An interpretable unsupervised capsule network via comprehensive contrastive learning and two-stage training

Limited attention has been given to unsupervised capsule networks (CapsNets) with contrastive learning due to the challenge of harmoniously learning interpretable primary and high-level capsules. To address this issue, we focus on three aspects: loss function, routing algorithm, and training strateg...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Pattern recognition Ročník 158; s. 111059
Hlavní autori: Zeng, Ru, Song, Yan, Zhong, Yanjiu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.02.2025
Predmet:
ISSN:0031-3203
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Limited attention has been given to unsupervised capsule networks (CapsNets) with contrastive learning due to the challenge of harmoniously learning interpretable primary and high-level capsules. To address this issue, we focus on three aspects: loss function, routing algorithm, and training strategy. First, we propose a comprehensive contrastive loss to ensure consistency in learning both high-level and primary capsules across different objects. Next, we introduce an agreement-based routing mechanism for the activation of high-level capsules. Finally, we present a two-stage training strategy to resolve conflicts between multiple losses. Ablation experiments show that these methods all improve model performance. Results from linear evaluation and semi-supervised learning demonstrate that our model outperforms other CapsNets and convolutional neural networks in learning high-level capsules. Additionally, visualizing capsules provides insights into the primary capsules, which remain consistent across images and align with human vision. •Propose unsupervised CapsNet based on contrastive learning.•Develop a comprehensive contrastive loss for interpretable capsules.•Implement a two-stage training strategy to resolve loss function conflicts.•Design an agreement routing algorithm considering prediction similarity and distribution.
AbstractList Limited attention has been given to unsupervised capsule networks (CapsNets) with contrastive learning due to the challenge of harmoniously learning interpretable primary and high-level capsules. To address this issue, we focus on three aspects: loss function, routing algorithm, and training strategy. First, we propose a comprehensive contrastive loss to ensure consistency in learning both high-level and primary capsules across different objects. Next, we introduce an agreement-based routing mechanism for the activation of high-level capsules. Finally, we present a two-stage training strategy to resolve conflicts between multiple losses. Ablation experiments show that these methods all improve model performance. Results from linear evaluation and semi-supervised learning demonstrate that our model outperforms other CapsNets and convolutional neural networks in learning high-level capsules. Additionally, visualizing capsules provides insights into the primary capsules, which remain consistent across images and align with human vision. •Propose unsupervised CapsNet based on contrastive learning.•Develop a comprehensive contrastive loss for interpretable capsules.•Implement a two-stage training strategy to resolve loss function conflicts.•Design an agreement routing algorithm considering prediction similarity and distribution.
ArticleNumber 111059
Author Song, Yan
Zeng, Ru
Zhong, Yanjiu
Author_xml – sequence: 1
  givenname: Ru
  orcidid: 0000-0002-4270-9662
  surname: Zeng
  fullname: Zeng, Ru
  email: zengru_neo@163.com
– sequence: 2
  givenname: Yan
  orcidid: 0000-0002-9035-9142
  surname: Song
  fullname: Song, Yan
  email: sonya@usst.edu.cn
– sequence: 3
  givenname: Yanjiu
  surname: Zhong
  fullname: Zhong, Yanjiu
  email: zhongyanjiu721@163.com
BookMark eNqFkE1OwzAQhb0oEm3hBix8gQQ7dpqaBVJV8SchsYG15djj4jZ1ItsN4vYkhBULWM3Mm_meNG-BZr71gNAVJTkldHW9zzuVdLvLC1LwnFJKSjFDc0IYzVhB2DlaxLgnhFaUF3N02HjsfILQBUiqbgCffDx1EHoXwWCtungaRA_pow0H3DuFdXscjt_BR9fDMPkUVExj34AK3vkdVt7gAchiUjvAw96N8gU6s6qJcPlTl-jt_u51-5g9vzw8bTfPmWZklTJmDSsElLou10QIQSw3qrKcC15aoapKFMIYIQpbEbUymjOr1oPOrKa6rmq2RHzy1aGNMYCVXXBHFT4lJXIMSe7lFJIcQ5JTSAN28wvTLqnkvh90zX_w7QTD8FjvIMioHXgNxgXQSZrW_W3wBfAtjQY
CitedBy_id crossref_primary_10_1371_journal_pone_0329202
Cites_doi 10.1016/j.eswa.2023.122284
10.1109/CVPR46437.2021.01408
10.1109/CVPR42600.2020.00975
10.1109/ICCV.2019.00580
10.1007/978-3-642-21735-7_6
10.1016/j.patcog.2021.108486
10.1109/CVPR.2017.634
10.1162/neco_a_01557
10.1038/s41598-021-93977-0
10.1016/j.patcog.2023.110142
10.1109/TII.2021.3128412
10.1109/CVPR.2004.1315150
10.1609/aaai.v38i20.30228
10.1109/5.726791
10.1016/j.patcog.2022.109270
10.1109/CVPR.2016.90
10.1016/j.neucom.2023.126916
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2024.111059
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_patcog_2024_111059
S0031320324008100
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-3fd329e5cb5809990f4da7f44945f9a77929dd992f70a6dc43fa89a73fc1cb7b3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001331367700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Tue Nov 18 20:41:47 EST 2025
Sat Nov 29 03:52:41 EST 2025
Sat Nov 16 15:59:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Unsupervised capsule network
Routing algorithm
Comprehensive contrastive loss
Interpretability
Primary capsules
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-3fd329e5cb5809990f4da7f44945f9a77929dd992f70a6dc43fa89a73fc1cb7b3
ORCID 0000-0002-9035-9142
0000-0002-4270-9662
ParticipantIDs crossref_primary_10_1016_j_patcog_2024_111059
crossref_citationtrail_10_1016_j_patcog_2024_111059
elsevier_sciencedirect_doi_10_1016_j_patcog_2024_111059
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References H. Liu, C. Li, X. Zhang, et al., Depression Detection via Capsule Networks with Contrastive Learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, (20) 2024, pp. 22231–22239.
J. Gu, V. Tresp, H. Hu, Capsule network is not more robust than convolutional network, in: IEEE Conference on Computer Vision and Pattern Recognition, 2021, pp. 14309–14317.
Liu, Dong, Zhang, Xu (b11) 2024; 563
Wah, Branson, Welinder (b39) 2011
Hadian, Zhang, Etesami (b15) 2024
Zeng, Qin, Song (b29) 2024; 238
K. He, X. Zhang, S. Ren, et al., Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
Y. Netzer, T. Wang, A. Coates, et al., Reading digits in natural images with unsupervised feature learning, in: Conference and Workshop on Neural Information Processing Systems No. 5, 2011, p. 7.
Cheng, Wang, Wang, Zhang, Han, Zhang (b12) 2023; 137
Shi, Niu, Zhou (b21) 2022; 124
Poličar, Stražar, Zupan (b40) 2019
Hahn, Pyeon, Kim (b37) 2019; 32
K. He, H. Fan, Y. Wu, et al., Momentum contrast for unsupervised visual representation learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, p. 9729.
Wang, Wang, Chen (b8) 2024; 141
Liu, Zhang, Zhang, Han (b13) 2021; 44
Y. LeCun, F. Huang, L. Bottou, Learning methods for generic object recognition with invariance to pose and lighting, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vol. 2, 2004, p. 104.
W. Wang, Z. Zhang, S. Qi, et al., Learning compositional neural information fusion for human parsing, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 5703–5713.
G. Hinton, S. Sabour, N. Frosst, Matrix capsules with EM routing, in: International Conference on Learning Representations, 2018.
Kosiorek, Sabour, Teh, Hinton (b4) 2019; 32
Zhang, Zhang, Zhang, Wang, Wang, Zheng (b20) 2024; 12
Chen, Shen, Zhao, Yang, Zhang (b14) 2024; 148
Mazzia, Salvetti, Chiaberge (b28) 2021; 11
Zeng, Song (b22) 2022; 18
Howard, Zhu, Chen (b25) 2017
Hu, Lu, Zhou (b16) 2024; 3
Sun, Tagliasacchi, Sabour, Hinton (b1) 2021; 34
M. Tan, Q. Le, Efficientnet: Rethinking model scaling for convolutional neural networks, in: International Conference on Machine Learning, 2019, pp. 6105–6114.
Krizhevsky, Hinton (b31) 2019
Xiao, Rasul, Vollgraf (b33) 2017
Kingma, Ba (b36) 2014
G. Hinton, A. Krizhevsky, S. Wang, Transforming auto-encoders, in: International Conference on Neural Networks, 2011, pp. 44–51.
Liu, Cheng, Zhang, Xu, Han (b10) 2024
T. Chen, S. Kornblith, M. Norouzi, G.E. Hinton, A simple framework for contrastive learning of visual representations, in: International Conference on Machine Learning, 2020, pp. 1597–1607.
S. Sabour, A. Tagliasacchi, S. Yazdani, G. Hinton, D.J. Fleet, Unsupervised part representation by flow capsules, in: International Conference on Machine Learning, 2021, pp. 9213–9223.
Hinton (b2) 2023; 35
Panwar, Patras (b7) 2022
Culp, Sabour, Hinton (b19) 2022
S. Sabour, N. Frosst, G.E. Hinton, Dynamic routing between capsules, in: Conference and Workshop on Neural Information Processing Systems, 2017, pp. 3859–3869.
S. Xie, R. Girshick, K. He, et al., Aggregated residual transformations for deep neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1492–1500.
LeCun, Bottou, Bengio, Haffner (b32) 1998; 86
Culp (10.1016/j.patcog.2024.111059_b19) 2022
Hinton (10.1016/j.patcog.2024.111059_b2) 2023; 35
Shi (10.1016/j.patcog.2024.111059_b21) 2022; 124
Chen (10.1016/j.patcog.2024.111059_b14) 2024; 148
10.1016/j.patcog.2024.111059_b18
LeCun (10.1016/j.patcog.2024.111059_b32) 1998; 86
10.1016/j.patcog.2024.111059_b17
Krizhevsky (10.1016/j.patcog.2024.111059_b31) 2019
10.1016/j.patcog.2024.111059_b38
Sun (10.1016/j.patcog.2024.111059_b1) 2021; 34
10.1016/j.patcog.2024.111059_b35
10.1016/j.patcog.2024.111059_b23
Hahn (10.1016/j.patcog.2024.111059_b37) 2019; 32
Panwar (10.1016/j.patcog.2024.111059_b7) 2022
Hadian (10.1016/j.patcog.2024.111059_b15) 2024
Howard (10.1016/j.patcog.2024.111059_b25) 2017
Liu (10.1016/j.patcog.2024.111059_b13) 2021; 44
Hu (10.1016/j.patcog.2024.111059_b16) 2024; 3
Zhang (10.1016/j.patcog.2024.111059_b20) 2024; 12
Zeng (10.1016/j.patcog.2024.111059_b29) 2024; 238
10.1016/j.patcog.2024.111059_b5
Wah (10.1016/j.patcog.2024.111059_b39) 2011
10.1016/j.patcog.2024.111059_b3
10.1016/j.patcog.2024.111059_b9
10.1016/j.patcog.2024.111059_b6
Kingma (10.1016/j.patcog.2024.111059_b36) 2014
10.1016/j.patcog.2024.111059_b27
10.1016/j.patcog.2024.111059_b26
Wang (10.1016/j.patcog.2024.111059_b8) 2024; 141
Liu (10.1016/j.patcog.2024.111059_b10) 2024
Liu (10.1016/j.patcog.2024.111059_b11) 2024; 563
10.1016/j.patcog.2024.111059_b24
10.1016/j.patcog.2024.111059_b34
Xiao (10.1016/j.patcog.2024.111059_b33) 2017
10.1016/j.patcog.2024.111059_b30
Poličar (10.1016/j.patcog.2024.111059_b40) 2019
Kosiorek (10.1016/j.patcog.2024.111059_b4) 2019; 32
Cheng (10.1016/j.patcog.2024.111059_b12) 2023; 137
Mazzia (10.1016/j.patcog.2024.111059_b28) 2021; 11
Zeng (10.1016/j.patcog.2024.111059_b22) 2022; 18
References_xml – volume: 238
  year: 2024
  ident: b29
  article-title: A non-iterative capsule network with interdependent agreement routing
  publication-title: Expert Syst. Appl.
– volume: 137
  year: 2023
  ident: b12
  article-title: Hybrid routing transformer for zero-shot learning
  publication-title: Pattern Recognit.
– volume: 34
  start-page: 24993
  year: 2021
  end-page: 25005
  ident: b1
  article-title: Canonical capsules: Self-supervised capsules in canonical pose
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 44
  start-page: 3688
  year: 2021
  end-page: 3704
  ident: b13
  article-title: Part-object relational visual saliency
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2011
  ident: b39
  article-title: The caltech-ucsd birds-200–2011 dataset
– year: 2019
  ident: b40
  article-title: openTSNE: a modular Python library for t-SNE dimensionality reduction and embedding
  publication-title: BioRxiv
– volume: 32
  year: 2019
  ident: b4
  article-title: Stacked capsule autoencoders
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: K. He, H. Fan, Y. Wu, et al., Momentum contrast for unsupervised visual representation learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, p. 9729.
– year: 2019
  ident: b31
  article-title: Learning Multiple Layers of Features from Tiny Images
– volume: 35
  start-page: 413
  year: 2023
  end-page: 452
  ident: b2
  article-title: How to represent part-whole hierarchies in a neural network
  publication-title: Neural Comput.
– volume: 11
  start-page: 14634
  year: 2021
  ident: b28
  article-title: Efficient-capsnet: Capsule network with self-attention routing
  publication-title: Sci. Rep.
– year: 2017
  ident: b25
  article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications
– volume: 141
  year: 2024
  ident: b8
  article-title: RPI-CapsuleGAN: Predicting RNA-protein interactions through an interpretable generative adversarial capsule network
  publication-title: Pattern Recognit.
– reference: W. Wang, Z. Zhang, S. Qi, et al., Learning compositional neural information fusion for human parsing, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 5703–5713.
– reference: K. He, X. Zhang, S. Ren, et al., Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– reference: M. Tan, Q. Le, Efficientnet: Rethinking model scaling for convolutional neural networks, in: International Conference on Machine Learning, 2019, pp. 6105–6114.
– volume: 32
  start-page: 7658
  year: 2019
  end-page: 7667
  ident: b37
  article-title: Self-routing capsule networks
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: G. Hinton, S. Sabour, N. Frosst, Matrix capsules with EM routing, in: International Conference on Learning Representations, 2018.
– reference: Y. Netzer, T. Wang, A. Coates, et al., Reading digits in natural images with unsupervised feature learning, in: Conference and Workshop on Neural Information Processing Systems No. 5, 2011, p. 7.
– year: 2022
  ident: b19
  article-title: Testing GLOM’s ability to infer wholes from ambiguous parts
– reference: S. Sabour, N. Frosst, G.E. Hinton, Dynamic routing between capsules, in: Conference and Workshop on Neural Information Processing Systems, 2017, pp. 3859–3869.
– reference: S. Sabour, A. Tagliasacchi, S. Yazdani, G. Hinton, D.J. Fleet, Unsupervised part representation by flow capsules, in: International Conference on Machine Learning, 2021, pp. 9213–9223.
– start-page: 1
  year: 2024
  end-page: 15
  ident: b15
  article-title: A robust interpolated model predictive control based on recurrent neural networks for a nonholonomic differential-drive mobile robot with quasi-LPV representation: computational complexity and conservatism
  publication-title: Int. J. Syst. Sci.
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b32
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 124
  year: 2022
  ident: b21
  article-title: Sparse CapsNet with explicit regularizer
  publication-title: Pattern Recognit.
– volume: 18
  start-page: 4383
  year: 2022
  end-page: 4392
  ident: b22
  article-title: A fast routing capsule network with improved dense blocks
  publication-title: IEEE Trans. Ind. Inform.
– reference: G. Hinton, A. Krizhevsky, S. Wang, Transforming auto-encoders, in: International Conference on Neural Networks, 2011, pp. 44–51.
– year: 2017
  ident: b33
  article-title: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms
– volume: 3
  year: 2024
  ident: b16
  article-title: Learning regression distribution: Information diffusion from template to search for visual object tracking
  publication-title: Int. J. Netw. Dyn. Intell.
– year: 2022
  ident: b7
  article-title: Capsule network based contrastive learning of unsupervised visual representations
– reference: Y. LeCun, F. Huang, L. Bottou, Learning methods for generic object recognition with invariance to pose and lighting, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vol. 2, 2004, p. 104.
– volume: 12
  year: 2024
  ident: b20
  article-title: MASNet: mixed attention Siamese network for visual object tracking
  publication-title: Syst. Sci. Control Eng.
– year: 2014
  ident: b36
  article-title: Adam: A method for stochastic optimization
– year: 2024
  ident: b10
  article-title: Capsule networks with residual pose routing
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– reference: H. Liu, C. Li, X. Zhang, et al., Depression Detection via Capsule Networks with Contrastive Learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, (20) 2024, pp. 22231–22239.
– reference: J. Gu, V. Tresp, H. Hu, Capsule network is not more robust than convolutional network, in: IEEE Conference on Computer Vision and Pattern Recognition, 2021, pp. 14309–14317.
– volume: 148
  year: 2024
  ident: b14
  article-title: Global routing between capsules
  publication-title: Pattern Recognit.
– reference: T. Chen, S. Kornblith, M. Norouzi, G.E. Hinton, A simple framework for contrastive learning of visual representations, in: International Conference on Machine Learning, 2020, pp. 1597–1607.
– reference: S. Xie, R. Girshick, K. He, et al., Aggregated residual transformations for deep neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1492–1500.
– volume: 563
  year: 2024
  ident: b11
  article-title: Deep unsupervised part-whole relational visual saliency
  publication-title: Neurocomputing
– year: 2022
  ident: 10.1016/j.patcog.2024.111059_b19
– volume: 238
  year: 2024
  ident: 10.1016/j.patcog.2024.111059_b29
  article-title: A non-iterative capsule network with interdependent agreement routing
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122284
– ident: 10.1016/j.patcog.2024.111059_b38
  doi: 10.1109/CVPR46437.2021.01408
– year: 2022
  ident: 10.1016/j.patcog.2024.111059_b7
– year: 2017
  ident: 10.1016/j.patcog.2024.111059_b33
– ident: 10.1016/j.patcog.2024.111059_b23
  doi: 10.1109/CVPR42600.2020.00975
– ident: 10.1016/j.patcog.2024.111059_b5
– ident: 10.1016/j.patcog.2024.111059_b9
  doi: 10.1109/ICCV.2019.00580
– ident: 10.1016/j.patcog.2024.111059_b3
  doi: 10.1007/978-3-642-21735-7_6
– year: 2019
  ident: 10.1016/j.patcog.2024.111059_b40
  article-title: openTSNE: a modular Python library for t-SNE dimensionality reduction and embedding
  publication-title: BioRxiv
– volume: 124
  year: 2022
  ident: 10.1016/j.patcog.2024.111059_b21
  article-title: Sparse CapsNet with explicit regularizer
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108486
– year: 2024
  ident: 10.1016/j.patcog.2024.111059_b10
  article-title: Capsule networks with residual pose routing
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2017
  ident: 10.1016/j.patcog.2024.111059_b25
– ident: 10.1016/j.patcog.2024.111059_b35
– ident: 10.1016/j.patcog.2024.111059_b27
  doi: 10.1109/CVPR.2017.634
– ident: 10.1016/j.patcog.2024.111059_b18
– volume: 35
  start-page: 413
  issue: 3
  year: 2023
  ident: 10.1016/j.patcog.2024.111059_b2
  article-title: How to represent part-whole hierarchies in a neural network
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01557
– volume: 11
  start-page: 14634
  issue: 1
  year: 2021
  ident: 10.1016/j.patcog.2024.111059_b28
  article-title: Efficient-capsnet: Capsule network with self-attention routing
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-93977-0
– year: 2019
  ident: 10.1016/j.patcog.2024.111059_b31
– volume: 148
  year: 2024
  ident: 10.1016/j.patcog.2024.111059_b14
  article-title: Global routing between capsules
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.110142
– volume: 18
  start-page: 4383
  year: 2022
  ident: 10.1016/j.patcog.2024.111059_b22
  article-title: A fast routing capsule network with improved dense blocks
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3128412
– ident: 10.1016/j.patcog.2024.111059_b26
– start-page: 1
  year: 2024
  ident: 10.1016/j.patcog.2024.111059_b15
  article-title: A robust interpolated model predictive control based on recurrent neural networks for a nonholonomic differential-drive mobile robot with quasi-LPV representation: computational complexity and conservatism
  publication-title: Int. J. Syst. Sci.
– ident: 10.1016/j.patcog.2024.111059_b30
  doi: 10.1109/CVPR.2004.1315150
– ident: 10.1016/j.patcog.2024.111059_b6
  doi: 10.1609/aaai.v38i20.30228
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.patcog.2024.111059_b32
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 137
  year: 2023
  ident: 10.1016/j.patcog.2024.111059_b12
  article-title: Hybrid routing transformer for zero-shot learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.109270
– volume: 32
  start-page: 7658
  year: 2019
  ident: 10.1016/j.patcog.2024.111059_b37
  article-title: Self-routing capsule networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 3
  issue: 1
  year: 2024
  ident: 10.1016/j.patcog.2024.111059_b16
  article-title: Learning regression distribution: Information diffusion from template to search for visual object tracking
  publication-title: Int. J. Netw. Dyn. Intell.
– year: 2014
  ident: 10.1016/j.patcog.2024.111059_b36
– ident: 10.1016/j.patcog.2024.111059_b24
  doi: 10.1109/CVPR.2016.90
– volume: 141
  year: 2024
  ident: 10.1016/j.patcog.2024.111059_b8
  article-title: RPI-CapsuleGAN: Predicting RNA-protein interactions through an interpretable generative adversarial capsule network
  publication-title: Pattern Recognit.
– year: 2011
  ident: 10.1016/j.patcog.2024.111059_b39
– volume: 32
  year: 2019
  ident: 10.1016/j.patcog.2024.111059_b4
  article-title: Stacked capsule autoencoders
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.patcog.2024.111059_b17
– ident: 10.1016/j.patcog.2024.111059_b34
– volume: 563
  year: 2024
  ident: 10.1016/j.patcog.2024.111059_b11
  article-title: Deep unsupervised part-whole relational visual saliency
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126916
– volume: 12
  issue: 1
  year: 2024
  ident: 10.1016/j.patcog.2024.111059_b20
  article-title: MASNet: mixed attention Siamese network for visual object tracking
  publication-title: Syst. Sci. Control Eng.
– volume: 34
  start-page: 24993
  year: 2021
  ident: 10.1016/j.patcog.2024.111059_b1
  article-title: Canonical capsules: Self-supervised capsules in canonical pose
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 44
  start-page: 3688
  issue: 7
  year: 2021
  ident: 10.1016/j.patcog.2024.111059_b13
  article-title: Part-object relational visual saliency
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
SSID ssj0017142
Score 2.4743958
Snippet Limited attention has been given to unsupervised capsule networks (CapsNets) with contrastive learning due to the challenge of harmoniously learning...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111059
SubjectTerms Comprehensive contrastive loss
Interpretability
Primary capsules
Routing algorithm
Unsupervised capsule network
Title An interpretable unsupervised capsule network via comprehensive contrastive learning and two-stage training
URI https://dx.doi.org/10.1016/j.patcog.2024.111059
Volume 158
WOSCitedRecordID wos001331367700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017142
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKx4EL34jxJR-4IU-p7dT2sUJDwGGa0JDKLpHt2Fu7Kq3apuzP5yV2PsrQYAcuVvQUO1beL8_vOb_3jNB7qVJjrBkTpowjnLkR0ZJxQg2szsoljHtbHzYhTk7kdKpOBwPf5MLsFqIo5PW1Wv1XVYMMlF2lzt5B3e2gIIBrUDq0oHZo_0nxk6KuARGYhFVeVFlsylVlEjbgXFoNYTEIi0D__rCb6ZpWvnaXkcpek9f1pqYULZqNk5pn-XNJwJe8cO25En3P9rQu1Fklx0RGUvd__9wFg_KtbPdzIhH4R4fN88tONp-V_d0ImjYE5s7CshFhNGF7FjZUZ482EqxrEqqA3zDfYSdhfrSCZWh5AdE75Ufd7fvVsn9bxVpuYUNbm2dhlKwaJQuj3EMHVKRKDtHB5Mvx9Gv7v0mMeKgrH2ffJFnWTMCbs_mzE9NzTM4eo4cxosCTgIQnaOCKp-hRc1oHjsb7GbqaFHgPGLgPDByBgSMwMAAD7wED94CBG2BgAAZugYEbYDxH3z8dn338TOJRG8RCzLglzOeMKpdak8oqZkg8z7XwnCueeqWFAC86z5WiXiR6nFvOvJYgZ96OrBGGvUDDYlm4lwhz6scuN5waKbnUI5Mmnmqb04o5wKQ5RKx5d5mNdeir2S2y2zR3iEjbaxXqsPzlftGoJYu-ZPARM8DarT1f3fFJr9GD7kN4g4bbdeneovt2t51t1u8i0H4B5HWcwQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+interpretable+unsupervised+capsule+network+via+comprehensive+contrastive+learning+and+two-stage+training&rft.jtitle=Pattern+recognition&rft.au=Zeng%2C+Ru&rft.au=Song%2C+Yan&rft.au=Zhong%2C+Yanjiu&rft.date=2025-02-01&rft.issn=0031-3203&rft.volume=158&rft.spage=111059&rft_id=info:doi/10.1016%2Fj.patcog.2024.111059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2024_111059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon