Decentralized AdaBoost algorithm over sensor networks

In this paper, we study the decentralized AdaBoost problem over sensor networks, and propose a fully decentralized AdaBoost algorithm, where each sensor can obtain the centralized global solution without transmission of private dataset. By decomposing the centralized cost function into a summation o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 479; s. 37 - 46
Hlavní autori: An, Xibin, Hu, Chen, Li, Zhenhua, Lin, Haoshen, Liu, Gang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 28.03.2022
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we study the decentralized AdaBoost problem over sensor networks, and propose a fully decentralized AdaBoost algorithm, where each sensor can obtain the centralized global solution without transmission of private dataset. By decomposing the centralized cost function into a summation of local ones, we convert decentralized AdaBoost problem into a distributed optimization problem, and design a distributed alternating minimization method to solve it. In order to improve convergence rate, motivated by Nesterov gradient descent method, we propose a fast decentralized AdaBoost algorithm. Then, we prove the convergence of proposed algorithms. Moreover, we deduce decentralized AdaBoost algorithm for logistic regression in detail. The simulations with Spam-Email dataset illustrate the effectiveness of proposed algorithms.
AbstractList In this paper, we study the decentralized AdaBoost problem over sensor networks, and propose a fully decentralized AdaBoost algorithm, where each sensor can obtain the centralized global solution without transmission of private dataset. By decomposing the centralized cost function into a summation of local ones, we convert decentralized AdaBoost problem into a distributed optimization problem, and design a distributed alternating minimization method to solve it. In order to improve convergence rate, motivated by Nesterov gradient descent method, we propose a fast decentralized AdaBoost algorithm. Then, we prove the convergence of proposed algorithms. Moreover, we deduce decentralized AdaBoost algorithm for logistic regression in detail. The simulations with Spam-Email dataset illustrate the effectiveness of proposed algorithms.
Author Liu, Gang
Hu, Chen
Li, Zhenhua
Lin, Haoshen
An, Xibin
Author_xml – sequence: 1
  givenname: Xibin
  surname: An
  fullname: An, Xibin
  organization: Rocket Force University of Engineering, Xi’an 710025, China
– sequence: 2
  givenname: Chen
  surname: Hu
  fullname: Hu, Chen
  email: chenh628@hotmail.com
  organization: Rocket Force University of Engineering, Xi’an 710025, China
– sequence: 3
  givenname: Zhenhua
  surname: Li
  fullname: Li, Zhenhua
  organization: Science and Technology on Complex Aircraft Systems Simulation Laboratory, Beijing 100094, China
– sequence: 4
  givenname: Haoshen
  surname: Lin
  fullname: Lin, Haoshen
  organization: Rocket Force University of Engineering, Xi’an 710025, China
– sequence: 5
  givenname: Gang
  surname: Liu
  fullname: Liu, Gang
  organization: Rocket Force University of Engineering, Xi’an 710025, China
BookMark eNqFj81KAzEURoMo2FbfwMW8wNR7MyYz40Ko9RcKbnQd0uRGU6cTSWJFn94pdeVC4YNvdQ6cMdvvQ0-MnSBMEVCerqY9vZuwnnLgfAo4TOyxETY1LxveyH02gpaLklfID9k4pRUA1sjbERNXZKjPUXf-i2wxs_oyhJQL3T2H6PPLuggbikWiPoVY9JQ_QnxNR-zA6S7R8c9P2NPN9eP8rlw83N7PZ4vSVCBzWTnkVi6xIdkIS1RpK50E6RreWnA1OmM1OGjrtq4JqiUJlFwIbAHbJdpqws52XhNDSpGceot-reOnQlDbdLVSu3S1TVeAw8SAnf_CjM86-7AN9d1_8MUOpiFs4ymqZDz1hqyPZLKywf8t-Aa7Unm7
CitedBy_id crossref_primary_10_1016_j_engfracmech_2023_109433
crossref_primary_10_1007_s11276_023_03452_z
crossref_primary_10_1016_j_pnsc_2024_11_010
crossref_primary_10_1016_j_energy_2025_134452
crossref_primary_10_1016_j_psep_2024_04_097
Cites_doi 10.1109/JPROC.2014.2306253
10.1109/ALLERTON.2017.8262822
10.1016/j.neucom.2017.01.026
10.1109/TSP.2009.2033729
10.1109/TAC.2014.2298712
10.1109/TAC.2008.2009515
10.1198/016214503000125
10.1016/j.neucom.2012.12.055
10.1214/aos/1013203451
10.1214/aos/1016218223
10.1007/s13748-012-0035-5
10.1109/TSP.2014.2385045
10.1016/j.neucom.2018.07.087
10.1016/J.ENG.2016.02.008
10.1109/TSP.2014.2302731
10.1016/j.neucom.2019.01.007
10.1109/MSP.2011.940281
10.1109/TSP.2015.2493979
10.1109/TAC.2010.2041686
10.1561/2200000051
10.1023/A:1022648800760
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2022.01.015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 46
ExternalDocumentID 10_1016_j_neucom_2022_01_015
S0925231222000352
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-3f12d6b18e685dee3ad6f606f829d0f71fcda0f097977e03be51625519019b1d3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000761683700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:16:19 EST 2025
Tue Nov 18 21:59:09 EST 2025
Fri Feb 23 02:41:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sensor networks
Distributed optimization
Decentralized AdaBoost
Classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-3f12d6b18e685dee3ad6f606f829d0f71fcda0f097977e03be51625519019b1d3
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_neucom_2022_01_015
crossref_citationtrail_10_1016_j_neucom_2022_01_015
elsevier_sciencedirect_doi_10_1016_j_neucom_2022_01_015
PublicationCentury 2000
PublicationDate 2022-03-28
PublicationDateYYYYMMDD 2022-03-28
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-28
  day: 28
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Murphy (b0010) 2012
Rota (b0170) 1994; 207
Le Goff, Tourneret, Wendt, Ortner, Spigai (b0130) 2016; 2016
Liu, Shum (b0110) 2003; 1
Cattivelli, Sayed (b0185) 2009; 58
Sayed (b0155) 2014; 7
Miller, Foti, Adams (b0070) 2017
Li, Gu, Wu (b0140) 2019
C.M. Biship, Pattern recognition and machine learning (information science and statistics), 2007.
Liu, Liu, Li (b0030) 2014; 62
Schapire (b0085) 1990; 5
Nedic, Ozdaglar (b0190) 2009; 54
Bühlmann, Yu (b0065) 2003; 98
Wang, Hu (b0045) 2019; 333
J. Cooper, L. Reyzin, Improved algorithms for distributed boosting, in: 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2017, pp. 806–813.
Sayed (b0150) 2014; 102
Freund, Schapire (b0090) 1995
Hastie, Tibshirani, Friedman (b0105) 2009
Tu, Wang, Hong (b0120) 2018
Georgopoulos, Hasler (b0040) 2014; 124
Do, Poulet (b0080) 2006
Ying, Sayed (b0160) 2017
Peteiro-Barral, Guijarro-Berdiñas (b0050) 2013; 2
Friedman, Hastie, Tibshirani (b0100) 2000; 28
Hua, Li (b0175) 2016; 64
Mitchell (b0005) 2003
Boyd, Vandenberghe (b0165) 2004
Bu, Dong, Han, Hou, Li (b0060) 2019; 346
Xing, Ho, Xie, Dai (b0075) 2016; 2
Jakovetic, Xavier, Moura (b0145) 2014; 59
Chen, Towfic, Sayed (b0180) 2015; 63
Ruppert (b0020) 2010; 99
Nedic, Ozdaglar, Parrilo (b0135) 2010; 55
Ge, Han, Zhang, Ding, Yang (b0055) 2019
M. Nikolova, P. Tan, Alternating proximal gradient descent for nonconvex regularised problems with multiconvex coupling terms, working paper or preprint (Aug. 2017). url:https://hal.archives-ouvertes.fr/hal-01492846.
Zhou, Pan, Wang, Vasilakos (b0035) 2017; 237
G.F.J.S. Mark Hopkins, Erik Reeber, H.-P. Labs, Uci machine learning repository (2017). url:https://archive.ics.uci.edu/ml/datasets/spambase.
Lazarevic, Obradovic (b0125) 2001
Taj, Cavallaro (b0025) 2011; 28
Friedman (b0095) 2001; 29
10.1016/j.neucom.2022.01.015_b0115
Li (10.1016/j.neucom.2022.01.015_b0140) 2019
10.1016/j.neucom.2022.01.015_b0015
Georgopoulos (10.1016/j.neucom.2022.01.015_b0040) 2014; 124
Freund (10.1016/j.neucom.2022.01.015_b0090) 1995
Do (10.1016/j.neucom.2022.01.015_b0080) 2006
Jakovetic (10.1016/j.neucom.2022.01.015_b0145) 2014; 59
Bühlmann (10.1016/j.neucom.2022.01.015_b0065) 2003; 98
Nedic (10.1016/j.neucom.2022.01.015_b0135) 2010; 55
Sayed (10.1016/j.neucom.2022.01.015_b0150) 2014; 102
Taj (10.1016/j.neucom.2022.01.015_b0025) 2011; 28
Ruppert (10.1016/j.neucom.2022.01.015_b0020) 2010; 99
Le Goff (10.1016/j.neucom.2022.01.015_b0130) 2016; 2016
Murphy (10.1016/j.neucom.2022.01.015_b0010) 2012
Boyd (10.1016/j.neucom.2022.01.015_b0165) 2004
Liu (10.1016/j.neucom.2022.01.015_b0030) 2014; 62
Chen (10.1016/j.neucom.2022.01.015_b0180) 2015; 63
Ge (10.1016/j.neucom.2022.01.015_b0055) 2019
Hua (10.1016/j.neucom.2022.01.015_b0175) 2016; 64
Friedman (10.1016/j.neucom.2022.01.015_b0100) 2000; 28
Zhou (10.1016/j.neucom.2022.01.015_b0035) 2017; 237
Cattivelli (10.1016/j.neucom.2022.01.015_b0185) 2009; 58
10.1016/j.neucom.2022.01.015_b0195
Liu (10.1016/j.neucom.2022.01.015_b0110) 2003; 1
Mitchell (10.1016/j.neucom.2022.01.015_b0005) 2003
Peteiro-Barral (10.1016/j.neucom.2022.01.015_b0050) 2013; 2
Ying (10.1016/j.neucom.2022.01.015_b0160) 2017
Bu (10.1016/j.neucom.2022.01.015_b0060) 2019; 346
10.1016/j.neucom.2022.01.015_b0200
Miller (10.1016/j.neucom.2022.01.015_b0070) 2017
Wang (10.1016/j.neucom.2022.01.015_b0045) 2019; 333
Nedic (10.1016/j.neucom.2022.01.015_b0190) 2009; 54
Tu (10.1016/j.neucom.2022.01.015_b0120) 2018
Hastie (10.1016/j.neucom.2022.01.015_b0105) 2009
Lazarevic (10.1016/j.neucom.2022.01.015_b0125) 2001
Schapire (10.1016/j.neucom.2022.01.015_b0085) 1990; 5
Sayed (10.1016/j.neucom.2022.01.015_b0155) 2014; 7
Rota (10.1016/j.neucom.2022.01.015_b0170) 1994; 207
Xing (10.1016/j.neucom.2022.01.015_b0075) 2016; 2
Friedman (10.1016/j.neucom.2022.01.015_b0095) 2001; 29
References_xml – volume: 5
  start-page: 197
  year: 1990
  end-page: 227
  ident: b0085
  article-title: The strength of weak learnability
  publication-title: Mach. Learn.
– reference: J. Cooper, L. Reyzin, Improved algorithms for distributed boosting, in: 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2017, pp. 806–813.
– volume: 102
  start-page: 460
  year: 2014
  end-page: 497
  ident: b0150
  article-title: Adaptive networks
  publication-title: Proc. IEEE
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: b0095
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
– year: 2012
  ident: b0010
  article-title: Machine Learning: A Probabilistic Perspective
– volume: 2
  start-page: 1
  year: 2013
  end-page: 11
  ident: b0050
  article-title: A survey of methods for distributed machine learning
  publication-title: Progr. Artif. Intell.
– volume: 7
  start-page: 311
  year: 2014
  end-page: 801
  ident: b0155
  article-title: Adaptation, learning, and optimization over networks
  publication-title: Foundat. Trends Mach. Learn.
– year: 2004
  ident: b0165
  article-title: Convex optimization
– volume: 207
  start-page: 298
  year: 1994
  ident: b0170
  article-title: Algebraic graph theory
  publication-title: Graduate Texts in Mathematics
– start-page: 311
  year: 2001
  end-page: 316
  ident: b0125
  article-title: The distributed boosting algorithm
  publication-title: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 2512
  year: 2017
  end-page: 2516
  ident: b0160
  article-title: Diffusion gradient boosting for networked learning
  publication-title: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– reference: G.F.J.S. Mark Hopkins, Erik Reeber, H.-P. Labs, Uci machine learning repository (2017). url:https://archive.ics.uci.edu/ml/datasets/spambase.
– reference: M. Nikolova, P. Tan, Alternating proximal gradient descent for nonconvex regularised problems with multiconvex coupling terms, working paper or preprint (Aug. 2017). url:https://hal.archives-ouvertes.fr/hal-01492846.
– year: 2009
  ident: b0105
  article-title: The Elements of Statistical Learning
– year: 2003
  ident: b0005
  article-title: Machine learning
– year: 2019
  ident: b0140
  article-title: Online distributed stochastic learning algorithm for convex optimization in time-varying directed networks
  publication-title: Neurocomputing
– volume: 346
  start-page: 58
  year: 2019
  end-page: 64
  ident: b0060
  article-title: Distributed filtering for time-varying systems over sensor networks with randomly switching topologies under the round-robin protocol
  publication-title: Neurocomputing
– volume: 2
  start-page: 179
  year: 2016
  end-page: 195
  ident: b0075
  article-title: Strategies and principles of distributed machine learning on big data
  publication-title: Engineering
– start-page: 59
  year: 2006
  end-page: 66
  ident: b0080
  article-title: Classifying one billion data with a new distributed svm algorithm
  publication-title: International Conference on Research
– volume: 124
  start-page: 2
  year: 2014
  end-page: 12
  ident: b0040
  article-title: Distributed machine learning in networks by consensus
  publication-title: Neurocomputing
– volume: 1
  start-page: 587
  year: 2003
  end-page: 594
  ident: b0110
  article-title: Kullback-leibler boosting
  publication-title: Computer Vision and Pattern Recognition
– volume: 63
  start-page: 1001
  year: 2015
  end-page: 1016
  ident: b0180
  article-title: Dictionary learning over distributed models
  publication-title: IEEE Trans. Signal Process.
– volume: 64
  start-page: 783
  year: 2016
  end-page: 798
  ident: b0175
  article-title: Distributed variational bayesian algorithms over sensor networks
  publication-title: IEEE Trans. Signal Process.
– volume: 99
  year: 2010
  ident: b0020
  article-title: The elements of statistical learning: Data mining, inference, and prediction
  publication-title: Publications of the American Statistical Association
– volume: 2016
  start-page: 2626
  year: 2016
  end-page: 2629
  ident: b0130
  article-title: Distributed boosting for cloud detection
  publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
– volume: 62
  start-page: 1386
  year: 2014
  end-page: 1395
  ident: b0030
  article-title: Distributed sparse recursive least-squares over networks
  publication-title: IEEE Trans. Signal Process.
– volume: 55
  start-page: 922
  year: 2010
  end-page: 938
  ident: b0135
  article-title: Constrained consensus and optimization in multi-agent networks
  publication-title: IEEE Trans. Autom. Control
– volume: 28
  start-page: 46
  year: 2011
  end-page: 58
  ident: b0025
  article-title: Distributed and decentralized multicamera tracking
  publication-title: IEEE Signal Process. Mag.
– reference: C.M. Biship, Pattern recognition and machine learning (information science and statistics), 2007.
– volume: 237
  start-page: 350
  year: 2017
  end-page: 361
  ident: b0035
  article-title: Machine learning on big data: Opportunities and challenges
  publication-title: Neurocomputing
– volume: 28
  start-page: 337
  year: 2000
  end-page: 374
  ident: b0100
  article-title: Additive logistic regression: a statistical view of boosting
  publication-title: Ann. Stat.
– volume: 333
  start-page: 364
  year: 2019
  end-page: 373
  ident: b0045
  article-title: Distributed pairwise algorithms with gradient descent methods
  publication-title: Neurocomputing
– volume: 98
  start-page: 324
  year: 2003
  end-page: 339
  ident: b0065
  article-title: Boosting with the
  publication-title: J. Am. Stat. Assoc.
– start-page: 7153
  year: 2018
  end-page: 7157
  ident: b0120
  article-title: Distributed boosting algorithm over multi-agent networks
  publication-title: 2018 37th Chinese Control Conference (CCC)
– volume: 58
  start-page: 1035
  year: 2009
  end-page: 1048
  ident: b0185
  article-title: Diffusion lms strategies for distributed estimation
  publication-title: IEEE Trans. Signal Process.
– volume: 59
  start-page: 1131
  year: 2014
  end-page: 1146
  ident: b0145
  article-title: Fast distributed gradient methods
  publication-title: IEEE Trans. Autom. Control
– volume: 54
  start-page: 48
  year: 2009
  end-page: 61
  ident: b0190
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Trans. Autom. Control
– start-page: 119
  year: 1995
  end-page: 139
  ident: b0090
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: European Conference on Computational Learning Theory
– start-page: 1
  year: 2019
  end-page: 15
  ident: b0055
  article-title: Distributed event-triggered estimation over sensor networks: A survey
  publication-title: IEEE Trans. Cybern.
– start-page: 2420
  year: 2017
  end-page: 2429
  ident: b0070
  article-title: Variational boosting: Iteratively refining posterior approximations
  publication-title: Proceedings of the 34th International Conference on Machine Learning – Volume 70, ICML’17
– volume: 102
  start-page: 460
  issue: 4
  year: 2014
  ident: 10.1016/j.neucom.2022.01.015_b0150
  article-title: Adaptive networks
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2014.2306253
– ident: 10.1016/j.neucom.2022.01.015_b0115
  doi: 10.1109/ALLERTON.2017.8262822
– start-page: 7153
  year: 2018
  ident: 10.1016/j.neucom.2022.01.015_b0120
  article-title: Distributed boosting algorithm over multi-agent networks
– volume: 237
  start-page: 350
  year: 2017
  ident: 10.1016/j.neucom.2022.01.015_b0035
  article-title: Machine learning on big data: Opportunities and challenges
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.026
– start-page: 59
  year: 2006
  ident: 10.1016/j.neucom.2022.01.015_b0080
  article-title: Classifying one billion data with a new distributed svm algorithm
  publication-title: International Conference on Research
– volume: 58
  start-page: 1035
  issue: 3
  year: 2009
  ident: 10.1016/j.neucom.2022.01.015_b0185
  article-title: Diffusion lms strategies for distributed estimation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2033729
– volume: 99
  issue: 466
  year: 2010
  ident: 10.1016/j.neucom.2022.01.015_b0020
  article-title: The elements of statistical learning: Data mining, inference, and prediction
  publication-title: Publications of the American Statistical Association
– year: 2009
  ident: 10.1016/j.neucom.2022.01.015_b0105
– volume: 1
  start-page: 587
  issue: 1
  year: 2003
  ident: 10.1016/j.neucom.2022.01.015_b0110
  article-title: Kullback-leibler boosting
  publication-title: Computer Vision and Pattern Recognition
– volume: 59
  start-page: 1131
  issue: 5
  year: 2014
  ident: 10.1016/j.neucom.2022.01.015_b0145
  article-title: Fast distributed gradient methods
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2014.2298712
– start-page: 2512
  year: 2017
  ident: 10.1016/j.neucom.2022.01.015_b0160
  article-title: Diffusion gradient boosting for networked learning
– volume: 54
  start-page: 48
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2022.01.015_b0190
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.2009515
– ident: 10.1016/j.neucom.2022.01.015_b0195
– volume: 98
  start-page: 324
  issue: 462
  year: 2003
  ident: 10.1016/j.neucom.2022.01.015_b0065
  article-title: Boosting with the l2 loss: regression and classification
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214503000125
– start-page: 119
  year: 1995
  ident: 10.1016/j.neucom.2022.01.015_b0090
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: European Conference on Computational Learning Theory
– volume: 124
  start-page: 2
  year: 2014
  ident: 10.1016/j.neucom.2022.01.015_b0040
  article-title: Distributed machine learning in networks by consensus
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.055
– year: 2004
  ident: 10.1016/j.neucom.2022.01.015_b0165
– start-page: 311
  year: 2001
  ident: 10.1016/j.neucom.2022.01.015_b0125
  article-title: The distributed boosting algorithm
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 10.1016/j.neucom.2022.01.015_b0095
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 28
  start-page: 337
  issue: 2
  year: 2000
  ident: 10.1016/j.neucom.2022.01.015_b0100
  article-title: Additive logistic regression: a statistical view of boosting
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1016218223
– volume: 2
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2022.01.015_b0050
  article-title: A survey of methods for distributed machine learning
  publication-title: Progr. Artif. Intell.
  doi: 10.1007/s13748-012-0035-5
– year: 2019
  ident: 10.1016/j.neucom.2022.01.015_b0140
  article-title: Online distributed stochastic learning algorithm for convex optimization in time-varying directed networks
  publication-title: Neurocomputing
– volume: 63
  start-page: 1001
  issue: 4
  year: 2015
  ident: 10.1016/j.neucom.2022.01.015_b0180
  article-title: Dictionary learning over distributed models
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2385045
– volume: 346
  start-page: 58
  year: 2019
  ident: 10.1016/j.neucom.2022.01.015_b0060
  article-title: Distributed filtering for time-varying systems over sensor networks with randomly switching topologies under the round-robin protocol
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.087
– volume: 207
  start-page: 298
  issue: 32
  year: 1994
  ident: 10.1016/j.neucom.2022.01.015_b0170
  article-title: Algebraic graph theory
  publication-title: Graduate Texts in Mathematics
– start-page: 1
  year: 2019
  ident: 10.1016/j.neucom.2022.01.015_b0055
  article-title: Distributed event-triggered estimation over sensor networks: A survey
  publication-title: IEEE Trans. Cybern.
– volume: 2
  start-page: 179
  issue: 2
  year: 2016
  ident: 10.1016/j.neucom.2022.01.015_b0075
  article-title: Strategies and principles of distributed machine learning on big data
  publication-title: Engineering
  doi: 10.1016/J.ENG.2016.02.008
– volume: 62
  start-page: 1386
  issue: 6
  year: 2014
  ident: 10.1016/j.neucom.2022.01.015_b0030
  article-title: Distributed sparse recursive least-squares over networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2302731
– ident: 10.1016/j.neucom.2022.01.015_b0015
– volume: 2016
  start-page: 2626
  year: 2016
  ident: 10.1016/j.neucom.2022.01.015_b0130
  article-title: Distributed boosting for cloud detection
  publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
– volume: 333
  start-page: 364
  year: 2019
  ident: 10.1016/j.neucom.2022.01.015_b0045
  article-title: Distributed pairwise algorithms with gradient descent methods
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.007
– volume: 28
  start-page: 46
  issue: 3
  year: 2011
  ident: 10.1016/j.neucom.2022.01.015_b0025
  article-title: Distributed and decentralized multicamera tracking
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2011.940281
– start-page: 2420
  year: 2017
  ident: 10.1016/j.neucom.2022.01.015_b0070
  article-title: Variational boosting: Iteratively refining posterior approximations
– year: 2012
  ident: 10.1016/j.neucom.2022.01.015_b0010
– volume: 64
  start-page: 783
  issue: 3
  year: 2016
  ident: 10.1016/j.neucom.2022.01.015_b0175
  article-title: Distributed variational bayesian algorithms over sensor networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2493979
– ident: 10.1016/j.neucom.2022.01.015_b0200
– volume: 55
  start-page: 922
  issue: 4
  year: 2010
  ident: 10.1016/j.neucom.2022.01.015_b0135
  article-title: Constrained consensus and optimization in multi-agent networks
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2010.2041686
– volume: 7
  start-page: 311
  issue: 4–5
  year: 2014
  ident: 10.1016/j.neucom.2022.01.015_b0155
  article-title: Adaptation, learning, and optimization over networks
  publication-title: Foundat. Trends Mach. Learn.
  doi: 10.1561/2200000051
– year: 2003
  ident: 10.1016/j.neucom.2022.01.015_b0005
– volume: 5
  start-page: 197
  issue: 2
  year: 1990
  ident: 10.1016/j.neucom.2022.01.015_b0085
  article-title: The strength of weak learnability
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022648800760
SSID ssj0017129
Score 2.39208
Snippet In this paper, we study the decentralized AdaBoost problem over sensor networks, and propose a fully decentralized AdaBoost algorithm, where each sensor can...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 37
SubjectTerms Classification
Decentralized AdaBoost
Distributed optimization
Sensor networks
Title Decentralized AdaBoost algorithm over sensor networks
URI https://dx.doi.org/10.1016/j.neucom.2022.01.015
Volume 479
WOSCitedRecordID wos000761683700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBaj3UNfetmFdb3gh70FD11iy3pM25R0jDJYB2Evxrak1WW1S5yU0l_fo1uSLmPrBoVggrBiofPl-DtH54LQh7TUEgyfIta4YmCgsH6cKSFj1Qeyq5PC1JSyzSb4-Xk2HosvPruks-0EeNNkd3fi5llFDWMgbJM6-w_inv8oDMB3EDpcQexwfZLgT5QPuKzvgUwOZHHUtp1x7P5oJ_X08rpngjZ7HZiv7aTXuCjwbpmj2nodle324P0Ig2tTTkEa7Cz5DYx0xnVZNwtouAP8RXbZZxsr8B1GLmfFYtBOHRVtF271bgewWDELadzWF7aSD-OcijSJgTE6_aqcSs04tcnqyzq37zrIeK3pyr7496_zSK5odudkuPrYqJkJ8zFLsvVWXTLoLzWzv5qFmHVQas9K4R29TnkiQHOvD86G40_zgyZOqCvH6BcesittCODqs37PXpYYycU22vSmRDRwENhBL1TzCm2FNh2R19qvUfIIEVFARDRHRGQQETlERAERb9C30-HF8Sj23TLiCsy-acw0oTItSabSLJFKsUKmGsxTnVEhseZEV7LAGgsOlF9hVqqEgPGbGEYoSiLZW7TWtI16hyIlMJMa_qZa8r5iXBBN07LiBcEqE5TsIhZ2Ia98KXnT0eRnHmIGr3K3d7nZuxwT-CS7KJ7PunGlVP5yPw8bnHs66GheDpj448z3_z1zD20swL6P1qaTmTpAL6vbad1NDj14HgDw4YP3
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decentralized+AdaBoost+algorithm+over+sensor+networks&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=An%2C+Xibin&rft.au=Hu%2C+Chen&rft.au=Li%2C+Zhenhua&rft.au=Lin%2C+Haoshen&rft.date=2022-03-28&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=479&rft.spage=37&rft.epage=46&rft_id=info:doi/10.1016%2Fj.neucom.2022.01.015&rft.externalDocID=S0925231222000352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon