The convergence analysis and specification of the Population-Based Incremental Learning algorithm
In this paper, we investigate the global convergence properties in probability of the Population-Based Incremental Learning (PBIL) algorithm when the initial configuration p ( 0 ) is fixed and the learning rate α is close to zero. The convergence in probability of PBIL is confirmed by the experiment...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 74; číslo 11; s. 1868 - 1873 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.05.2011
|
| Témata: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we investigate the global convergence properties in probability of the Population-Based Incremental Learning (PBIL) algorithm when the initial configuration
p
(
0
)
is fixed and the learning rate
α
is close to zero. The convergence in probability of PBIL is confirmed by the experimental results. This paper presents a meaningful discussion on how to establish a unified convergence theory of PBIL that is not affected by the population and the selected individuals. |
|---|---|
| ISSN: | 0925-2312 1872-8286 |
| DOI: | 10.1016/j.neucom.2010.06.032 |