Research on the optimum synchronous network search data extraction based on swarm intelligence algorithm
Existing synchronous network search data extraction techniques suffer from load unbalance in the face of increasing number of concurrent users. For this reason, this paper presents the research on the optimum synchronous network search data extraction based on swarm intelligence algorithm. A traffic...
Uloženo v:
| Vydáno v: | Future generation computer systems Ročník 125; s. 151 - 155 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.12.2021
|
| Témata: | |
| ISSN: | 0167-739X, 1872-7115 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Existing synchronous network search data extraction techniques suffer from load unbalance in the face of increasing number of concurrent users. For this reason, this paper presents the research on the optimum synchronous network search data extraction based on swarm intelligence algorithm. A traffic balancing model is constructed to determine the node balance state according to the traffic variation and influence factors of network nodes. Under the condition that the node state is known, the swarm intelligence algorithm is used to cluster the data to be synchronized and adjust the node state so that it is kept stable throughout the synchronization process. The clustered data act as the target to connect the user with the server side to achieve the optimum network search data extraction and synchronization. The experimental results show that when the number of concurrent network users is increasing, the designed technique features stable load balancing, and achieves optimum data extraction performance and low execution cost when the task completion time is less than 0.5 s.
•A traffic balancing model is constructed to determine node balance state.•The swarm intelligence algorithm is used to cluster data and adjust node state.•Clustered data is used to achieve optimum search extraction and synchronization. |
|---|---|
| AbstractList | Existing synchronous network search data extraction techniques suffer from load unbalance in the face of increasing number of concurrent users. For this reason, this paper presents the research on the optimum synchronous network search data extraction based on swarm intelligence algorithm. A traffic balancing model is constructed to determine the node balance state according to the traffic variation and influence factors of network nodes. Under the condition that the node state is known, the swarm intelligence algorithm is used to cluster the data to be synchronized and adjust the node state so that it is kept stable throughout the synchronization process. The clustered data act as the target to connect the user with the server side to achieve the optimum network search data extraction and synchronization. The experimental results show that when the number of concurrent network users is increasing, the designed technique features stable load balancing, and achieves optimum data extraction performance and low execution cost when the task completion time is less than 0.5 s.
•A traffic balancing model is constructed to determine node balance state.•The swarm intelligence algorithm is used to cluster data and adjust node state.•Clustered data is used to achieve optimum search extraction and synchronization. |
| Author | Hu, Su Yin, Hua |
| Author_xml | – sequence: 1 givenname: Su surname: Hu fullname: Hu, Su – sequence: 2 givenname: Hua surname: Yin fullname: Yin, Hua email: HuaYin2021@21cn.com |
| BookMark | eNqFkL1OwzAUhS0EEm3hDRj8AgnXcRK3DEio4k-qhAQMbJbr3DQuiV3ZLqVvT6J2YoDpLuc7Ovcbk1PrLBJyxSBlwMrrdVpv49ZjmkHGUihSAHZCRmwqskQwVpySUR8TieCzj3MyDmENfUJwNiLNKwZUXjfUWRobpG4TTbftaNhb3Xhn3TZQi3Hn_Cc9JisVFcXv6JWOpseWKmA18GGnfEeNjdi2ZoVWI1XtynkTm-6CnNWqDXh5vBPy9nD_Pn9KFi-Pz_O7RaI5lDHhVT7FUkOZc8zqaQ2MFwwKXbBCcT0rea4Fr3MuMBdLzoBrBlCBLmcCq4xPyM2hVXsXgsdaahPVsLJfa1rJQA7G5FoejMnBmIRC9j56OP8Fb7zplN__h90eMOzf-jLoZdBmeL4yHnWUlTN_F_wAS96MNA |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0317119 crossref_primary_10_1038_s41598_024_58421_z crossref_primary_10_3390_pr11051454 crossref_primary_10_1155_2022_2479939 crossref_primary_10_3390_s25092730 |
| Cites_doi | 10.1051/jnwpu/20203810209 10.1016/j.future.2020.10.001 10.7498/aps.69.20191973 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.future.2021.05.001 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7115 |
| EndPage | 155 |
