF6mFKZ4HG0PqAtMP3PYbsTUtbNCn4sKamXcfk89uWuphog6Y9uJ-9Q20MFneZNsm7fE5OnWk7vPi5Y_K6XLzM74rV0-39fLYqbAkyFwJ4zWuHvBHSMolV6ZSSNbdGYC0VA-4UVIBSIjpUxoKAWjgBTpYKK1GOiTjm2hS7LqHTu-S3Jn1pBvqwid7o4yb6sIkG0avssekvzPpsso8hJ-Pb_-CbI4x9sQ-PSXfWY1--8Qlt1k30fwd8A_BpgWs |
| CitedBy_id | crossref_primary_10_1016_j_arthro_2024_12_011 crossref_primary_10_1109_TC_2020_2973631 crossref_primary_10_1007_s11063_018_9865_x crossref_primary_10_3390_sym15101934 crossref_primary_10_1177_1748302619895421 crossref_primary_10_1016_j_neucom_2017_04_076 crossref_primary_10_1016_j_ast_2022_107797 crossref_primary_10_3390_aerospace10120994 crossref_primary_10_1007_s10489_022_03489_1 crossref_primary_10_1145_3532193 crossref_primary_10_7717_peerj_cs_1732 crossref_primary_10_1080_01969722_2019_1645996 crossref_primary_10_3389_frai_2022_955314 crossref_primary_10_1109_ACCESS_2022_3169785 crossref_primary_10_1109_TKDE_2024_3438274 crossref_primary_10_3390_info15120786 crossref_primary_10_1016_j_jksuci_2021_11_006 crossref_primary_10_1109_JIOT_2023_3265012 crossref_primary_10_3390_sym11060801 crossref_primary_10_1016_j_eswa_2017_11_042 crossref_primary_10_1016_j_engappai_2023_105927 crossref_primary_10_1155_2018_6794067 crossref_primary_10_1016_j_asoc_2018_11_009 crossref_primary_10_1016_j_energy_2022_123622 crossref_primary_10_1080_19479832_2020_1821100 crossref_primary_10_1109_TKDE_2018_2876857 crossref_primary_10_1016_j_neucom_2019_03_079 crossref_primary_10_1109_TKDE_2023_3272911 crossref_primary_10_1007_s11042_023_17039_5 crossref_primary_10_1007_s10489_021_02912_3 crossref_primary_10_1007_s10462_020_09844_3 crossref_primary_10_1007_s11063_019_09995_7 crossref_primary_10_1111_coin_12520 |
| Cites_doi | 10.1109/TKDE.2014.2324590 10.1109/TNN.2011.2160459 10.1162/neco.1991.3.2.246 10.1016/j.eswa.2012.07.063 10.1016/j.neucom.2012.02.041 10.1016/j.neucom.2012.08.010 10.1007/s10207-014-0238-9 10.1007/s00500-012-0825-5 10.1109/TKDE.2009.156 10.1007/s00521-012-0873-x 10.1109/TNN.2006.880583 10.1109/IJCNN.2009.5178779 10.1016/j.neucom.2005.12.126 10.1145/1102351.1102408 10.1016/j.ins.2013.12.011 10.1145/502512.502568 10.1137/1.9781611972771.1 10.1016/S0893-6080(05)80131-5 10.1016/j.neucom.2010.11.030 10.1016/j.neucom.2009.02.013 10.1016/j.jss.2014.07.010 10.1016/j.patcog.2009.11.024 10.1016/j.engappai.2014.10.003 10.1016/j.eswa.2014.11.053 10.1109/TSMCB.2011.2168604 10.1016/j.neucom.2010.06.037 10.1109/TSMCB.2012.2198812 10.1145/1014052.1014069 10.1109/TCYB.2014.2307349 10.1016/j.neucom.2012.06.013 10.1016/j.neucom.2015.07.035 10.1109/TSMCB.2012.2218804 10.1016/j.neucom.2012.02.003 10.1016/j.eswa.2014.07.019 10.1109/TKDE.2011.58 10.1145/502512.502529 10.1007/s10489-015-0675-9 10.1016/0893-6080(91)90009-T |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. |
| Copyright_xml | – notice: 2016 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2016.04.043 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 334 |
| ExternalDocumentID | 10_1016_j_neucom_2016_04_043 S0925231216303125 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-402929fe2d46c16e83f77692ca4e967102f7080e66eefe7ac04094f40f637e843 |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382794500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 03:02:42 EST 2025 Tue Nov 18 20:53:25 EST 2025 Fri Feb 23 02:28:31 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Online/incremental learning Extreme learning machine Concept drift Regularized optimization method |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-402929fe2d46c16e83f77692ca4e967102f7080e66eefe7ac04094f40f637e843 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2016_04_043 crossref_citationtrail_10_1016_j_neucom_2016_04_043 elsevier_sciencedirect_doi_10_1016_j_neucom_2016_04_043 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-09-26 |
| PublicationDateYYYYMMDD | 2016-09-26 |
| PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-26 day: 26 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2016 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Leshno, Lin, Pinkus, Schocken (bib4) 1993; 6 I. Žliobaitė, Learning under concept drift: an overview, 2010. Gonçalves, Santos, Barros, Vieira (bib41) 2014; 41 Hornik (bib3) 1991; 4 Zong, Huang, Chen (bib10) 2013; 101 J. Gao, W. Fan, J. Han, P.S. Yu, A general framework for mining concept-drifting data streams with skewed distributions, in: Proceedings of the 2007 SIAM International Conference on Data Mining, 2007, pp. 3–14. Elwell, Polikar (bib29) 2011; 22 〉 Xuan, Jiang, Hu, Ren, Zou, Luo, Wu (bib18) 2015; 27 Liu, Dang, Huang (bib2) 2013; 43 Zhao, Wang, Park (bib36) 2012; 87 Lim, Lee, Pang (bib38) 2013; 22 Frank, Asuncion (bib39) 2010 Yang, Fong (bib21) 2015; 102 J.Z. Kolter, M.A. Maloof, Using additive expert ensembles to cope with concept drift, in: Proceedings of the 22nd International Conference on Machine Learning, 2005, pp. 449–456. R. Elwell, R. Polikar, Incremental learning in nonstationary environments with controlled forgetting, in: Proceedings of the International Joint Conference on Neural Networks, 2009, pp. 771–778. Brzezinski, Stefanowski (bib25) 2014; 265 Soares, Araújo (bib31) 2016; 171 Nie, Jiang, Ren, Sun, Li (bib15) 2016 Jiang, Ren, Xuan, Wu (bib14) 2013; 99 Martínez-Rego, Pérez-Sánchez, Fontenla-Romero, Alonso-Betanzos (bib23) 2011; 74 Taweewat, Wutiwiwatchai (bib1) 2013; 40 Huang, Zhou, Ding, Zhang (bib35) 2012; 42 G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams, in: Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining, 2001, pp. 97–106. Soares, Araújo (bib27) 2015; 37 Lan, Soh, Huang (bib17) 2009; 72 Minku, White, Yao (bib32) 2010; 22 M. Mike, Statistical Datasets, Department of Statistics, University of Carnegie Mellon, 1989 Chen, Gong, Hong (bib13) 2013; 43 . Wang, Cao, Yuan (bib7) 2011; 74 W.N. Street, Y.S. Kim, A streaming ensemble algorithm (SEA) for large-scale classification, in: Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining, 2001, pp. 377–382. Shi, Lu (bib8) 2013; 102 Zhao, Park, Lee, Cao (bib9) 2012; 16 Liang, Huang, Saratchandran, Sundararajan (bib16) 2006; 17 Park, Sandberg (bib5) 1991; 3 W. Fan, Systematic data selection to mine concept-drifting data streams, in: Proceedings of the Tenth International Conference on Knowledge Discovery and Data Mining, 2004, pp. 128–137. Minku, Yao (bib33) 2012; 24 Fontenla-Romero, Guijarro-Berdinãs, Pérez-Sánchez, Alonso-Betanzos (bib12) 2010; 43 Huang, Zhu, Siew (bib6) 2006; 70 Sen (bib22) 2014; 13 Soares, Araújo (bib26) 2015; 42 Huang, Song, Gupta, Wu (bib11) 2014; 44 Han, Giraud-Carrier, Li (bib30) 2015; 44 Leshno (10.1016/j.neucom.2016.04.043_bib4) 1993; 6 Zong (10.1016/j.neucom.2016.04.043_bib10) 2013; 101 Gonçalves (10.1016/j.neucom.2016.04.043_bib41) 2014; 41 Minku (10.1016/j.neucom.2016.04.043_bib33) 2012; 24 Chen (10.1016/j.neucom.2016.04.043_bib13) 2013; 43 10.1016/j.neucom.2016.04.043_bib20 Zhao (10.1016/j.neucom.2016.04.043_bib36) 2012; 87 10.1016/j.neucom.2016.04.043_bib42 Jiang (10.1016/j.neucom.2016.04.043_bib14) 2013; 99 Elwell (10.1016/j.neucom.2016.04.043_bib29) 2011; 22 Zhao (10.1016/j.neucom.2016.04.043_bib9) 2012; 16 10.1016/j.neucom.2016.04.043_bib40 10.1016/j.neucom.2016.04.043_bib34 Liu (10.1016/j.neucom.2016.04.043_bib2) 2013; 43 Hornik (10.1016/j.neucom.2016.04.043_bib3) 1991; 4 Liang (10.1016/j.neucom.2016.04.043_bib16) 2006; 17 Xuan (10.1016/j.neucom.2016.04.043_bib18) 2015; 27 Brzezinski (10.1016/j.neucom.2016.04.043_bib25) 2014; 265 Lan (10.1016/j.neucom.2016.04.043_bib17) 2009; 72 Wang (10.1016/j.neucom.2016.04.043_bib7) 2011; 74 10.1016/j.neucom.2016.04.043_bib37 Huang (10.1016/j.neucom.2016.04.043_bib11) 2014; 44 Frank (10.1016/j.neucom.2016.04.043_bib39) 2010 Shi (10.1016/j.neucom.2016.04.043_bib8) 2013; 102 10.1016/j.neucom.2016.04.043_bib19 Park (10.1016/j.neucom.2016.04.043_bib5) 1991; 3 Huang (10.1016/j.neucom.2016.04.043_bib6) 2006; 70 Martínez-Rego (10.1016/j.neucom.2016.04.043_bib23) 2011; 74 Soares (10.1016/j.neucom.2016.04.043_bib27) 2015; 37 Nie (10.1016/j.neucom.2016.04.043_bib15) 2016 Soares (10.1016/j.neucom.2016.04.043_bib31) 2016; 171 Lim (10.1016/j.neucom.2016.04.043_bib38) 2013; 22 Sen (10.1016/j.neucom.2016.04.043_bib22) 2014; 13 Soares (10.1016/j.neucom.2016.04.043_bib26) 2015; 42 Taweewat (10.1016/j.neucom.2016.04.043_bib1) 2013; 40 10.1016/j.neucom.2016.04.043_bib24 Han (10.1016/j.neucom.2016.04.043_bib30) 2015; 44 Minku (10.1016/j.neucom.2016.04.043_bib32) 2010; 22 Huang (10.1016/j.neucom.2016.04.043_bib35) 2012; 42 10.1016/j.neucom.2016.04.043_bib28 Fontenla-Romero (10.1016/j.neucom.2016.04.043_bib12) 2010; 43 Yang (10.1016/j.neucom.2016.04.043_bib21) 2015; 102 |
| References_xml | – volume: 40 start-page: 575 year: 2013 end-page: 589 ident: bib1 article-title: Musical pitch estimation using a supervised single hidden layer feed-forward neural network publication-title: Expert Syst. Appl. – volume: 44 start-page: 773 year: 2015 end-page: 785 ident: bib30 article-title: Efficient mining of high-speed uncertain data streams publication-title: Appl. Intell. – volume: 171 start-page: 693 year: 2016 end-page: 707 ident: bib31 article-title: An adaptive ensemble of on-line extreme learning machines with variable forgetting factor for dynamic system prediction publication-title: Neurocomputing – reference: R. Elwell, R. Polikar, Incremental learning in nonstationary environments with controlled forgetting, in: Proceedings of the International Joint Conference on Neural Networks, 2009, pp. 771–778. – volume: 13 start-page: 583 year: 2014 end-page: 590 ident: bib22 article-title: Using instance-weighted naive Bayes for adapting concept drift in masquerade detection publication-title: Int. J. Inf. Secur. – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: bib6 article-title: Extreme learning machine publication-title: Neurocomputing – volume: 3 start-page: 246 year: 1991 end-page: 257 ident: bib5 article-title: Universal approximation using radial basis-function networks publication-title: Neural Comput. – volume: 44 start-page: 2405 year: 2014 end-page: 2417 ident: bib11 article-title: Semi-supervised and unsupervised extreme learning machines publication-title: IEEE Trans. Cybern. – volume: 87 start-page: 79 year: 2012 end-page: 89 ident: bib36 article-title: Online sequential extreme learning machine with forgetting mechanism publication-title: Neurocomputing – volume: 6 start-page: 861 year: 1993 end-page: 867 ident: bib4 article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function publication-title: Neural Netw. – volume: 43 start-page: 935 year: 2013 end-page: 947 ident: bib13 article-title: Online modeling with tunable RBF network publication-title: IEEE Trans. Cybern. – volume: 4 start-page: 251 year: 1991 end-page: 257 ident: bib3 article-title: Approximation capabilities of multilayer feedforward networks publication-title: Neural Netw. – volume: 101 start-page: 229 year: 2013 end-page: 242 ident: bib10 article-title: Weighted extreme learning machine for imbalance learning publication-title: Neurocomputing – volume: 22 start-page: 1517 year: 2011 end-page: 1531 ident: bib29 article-title: Incremental learning of concept drift in nonstationary environments publication-title: IEEE Trans. Neural Netw. – reference: W. Fan, Systematic data selection to mine concept-drifting data streams, in: Proceedings of the Tenth International Conference on Knowledge Discovery and Data Mining, 2004, pp. 128–137. – reference: W.N. Street, Y.S. Kim, A streaming ensemble algorithm (SEA) for large-scale classification, in: Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining, 2001, pp. 377–382. – volume: 74 start-page: 2483 year: 2011 end-page: 2490 ident: bib7 article-title: A study on effectiveness of extreme learning machine publication-title: Neurocomputing – volume: 37 start-page: 392 year: 2015 end-page: 406 ident: bib27 article-title: An on-line weighted ensemble of regressor models to handle concept drifts publication-title: Eng. Appl. Artif. Intell. – volume: 72 start-page: 3391 year: 2009 end-page: 3395 ident: bib17 article-title: Ensemble of online sequential extreme learning machine publication-title: Neurocomputing – reference: 〉. – volume: 102 start-page: 158 year: 2015 end-page: 166 ident: bib21 article-title: Countering the concept-drift problems in big data by an incrementally optimized stream mining model publication-title: J. Syst. Softw. – volume: 16 start-page: 1503 year: 2012 end-page: 1514 ident: bib9 article-title: Generalized extreme learning machine acting on a metric space publication-title: Soft Comput. – volume: 42 start-page: 513 year: 2012 end-page: 529 ident: bib35 article-title: Extreme learning machine for regression and multi-class classification publication-title: IEEE Trans. Syst. Man Cybern. – volume: 27 start-page: 264 year: 2015 end-page: 280 ident: bib18 article-title: Towards effective bug triage with software data reduction techniques publication-title: IEEE Trans. Knowl. Data Eng. – year: 2010 ident: bib39 publication-title: UCI Machine Learning Repository, School of Information and Computer Sciences – volume: 74 start-page: 1800 year: 2011 end-page: 1808 ident: bib23 article-title: A robust incremental learning method for non-stationary environments publication-title: Neurocomputing – reference: 〉 – reference: M. Mike, Statistical Datasets, Department of Statistics, University of Carnegie Mellon, 1989 〈 – volume: 43 start-page: 14 year: 2013 end-page: 23 ident: bib2 article-title: A one-layer recurrent neural network for real-time portfolio optimization with probability criterion publication-title: IEEE Trans. Cybern. – volume: 102 start-page: 135 year: 2013 end-page: 143 ident: bib8 article-title: EEG-based vigilance estimation using extreme learning machines publication-title: Neurocomputing – volume: 41 start-page: 8144 year: 2014 end-page: 8156 ident: bib41 article-title: A comparative study on concept drift detectors publication-title: Expert Syst. Appl. – volume: 43 start-page: 1984 year: 2010 end-page: 1992 ident: bib12 article-title: A new convex objective function for the supervised learning of single-layer neural networks publication-title: Pattern Recognit. – volume: 265 start-page: 50 year: 2014 end-page: 67 ident: bib25 article-title: Combining block-based and online methods in learning ensembles from concept drifting data streams publication-title: Inf. Sci. – reference: G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams, in: Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining, 2001, pp. 97–106. – reference: J. Gao, W. Fan, J. Han, P.S. Yu, A general framework for mining concept-drifting data streams with skewed distributions, in: Proceedings of the 2007 SIAM International Conference on Data Mining, 2007, pp. 3–14. – volume: 22 start-page: 730 year: 2010 end-page: 742 ident: bib32 article-title: The impact of diversity on online ensemble learning in the presence of concept drift publication-title: IEEE Trans. Knowl. Data Eng. – volume: 17 start-page: 1411 year: 2006 end-page: 1423 ident: bib16 article-title: A fast and accurate online sequential learning algorithm for feedforward networks publication-title: IEEE Trans. Neural Netw. – volume: 24 start-page: 619 year: 2012 end-page: 633 ident: bib33 article-title: DDD publication-title: IEEE Trans. Knowl. Data Eng. – volume: 99 start-page: 124 year: 2013 end-page: 133 ident: bib14 article-title: Extracting elite pairwise constraints for clustering publication-title: Neurocomputing – year: 2016 ident: bib15 article-title: QECK publication-title: IEEE Trans. Serv. Comput. – volume: 42 start-page: 2935 year: 2015 end-page: 2948 ident: bib26 article-title: A dynamic and on-line ensemble regression for changing environments publication-title: Expert Syst. Appl. – reference: J.Z. Kolter, M.A. Maloof, Using additive expert ensembles to cope with concept drift, in: Proceedings of the 22nd International Conference on Machine Learning, 2005, pp. 449–456. – reference: I. Žliobaitė, Learning under concept drift: an overview, 2010. 〈 – volume: 22 start-page: 569 year: 2013 end-page: 576 ident: bib38 article-title: Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations publication-title: Neural Comput. Appl. – volume: 27 start-page: 264 issue: 1 year: 2015 ident: 10.1016/j.neucom.2016.04.043_bib18 article-title: Towards effective bug triage with software data reduction techniques publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2014.2324590 – volume: 22 start-page: 1517 issue: 10 year: 2011 ident: 10.1016/j.neucom.2016.04.043_bib29 article-title: Incremental learning of concept drift in nonstationary environments publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2011.2160459 – volume: 3 start-page: 246 year: 1991 ident: 10.1016/j.neucom.2016.04.043_bib5 article-title: Universal approximation using radial basis-function networks publication-title: Neural Comput. doi: 10.1162/neco.1991.3.2.246 – volume: 40 start-page: 575 issue: 2 year: 2013 ident: 10.1016/j.neucom.2016.04.043_bib1 article-title: Musical pitch estimation using a supervised single hidden layer feed-forward neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.07.063 – volume: 102 start-page: 135 year: 2013 ident: 10.1016/j.neucom.2016.04.043_bib8 article-title: EEG-based vigilance estimation using extreme learning machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.041 – volume: 101 start-page: 229 year: 2013 ident: 10.1016/j.neucom.2016.04.043_bib10 article-title: Weighted extreme learning machine for imbalance learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.08.010 – volume: 13 start-page: 583 issue: 6 year: 2014 ident: 10.1016/j.neucom.2016.04.043_bib22 article-title: Using instance-weighted naive Bayes for adapting concept drift in masquerade detection publication-title: Int. J. Inf. Secur. doi: 10.1007/s10207-014-0238-9 – volume: 16 start-page: 1503 issue: 9 year: 2012 ident: 10.1016/j.neucom.2016.04.043_bib9 article-title: Generalized extreme learning machine acting on a metric space publication-title: Soft Comput. doi: 10.1007/s00500-012-0825-5 – volume: 22 start-page: 730 issue: 5 year: 2010 ident: 10.1016/j.neucom.2016.04.043_bib32 article-title: The impact of diversity on online ensemble learning in the presence of concept drift publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.156 – volume: 22 start-page: 569 issue: 3–4 year: 2013 ident: 10.1016/j.neucom.2016.04.043_bib38 article-title: Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-0873-x – volume: 17 start-page: 1411 issue: 6 year: 2006 ident: 10.1016/j.neucom.2016.04.043_bib16 article-title: A fast and accurate online sequential learning algorithm for feedforward networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.880583 – ident: 10.1016/j.neucom.2016.04.043_bib37 doi: 10.1109/IJCNN.2009.5178779 – volume: 70 start-page: 489 year: 2006 ident: 10.1016/j.neucom.2016.04.043_bib6 article-title: Extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – ident: 10.1016/j.neucom.2016.04.043_bib28 doi: 10.1145/1102351.1102408 – volume: 265 start-page: 50 year: 2014 ident: 10.1016/j.neucom.2016.04.043_bib25 article-title: Combining block-based and online methods in learning ensembles from concept drifting data streams publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.12.011 – ident: 10.1016/j.neucom.2016.04.043_bib24 doi: 10.1145/502512.502568 – ident: 10.1016/j.neucom.2016.04.043_bib34 doi: 10.1137/1.9781611972771.1 – volume: 6 start-page: 861 year: 1993 ident: 10.1016/j.neucom.2016.04.043_bib4 article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80131-5 – year: 2016 ident: 10.1016/j.neucom.2016.04.043_bib15 article-title: QECK publication-title: IEEE Trans. Serv. Comput. – volume: 74 start-page: 2483 issue: 16 year: 2011 ident: 10.1016/j.neucom.2016.04.043_bib7 article-title: A study on effectiveness of extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.11.030 – volume: 72 start-page: 3391 year: 2009 ident: 10.1016/j.neucom.2016.04.043_bib17 article-title: Ensemble of online sequential extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.02.013 – volume: 102 start-page: 158 year: 2015 ident: 10.1016/j.neucom.2016.04.043_bib21 article-title: Countering the concept-drift problems in big data by an incrementally optimized stream mining model publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2014.07.010 – volume: 43 start-page: 1984 year: 2010 ident: 10.1016/j.neucom.2016.04.043_bib12 article-title: A new convex objective function for the supervised learning of single-layer neural networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.11.024 – volume: 37 start-page: 392 year: 2015 ident: 10.1016/j.neucom.2016.04.043_bib27 article-title: An on-line weighted ensemble of regressor models to handle concept drifts publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2014.10.003 – volume: 42 start-page: 2935 issue: 6 year: 2015 ident: 10.1016/j.neucom.2016.04.043_bib26 article-title: A dynamic and on-line ensemble regression for changing environments publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.11.053 – volume: 42 start-page: 513 issue: 2 year: 2012 ident: 10.1016/j.neucom.2016.04.043_bib35 article-title: Extreme learning machine for regression and multi-class classification publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMCB.2011.2168604 – volume: 74 start-page: 1800 year: 2011 ident: 10.1016/j.neucom.2016.04.043_bib23 article-title: A robust incremental learning method for non-stationary environments publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.06.037 – volume: 43 start-page: 14 issue: 1 year: 2013 ident: 10.1016/j.neucom.2016.04.043_bib2 article-title: A one-layer recurrent neural network for real-time portfolio optimization with probability criterion publication-title: IEEE Trans. Cybern. doi: 10.1109/TSMCB.2012.2198812 – ident: 10.1016/j.neucom.2016.04.043_bib20 doi: 10.1145/1014052.1014069 – volume: 44 start-page: 2405 issue: 12 year: 2014 ident: 10.1016/j.neucom.2016.04.043_bib11 article-title: Semi-supervised and unsupervised extreme learning machines publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2307349 – year: 2010 ident: 10.1016/j.neucom.2016.04.043_bib39 – volume: 99 start-page: 124 issue: 1 year: 2013 ident: 10.1016/j.neucom.2016.04.043_bib14 article-title: Extracting elite pairwise constraints for clustering publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.06.013 – volume: 171 start-page: 693 year: 2016 ident: 10.1016/j.neucom.2016.04.043_bib31 article-title: An adaptive ensemble of on-line extreme learning machines with variable forgetting factor for dynamic system prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.035 – volume: 43 start-page: 935 issue: 3 year: 2013 ident: 10.1016/j.neucom.2016.04.043_bib13 article-title: Online modeling with tunable RBF network publication-title: IEEE Trans. Cybern. doi: 10.1109/TSMCB.2012.2218804 – volume: 87 start-page: 79 year: 2012 ident: 10.1016/j.neucom.2016.04.043_bib36 article-title: Online sequential extreme learning machine with forgetting mechanism publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.003 – ident: 10.1016/j.neucom.2016.04.043_bib42 – ident: 10.1016/j.neucom.2016.04.043_bib19 – volume: 41 start-page: 8144 issue: 18 year: 2014 ident: 10.1016/j.neucom.2016.04.043_bib41 article-title: A comparative study on concept drift detectors publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.07.019 – volume: 24 start-page: 619 issue: 4 year: 2012 ident: 10.1016/j.neucom.2016.04.043_bib33 article-title: DDD publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2011.58 – ident: 10.1016/j.neucom.2016.04.043_bib40 doi: 10.1145/502512.502529 – volume: 44 start-page: 773 issue: 4 year: 2015 ident: 10.1016/j.neucom.2016.04.043_bib30 article-title: Efficient mining of high-speed uncertain data streams publication-title: Appl. Intell. doi: 10.1007/s10489-015-0675-9 – volume: 4 start-page: 251 year: 1991 ident: 10.1016/j.neucom.2016.04.043_bib3 article-title: Approximation capabilities of multilayer feedforward networks publication-title: Neural Netw. doi: 10.1016/0893-6080(91)90009-T |
| SSID | ssj0017129 |
| Score | 2.3988926 |
| Snippet | The online sequential extreme learning machine (OS-ELM) algorithm is an on-line and incremental learning method, which can learn data one-by-one or... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 322 |
| SubjectTerms | Concept drift Extreme learning machine Online/incremental learning Regularized optimization method |
| Title | FP-ELM: An online sequential learning algorithm for dealing with concept drift |
| URI | https://dx.doi.org/10.1016/j.neucom.2016.04.043 |
| Volume | 207 |
| WOSCitedRecordID | wos000382794500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect (Freedom Collection) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZbu4e97D7W3dDD3oqHI8mSvLcwUrrRhcI6yJux5ePNJXVL6oz-_B3pyG62jN1gEEwQkSN0vhx_-nIujL2yeV2azKkE6ipNlKjKxDpTJvhob6TLRZVZajZh5nO7WOTHMVb1MrQTMF1nr67yi_9qahxDY_vU2b8w93hTHMD3aHS8otnx-keGPzhOZkcfouBHhTD2KWC69-r4ctBCyuXn81XbfzkLkYY1EsZRl3WUy7hfr9rmO-0-lPJwoRFElBimZ77SQu1hNUoKR-2auHl8KnqfH0bQtSzaMWanjVL1IWxKDxPt4yQov530sK2cGBIWRZYgayQfC-RWrREhYX3T7wpqdxs9pxRi4yEsSeHc8u8kNZy-7mDtg338okKlWir19EPl7I9-KX4lyDnRd4nsJtsVJsvR-e1O380W78e_m8xEUFHGuPQhxzIEAm5_1885zAYvObnH7sQDBZ8SEO6zG9A9YHeHZh08-u6HbE64eMOnHSdU8GtU8AEVfEQFR1TwiAruUcEjKnhAxSP26WB28vYwic00Eoenwt7rBMiEGxC10m6iwcrGGJ0LVyrIteeZjcHTA2gN0IApXepP_o1KGy0NWCUfs53uvIMnjBtTiRw03gBS5YSztUplVVYSpMpULfaYHLancLHSvG94siyGkMLTgja18JtapApfco8l46wLqrTym8-bYeeLyBaJBRYIll_OfPrPM5-x29e_g-dsp1-t4QW75b727eXqZUTVN4g7jYE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FP-ELM%3A+An+online+sequential+learning+algorithm+for+dealing+with+concept+drift&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Liu%2C+Dong&rft.au=Wu%2C+YouXi&rft.au=Jiang%2C+He&rft.date=2016-09-26&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=207&rft.spage=322&rft.epage=334&rft_id=info:doi/10.1016%2Fj.neucom.2016.04.043&rft.externalDocID=S0925231216303125 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |