Deep joint source-channel coding empowered two-way relay networks for wireless image transmission
Compared with the traditional uni-directional relaying, two-way relay networks provide important enhancements and optimizations to modern communication systems. However, with the increasing requirements of artificial intelligence applications for image data transmission, relay-assisted communication...
Uloženo v:
| Vydáno v: | Physical communication Ročník 68; s. 102568 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.02.2025
|
| Témata: | |
| ISSN: | 1874-4907 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Compared with the traditional uni-directional relaying, two-way relay networks provide important enhancements and optimizations to modern communication systems. However, with the increasing requirements of artificial intelligence applications for image data transmission, relay-assisted communication technologies are reaching the theoretical limit in terms of bandwidth, which hinders the further development of AI applications. To address this issue, we propose a deep joint source-channel coding empowered two-way relay network (DeepJSCC-TWRN) to help image transmission. Specifically, in the DeepJSCC-TWRN, a DeepJSCC is employed to improve image transmission quality of the TWRN from the perspective of visual semantic information, and each source can achieve optimal performance by being trained in a uniform deep learning framework. For measuring the performance of the proposed DeepJSCC-TWRN, we employ the peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM) as performance metrics. Simulation results show that DeepJSCC-TWRN outperforms the baseline method, demonstrating the ability to preserve visual semantic information. |
|---|---|
| ISSN: | 1874-4907 |
| DOI: | 10.1016/j.phycom.2024.102568 |