| ExternalDocumentID | 10_1016_j_future_2021_05_001 S0167739X2100145X |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-3d48e6c0643e2f8f0135105c515a3c9634c73f437e47b3103c100d0c697ed23 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000688442400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-739X |
| IngestDate | Tue Nov 18 22:11:37 EST 2025 Sat Nov 29 07:24:19 EST 2025 Fri Feb 23 02:41:08 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Swarm intelligence algorithm Synchronous update Network search Data extraction |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-3d48e6c0643e2f8f0135105c515a3c9634c73f437e47b3103c100d0c697ed23 |
| PageCount | 5 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_future_2021_05_001 crossref_primary_10_1016_j_future_2021_05_001 elsevier_sciencedirect_doi_10_1016_j_future_2021_05_001 |
| PublicationCentury | 2000 |
| PublicationDate | December 2021 2021-12-00 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Future generation computer systems |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Gao, Tang, Song (b13) 2019; 31 Wang, Liu (b20) 2020; 69 Wu, Zhou (b4) 2020; 15 Xu, Ye, Zhang (b8) 2019; 30 Li, Guo (b10) 2019; 39 Shakeel, Baskar, Fouad (b16) 2021; 115 Jiang, Qin (b9) 2019; 39 Zhang, Li (b18) 2020; 42 Wang, Yuan (b19) 2020; 33 Sun, Ma, Wang (b1) 2019; 36 Li, Zhang, Wang (b17) 2020; 47 Li, Wang, Chen (b5) 2020; 56 Bian (b2) 2019; 47 Yang, Chang, Wang (b12) 2020; 46 Yang, Zhang, Truong (b3) 2019; 41 Gao, Liu, Li (b7) 2020; 38 Tian (b15) 2020; 44 Wang, Xiao (b6) 2019; 41 Li, Cui, Chen (b11) 2019; 36 Al-Rimy, Maarof, Alazab (b14) 2020 Xu (10.1016/j.future.2021.05.001_b8) 2019; 30 Jiang (10.1016/j.future.2021.05.001_b9) 2019; 39 Yang (10.1016/j.future.2021.05.001_b12) 2020; 46 Yang (10.1016/j.future.2021.05.001_b3) 2019; 41 Tian (10.1016/j.future.2021.05.001_b15) 2020; 44 Li (10.1016/j.future.2021.05.001_b17) 2020; 47 Gao (10.1016/j.future.2021.05.001_b13) 2019; 31 Bian (10.1016/j.future.2021.05.001_b2) 2019; 47 Zhang (10.1016/j.future.2021.05.001_b18) 2020; 42 Li (10.1016/j.future.2021.05.001_b5) 2020; 56 Sun (10.1016/j.future.2021.05.001_b1) 2019; 36 Wang (10.1016/j.future.2021.05.001_b6) 2019; 41 Al-Rimy (10.1016/j.future.2021.05.001_b14) 2020 Shakeel (10.1016/j.future.2021.05.001_b16) 2021; 115 Wang (10.1016/j.future.2021.05.001_b20) 2020; 69 Wang (10.1016/j.future.2021.05.001_b19) 2020; 33 Gao (10.1016/j.future.2021.05.001_b7) 2020; 38 Li (10.1016/j.future.2021.05.001_b11) 2019; 36 Wu (10.1016/j.future.2021.05.001_b4) 2020; 15 Li (10.1016/j.future.2021.05.001_b10) 2019; 39 |
| References_xml | – volume: 47 start-page: 71 year: 2019 end-page: 77 ident: b2 article-title: Research on high robustness target identification of volleyball based on swarm intelligence algorithm publication-title: Mach. Tool Hydraul. – volume: 15 start-page: 435 year: 2020 end-page: 444 ident: b4 article-title: Overview of the cuckoo search algorithm and its application publication-title: CAAI Trans. Intell. Syst. – volume: 41 start-page: 1342 year: 2019 end-page: 1350 ident: b6 article-title: Cooperative search for multi-UAVs via an improved pigeon-inspired optimization and Markov chain approach publication-title: Chinese J. Eng. – volume: 38 start-page: 209 year: 2020 end-page: 215 ident: b7 article-title: A strategy of data synchronization in distributed system with read separating from write publication-title: J. Northwest. Polytech. Univ. – volume: 30 start-page: 684 year: 2019 end-page: 699 ident: b8 article-title: Data synchronization tool for distributed heterogeneous database publication-title: J. Softw. – volume: 31 start-page: 460 year: 2019 end-page: 467 ident: b13 article-title: Robust and self-synchronous steganography for voice-over-IP based on LDPC codes publication-title: J. Syst. Simul. – volume: 47 start-page: 221 year: 2020 end-page: 226 ident: b17 article-title: P2p network search mechanism based on node interest and Q-learning publication-title: Comput. Sci. – volume: 56 start-page: 1 year: 2020 end-page: 12 ident: b5 article-title: Comparative study of several new swarm intelligence optimization algorithms publication-title: Comput. Eng. Appl. – volume: 39 start-page: 66 year: 2019 end-page: 72 ident: b9 article-title: The search engine based on structured data publication-title: Modern Inf. – volume: 41 start-page: 393 year: 2019 end-page: 399 ident: b3 article-title: A spark-based parallel brainstorm optimization algorithm and its application in optimizing complex multimodal functions publication-title: Comput. Eng. Sci. – volume: 42 start-page: 664 year: 2020 end-page: 672 ident: b18 article-title: Neural network control for chaotic synchronization based on GWO publication-title: J. Yunnan Univ. (Nat. Sci. Ed.) – volume: 39 start-page: 66 year: 2019 end-page: 72 ident: b10 article-title: Research on double iterative algorithm based on WSN clock synchronization publication-title: J. Systems Sci. Math. Sci. – volume: 115 start-page: 756 year: 2021 end-page: 768 ident: b16 article-title: Internet of things forensic data analysis using machine learning to identify roots of data scavenging publication-title: Future Gener. Comput. Syst. – volume: 36 start-page: 1363 year: 2019 end-page: 1370 ident: b1 article-title: Self-organizing overlapping community structure analysis algorithm based on swarm intelligence publication-title: Appl. Res. Comput. – volume: 36 start-page: 69 year: 2019 end-page: 79 ident: b11 article-title: Simultaneous synthesis of heat exchanger network by random walk algorithm with compulsive evolution based on trilevel protection strategy publication-title: Chinese J. Comput. Phys. – volume: 33 start-page: 1475 year: 2020 end-page: 1482 ident: b19 article-title: A clustering time synchronization method in wireless sensor networks publication-title: Chin. J. Sen. Actuators – volume: 46 start-page: 118 year: 2020 end-page: 125+133 ident: b12 article-title: A data transmission method for high precision of time synchronization publication-title: Comput. Eng. – volume: 69 start-page: 59 year: 2020 end-page: 72 ident: b20 article-title: Partial synchronization in complex networks: Chimera state, remote synchronization, and cluster synchronization publication-title: Acta Phys. Sin. – volume: 44 start-page: 353 year: 2020 end-page: 357 ident: b15 article-title: Design of multi-spectral data synchronous acquisition and processing system based on NUFFT publication-title: Laser Technol. – start-page: 115 year: 2020 ident: b14 article-title: Redundancy coefficient gradual up-weighting-based mutual information feature selection technique for crypto-ransomware early detection publication-title: Future Gener. Comput. Syst. – volume: 38 start-page: 209 issue: 01 year: 2020 ident: 10.1016/j.future.2021.05.001_b7 article-title: A strategy of data synchronization in distributed system with read separating from write publication-title: J. Northwest. Polytech. Univ. doi: 10.1051/jnwpu/20203810209 – start-page: 115 year: 2020 ident: 10.1016/j.future.2021.05.001_b14 article-title: Redundancy coefficient gradual up-weighting-based mutual information feature selection technique for crypto-ransomware early detection publication-title: Future Gener. Comput. Syst. – volume: 39 start-page: 66 issue: 02 year: 2019 ident: 10.1016/j.future.2021.05.001_b10 article-title: Research on double iterative algorithm based on WSN clock synchronization publication-title: J. Systems Sci. Math. Sci. – volume: 15 start-page: 435 issue: 03 year: 2020 ident: 10.1016/j.future.2021.05.001_b4 article-title: Overview of the cuckoo search algorithm and its application publication-title: CAAI Trans. Intell. Syst. – volume: 30 start-page: 684 issue: 03 year: 2019 ident: 10.1016/j.future.2021.05.001_b8 article-title: Data synchronization tool for distributed heterogeneous database publication-title: J. Softw. – volume: 36 start-page: 1363 issue: 05 year: 2019 ident: 10.1016/j.future.2021.05.001_b1 article-title: Self-organizing overlapping community structure analysis algorithm based on swarm intelligence publication-title: Appl. Res. Comput. – volume: 56 start-page: 1 issue: 22 year: 2020 ident: 10.1016/j.future.2021.05.001_b5 article-title: Comparative study of several new swarm intelligence optimization algorithms publication-title: Comput. Eng. Appl. – volume: 33 start-page: 1475 issue: 10 year: 2020 ident: 10.1016/j.future.2021.05.001_b19 article-title: A clustering time synchronization method in wireless sensor networks publication-title: Chin. J. Sen. Actuators – volume: 41 start-page: 1342 issue: 10 year: 2019 ident: 10.1016/j.future.2021.05.001_b6 article-title: Cooperative search for multi-UAVs via an improved pigeon-inspired optimization and Markov chain approach publication-title: Chinese J. Eng. – volume: 41 start-page: 393 issue: 03 year: 2019 ident: 10.1016/j.future.2021.05.001_b3 article-title: A spark-based parallel brainstorm optimization algorithm and its application in optimizing complex multimodal functions publication-title: Comput. Eng. Sci. – volume: 31 start-page: 460 issue: 03 year: 2019 ident: 10.1016/j.future.2021.05.001_b13 article-title: Robust and self-synchronous steganography for voice-over-IP based on LDPC codes publication-title: J. Syst. Simul. – volume: 44 start-page: 353 issue: 03 year: 2020 ident: 10.1016/j.future.2021.05.001_b15 article-title: Design of multi-spectral data synchronous acquisition and processing system based on NUFFT publication-title: Laser Technol. – volume: 42 start-page: 664 issue: 04 year: 2020 ident: 10.1016/j.future.2021.05.001_b18 article-title: Neural network control for chaotic synchronization based on GWO publication-title: J. Yunnan Univ. (Nat. Sci. Ed.) – volume: 46 start-page: 118 issue: 02 year: 2020 ident: 10.1016/j.future.2021.05.001_b12 article-title: A data transmission method for high precision of time synchronization publication-title: Comput. Eng. – volume: 39 start-page: 66 issue: 02 year: 2019 ident: 10.1016/j.future.2021.05.001_b9 article-title: The search engine based on structured data publication-title: Modern Inf. – volume: 115 start-page: 756 year: 2021 ident: 10.1016/j.future.2021.05.001_b16 article-title: Internet of things forensic data analysis using machine learning to identify roots of data scavenging publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.10.001 – volume: 47 start-page: 221 issue: 02 year: 2020 ident: 10.1016/j.future.2021.05.001_b17 article-title: P2p network search mechanism based on node interest and Q-learning publication-title: Comput. Sci. – volume: 47 start-page: 71 issue: 12 year: 2019 ident: 10.1016/j.future.2021.05.001_b2 article-title: Research on high robustness target identification of volleyball based on swarm intelligence algorithm publication-title: Mach. Tool Hydraul. – volume: 36 start-page: 69 issue: 01 year: 2019 ident: 10.1016/j.future.2021.05.001_b11 article-title: Simultaneous synthesis of heat exchanger network by random walk algorithm with compulsive evolution based on trilevel protection strategy publication-title: Chinese J. Comput. Phys. – volume: 69 start-page: 59 issue: 08 year: 2020 ident: 10.1016/j.future.2021.05.001_b20 article-title: Partial synchronization in complex networks: Chimera state, remote synchronization, and cluster synchronization publication-title: Acta Phys. Sin. doi: 10.7498/aps.69.20191973 |
| SSID | ssj0001731 |
| Score | 2.3508928 |
| Snippet | Existing synchronous network search data extraction techniques suffer from load unbalance in the face of increasing number of concurrent users. For this... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 151 |
| SubjectTerms | Data extraction Network search Swarm intelligence algorithm Synchronous update |
| Title | Research on the optimum synchronous network search data extraction based on swarm intelligence algorithm |
| URI | https://dx.doi.org/10.1016/j.future.2021.05.001 |
| Volume | 125 |
| WOSCitedRecordID | wos000688442400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF5R0kMvpfQhXq32wC0ysr121ntECJT2gJDIITfLXq95iDiRk1B-PjO7Y8dAROHQi5VY-3Ayn2dn1uPvY-wQboJMK6M8UwSFFxWQ7iSREl6Qaz_GJUyY3IpNyPPzZDxWF_SgfW7lBGRVJQ8PavZfTQ3nwNj46uw7zN0OCifgMxgdjmB2OL7J8E0tHT0G6E_BKUyWE-Qm0MiEaylZXfF3n1pimWgfvHRNwuG4tBXYf_43qyeWUqKl7czurqb1zeJ60g1rzywzCcoxG0KUJrUIooqer-DjaoFab-M4DIbLrLv_EAadWg7akgRXK4UVxF351DDueMWAOGUNfYvX-m63jXB75MhUjnAuS6pKkz2hyn62hLWFhU3N2m3qRklxlNSPsXTvA-uFMlbgvXvHv0_Hf9oFO5AkW0k_pHnD0pYBvrya9RFMJyoZfWGfKZ3gxw4G22zDVF_ZViPVwclzf2PXDSr4tOKACk6o4B1UcEIFp5aICr5CBbeowP4WFbyLCt6i4ju7PDsdnQw9EtnwNGSLC08UUWIGGiNTE5ZJ6aNkox9riHMzocE9R1qKMhLSRDJHUTod-H7h64GSpgjFD7ZZTSuzw7iMB5EqjSohI4jKoMxjbSDbz5NCoFhisstE87elmvjnUQblLn3NaLvMa3vNHP_KP9rLxiIpxZAuNkwBZq_23HvnTPvs0-p2OGCbi3ppfrKP-n5xM69_EcYeAa5EmWA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+the+optimum+synchronous+network+search+data+extraction+based+on+swarm+intelligence+algorithm&rft.jtitle=Future+generation+computer+systems&rft.au=Hu%2C+Su&rft.au=Yin%2C+Hua&rft.date=2021-12-01&rft.issn=0167-739X&rft.volume=125&rft.spage=151&rft.epage=155&rft_id=info:doi/10.1016%2Fj.future.2021.05.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2021_05_001 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |