Research on the optimum synchronous network search data extraction based on swarm intelligence algorithm

Existing synchronous network search data extraction techniques suffer from load unbalance in the face of increasing number of concurrent users. For this reason, this paper presents the research on the optimum synchronous network search data extraction based on swarm intelligence algorithm. A traffic...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Future generation computer systems Ročník 125; s. 151 - 155
Hlavní autoři: Hu, Su, Yin, Hua
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2021
Témata:
ISSN:0167-739X, 1872-7115
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Existing synchronous network search data extraction techniques suffer from load unbalance in the face of increasing number of concurrent users. For this reason, this paper presents the research on the optimum synchronous network search data extraction based on swarm intelligence algorithm. A traffic balancing model is constructed to determine the node balance state according to the traffic variation and influence factors of network nodes. Under the condition that the node state is known, the swarm intelligence algorithm is used to cluster the data to be synchronized and adjust the node state so that it is kept stable throughout the synchronization process. The clustered data act as the target to connect the user with the server side to achieve the optimum network search data extraction and synchronization. The experimental results show that when the number of concurrent network users is increasing, the designed technique features stable load balancing, and achieves optimum data extraction performance and low execution cost when the task completion time is less than 0.5 s. •A traffic balancing model is constructed to determine node balance state.•The swarm intelligence algorithm is used to cluster data and adjust node state.•Clustered data is used to achieve optimum search extraction and synchronization.
AbstractList Existing synchronous network search data extraction techniques suffer from load unbalance in the face of increasing number of concurrent users. For this reason, this paper presents the research on the optimum synchronous network search data extraction based on swarm intelligence algorithm. A traffic balancing model is constructed to determine the node balance state according to the traffic variation and influence factors of network nodes. Under the condition that the node state is known, the swarm intelligence algorithm is used to cluster the data to be synchronized and adjust the node state so that it is kept stable throughout the synchronization process. The clustered data act as the target to connect the user with the server side to achieve the optimum network search data extraction and synchronization. The experimental results show that when the number of concurrent network users is increasing, the designed technique features stable load balancing, and achieves optimum data extraction performance and low execution cost when the task completion time is less than 0.5 s. •A traffic balancing model is constructed to determine node balance state.•The swarm intelligence algorithm is used to cluster data and adjust node state.•Clustered data is used to achieve optimum search extraction and synchronization.
Author Hu, Su
Yin, Hua
Author_xml – sequence: 1
  givenname: Su
  surname: Hu
  fullname: Hu, Su
– sequence: 2
  givenname: Hua
  surname: Yin
  fullname: Yin, Hua
  email: HuaYin2021@21cn.com
BookMark eNqFkL1OwzAUhS0EEm3hDRj8AgnXcRK3DEio4k-qhAQMbJbr3DQuiV3ZLqVvT6J2YoDpLuc7Ovcbk1PrLBJyxSBlwMrrdVpv49ZjmkHGUihSAHZCRmwqskQwVpySUR8TieCzj3MyDmENfUJwNiLNKwZUXjfUWRobpG4TTbftaNhb3Xhn3TZQi3Hn_Cc9JisVFcXv6JWOpseWKmA18GGnfEeNjdi2ZoVWI1XtynkTm-6CnNWqDXh5vBPy9nD_Pn9KFi-Pz_O7RaI5lDHhVT7FUkOZc8zqaQ2MFwwKXbBCcT0rea4Fr3MuMBdLzoBrBlCBLmcCq4xPyM2hVXsXgsdaahPVsLJfa1rJQA7G5FoejMnBmIRC9j56OP8Fb7zplN__h90eMOzf-jLoZdBmeL4yHnWUlTN_F_wAS96MNA
CitedBy_id crossref_primary_10_1371_journal_pone_0317119
crossref_primary_10_1038_s41598_024_58421_z
crossref_primary_10_3390_pr11051454
crossref_primary_10_1155_2022_2479939
crossref_primary_10_3390_s25092730
Cites_doi 10.1051/jnwpu/20203810209
10.1016/j.future.2020.10.001
10.7498/aps.69.20191973
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2021.05.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 155
ExternalDocumentID 10_1016_j_future_2021_05_001
S0167739X2100145X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-3d48e6c0643e2f8f0135105c515a3c9634c73f437e47b3103c100d0c697ed23
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000688442400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Tue Nov 18 22:11:37 EST 2025
Sat Nov 29 07:24:19 EST 2025
Fri Feb 23 02:41:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Swarm intelligence algorithm
Synchronous update
Network search
Data extraction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-3d48e6c0643e2f8f0135105c515a3c9634c73f437e47b3103c100d0c697ed23
PageCount 5
ParticipantIDs crossref_citationtrail_10_1016_j_future_2021_05_001
crossref_primary_10_1016_j_future_2021_05_001
elsevier_sciencedirect_doi_10_1016_j_future_2021_05_001
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gao, Tang, Song (b13) 2019; 31
Wang, Liu (b20) 2020; 69
Wu, Zhou (b4) 2020; 15
Xu, Ye, Zhang (b8) 2019; 30
Li, Guo (b10) 2019; 39
Shakeel, Baskar, Fouad (b16) 2021; 115
Jiang, Qin (b9) 2019; 39
Zhang, Li (b18) 2020; 42
Wang, Yuan (b19) 2020; 33
Sun, Ma, Wang (b1) 2019; 36
Li, Zhang, Wang (b17) 2020; 47
Li, Wang, Chen (b5) 2020; 56
Bian (b2) 2019; 47
Yang, Chang, Wang (b12) 2020; 46
Yang, Zhang, Truong (b3) 2019; 41
Gao, Liu, Li (b7) 2020; 38
Tian (b15) 2020; 44
Wang, Xiao (b6) 2019; 41
Li, Cui, Chen (b11) 2019; 36
Al-Rimy, Maarof, Alazab (b14) 2020
Xu (10.1016/j.future.2021.05.001_b8) 2019; 30
Jiang (10.1016/j.future.2021.05.001_b9) 2019; 39
Yang (10.1016/j.future.2021.05.001_b12) 2020; 46
Yang (10.1016/j.future.2021.05.001_b3) 2019; 41
Tian (10.1016/j.future.2021.05.001_b15) 2020; 44
Li (10.1016/j.future.2021.05.001_b17) 2020; 47
Gao (10.1016/j.future.2021.05.001_b13) 2019; 31
Bian (10.1016/j.future.2021.05.001_b2) 2019; 47
Zhang (10.1016/j.future.2021.05.001_b18) 2020; 42
Li (10.1016/j.future.2021.05.001_b5) 2020; 56
Sun (10.1016/j.future.2021.05.001_b1) 2019; 36
Wang (10.1016/j.future.2021.05.001_b6) 2019; 41
Al-Rimy (10.1016/j.future.2021.05.001_b14) 2020
Shakeel (10.1016/j.future.2021.05.001_b16) 2021; 115
Wang (10.1016/j.future.2021.05.001_b20) 2020; 69
Wang (10.1016/j.future.2021.05.001_b19) 2020; 33
Gao (10.1016/j.future.2021.05.001_b7) 2020; 38
Li (10.1016/j.future.2021.05.001_b11) 2019; 36
Wu (10.1016/j.future.2021.05.001_b4) 2020; 15
Li (10.1016/j.future.2021.05.001_b10) 2019; 39
References_xml – volume: 47
  start-page: 71
  year: 2019
  end-page: 77
  ident: b2
  article-title: Research on high robustness target identification of volleyball based on swarm intelligence algorithm
  publication-title: Mach. Tool Hydraul.
– volume: 15
  start-page: 435
  year: 2020
  end-page: 444
  ident: b4
  article-title: Overview of the cuckoo search algorithm and its application
  publication-title: CAAI Trans. Intell. Syst.
– volume: 41
  start-page: 1342
  year: 2019
  end-page: 1350
  ident: b6
  article-title: Cooperative search for multi-UAVs via an improved pigeon-inspired optimization and Markov chain approach
  publication-title: Chinese J. Eng.
– volume: 38
  start-page: 209
  year: 2020
  end-page: 215
  ident: b7
  article-title: A strategy of data synchronization in distributed system with read separating from write
  publication-title: J. Northwest. Polytech. Univ.
– volume: 30
  start-page: 684
  year: 2019
  end-page: 699
  ident: b8
  article-title: Data synchronization tool for distributed heterogeneous database
  publication-title: J. Softw.
– volume: 31
  start-page: 460
  year: 2019
  end-page: 467
  ident: b13
  article-title: Robust and self-synchronous steganography for voice-over-IP based on LDPC codes
  publication-title: J. Syst. Simul.
– volume: 47
  start-page: 221
  year: 2020
  end-page: 226
  ident: b17
  article-title: P2p network search mechanism based on node interest and Q-learning
  publication-title: Comput. Sci.
– volume: 56
  start-page: 1
  year: 2020
  end-page: 12
  ident: b5
  article-title: Comparative study of several new swarm intelligence optimization algorithms
  publication-title: Comput. Eng. Appl.
– volume: 39
  start-page: 66
  year: 2019
  end-page: 72
  ident: b9
  article-title: The search engine based on structured data
  publication-title: Modern Inf.
– volume: 41
  start-page: 393
  year: 2019
  end-page: 399
  ident: b3
  article-title: A spark-based parallel brainstorm optimization algorithm and its application in optimizing complex multimodal functions
  publication-title: Comput. Eng. Sci.
– volume: 42
  start-page: 664
  year: 2020
  end-page: 672
  ident: b18
  article-title: Neural network control for chaotic synchronization based on GWO
  publication-title: J. Yunnan Univ. (Nat. Sci. Ed.)
– volume: 39
  start-page: 66
  year: 2019
  end-page: 72
  ident: b10
  article-title: Research on double iterative algorithm based on WSN clock synchronization
  publication-title: J. Systems Sci. Math. Sci.
– volume: 115
  start-page: 756
  year: 2021
  end-page: 768
  ident: b16
  article-title: Internet of things forensic data analysis using machine learning to identify roots of data scavenging
  publication-title: Future Gener. Comput. Syst.
– volume: 36
  start-page: 1363
  year: 2019
  end-page: 1370
  ident: b1
  article-title: Self-organizing overlapping community structure analysis algorithm based on swarm intelligence
  publication-title: Appl. Res. Comput.
– volume: 36
  start-page: 69
  year: 2019
  end-page: 79
  ident: b11
  article-title: Simultaneous synthesis of heat exchanger network by random walk algorithm with compulsive evolution based on trilevel protection strategy
  publication-title: Chinese J. Comput. Phys.
– volume: 33
  start-page: 1475
  year: 2020
  end-page: 1482
  ident: b19
  article-title: A clustering time synchronization method in wireless sensor networks
  publication-title: Chin. J. Sen. Actuators
– volume: 46
  start-page: 118
  year: 2020
  end-page: 125+133
  ident: b12
  article-title: A data transmission method for high precision of time synchronization
  publication-title: Comput. Eng.
– volume: 69
  start-page: 59
  year: 2020
  end-page: 72
  ident: b20
  article-title: Partial synchronization in complex networks: Chimera state, remote synchronization, and cluster synchronization
  publication-title: Acta Phys. Sin.
– volume: 44
  start-page: 353
  year: 2020
  end-page: 357
  ident: b15
  article-title: Design of multi-spectral data synchronous acquisition and processing system based on NUFFT
  publication-title: Laser Technol.
– start-page: 115
  year: 2020
  ident: b14
  article-title: Redundancy coefficient gradual up-weighting-based mutual information feature selection technique for crypto-ransomware early detection
  publication-title: Future Gener. Comput. Syst.
– volume: 38
  start-page: 209
  issue: 01
  year: 2020
  ident: 10.1016/j.future.2021.05.001_b7
  article-title: A strategy of data synchronization in distributed system with read separating from write
  publication-title: J. Northwest. Polytech. Univ.
  doi: 10.1051/jnwpu/20203810209
– start-page: 115
  year: 2020
  ident: 10.1016/j.future.2021.05.001_b14
  article-title: Redundancy coefficient gradual up-weighting-based mutual information feature selection technique for crypto-ransomware early detection
  publication-title: Future Gener. Comput. Syst.
– volume: 39
  start-page: 66
  issue: 02
  year: 2019
  ident: 10.1016/j.future.2021.05.001_b10
  article-title: Research on double iterative algorithm based on WSN clock synchronization
  publication-title: J. Systems Sci. Math. Sci.
– volume: 15
  start-page: 435
  issue: 03
  year: 2020
  ident: 10.1016/j.future.2021.05.001_b4
  article-title: Overview of the cuckoo search algorithm and its application
  publication-title: CAAI Trans. Intell. Syst.
– volume: 30
  start-page: 684
  issue: 03
  year: 2019
  ident: 10.1016/j.future.2021.05.001_b8
  article-title: Data synchronization tool for distributed heterogeneous database
  publication-title: J. Softw.
– volume: 36
  start-page: 1363
  issue: 05
  year: 2019
  ident: 10.1016/j.future.2021.05.001_b1
  article-title: Self-organizing overlapping community structure analysis algorithm based on swarm intelligence
  publication-title: Appl. Res. Comput.
– volume: 56
  start-page: 1
  issue: 22
  year: 2020
  ident: 10.1016/j.future.2021.05.001_b5
  article-title: Comparative study of several new swarm intelligence optimization algorithms
  publication-title: Comput. Eng. Appl.
– volume: 33
  start-page: 1475
  issue: 10
  year: 2020
  ident: 10.1016/j.future.2021.05.001_b19
  article-title: A clustering time synchronization method in wireless sensor networks
  publication-title: Chin. J. Sen. Actuators
– volume: 41
  start-page: 1342
  issue: 10
  year: 2019
  ident: 10.1016/j.future.2021.05.001_b6
  article-title: Cooperative search for multi-UAVs via an improved pigeon-inspired optimization and Markov chain approach
  publication-title: Chinese J. Eng.
– volume: 41
  start-page: 393
  issue: 03
  year: 2019
  ident: 10.1016/j.future.2021.05.001_b3
  article-title: A spark-based parallel brainstorm optimization algorithm and its application in optimizing complex multimodal functions
  publication-title: Comput. Eng. Sci.
– volume: 31
  start-page: 460
  issue: 03
  year: 2019
  ident: 10.1016/j.future.2021.05.001_b13
  article-title: Robust and self-synchronous steganography for voice-over-IP based on LDPC codes
  publication-title: J. Syst. Simul.
– volume: 44
  start-page: 353
  issue: 03
  year: 2020
  ident: 10.1016/j.future.2021.05.001_b15
  article-title: Design of multi-spectral data synchronous acquisition and processing system based on NUFFT
  publication-title: Laser Technol.
– volume: 42
  start-page: 664
  issue: 04
  year: 2020
  ident: 10.1016/j.future.2021.05.001_b18
  article-title: Neural network control for chaotic synchronization based on GWO
  publication-title: J. Yunnan Univ. (Nat. Sci. Ed.)
– volume: 46
  start-page: 118
  issue: 02
  year: 2020
  ident: 10.1016/j.future.2021.05.001_b12
  article-title: A data transmission method for high precision of time synchronization
  publication-title: Comput. Eng.
– volume: 39
  start-page: 66
  issue: 02
  year: 2019
  ident: 10.1016/j.future.2021.05.001_b9
  article-title: The search engine based on structured data
  publication-title: Modern Inf.
– volume: 115
  start-page: 756
  year: 2021
  ident: 10.1016/j.future.2021.05.001_b16
  article-title: Internet of things forensic data analysis using machine learning to identify roots of data scavenging
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.10.001
– volume: 47
  start-page: 221
  issue: 02
  year: 2020
  ident: 10.1016/j.future.2021.05.001_b17
  article-title: P2p network search mechanism based on node interest and Q-learning
  publication-title: Comput. Sci.
– volume: 47
  start-page: 71
  issue: 12
  year: 2019
  ident: 10.1016/j.future.2021.05.001_b2
  article-title: Research on high robustness target identification of volleyball based on swarm intelligence algorithm
  publication-title: Mach. Tool Hydraul.
– volume: 36
  start-page: 69
  issue: 01
  year: 2019
  ident: 10.1016/j.future.2021.05.001_b11
  article-title: Simultaneous synthesis of heat exchanger network by random walk algorithm with compulsive evolution based on trilevel protection strategy
  publication-title: Chinese J. Comput. Phys.
– volume: 69
  start-page: 59
  issue: 08
  year: 2020
  ident: 10.1016/j.future.2021.05.001_b20
  article-title: Partial synchronization in complex networks: Chimera state, remote synchronization, and cluster synchronization
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.69.20191973
SSID ssj0001731
Score 2.3508928
Snippet Existing synchronous network search data extraction techniques suffer from load unbalance in the face of increasing number of concurrent users. For this...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 151
SubjectTerms Data extraction
Network search
Swarm intelligence algorithm
Synchronous update
Title Research on the optimum synchronous network search data extraction based on swarm intelligence algorithm
URI https://dx.doi.org/10.1016/j.future.2021.05.001
Volume 125
WOSCitedRecordID wos000688442400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF5R0kMvpfQhXq32wC0ysr121ntECJT2gJDIITfLXq95iDiRk1B-PjO7Y8dAROHQi5VY-3Ayn2dn1uPvY-wQboJMK6M8UwSFFxWQ7iSREl6Qaz_GJUyY3IpNyPPzZDxWF_SgfW7lBGRVJQ8PavZfTQ3nwNj46uw7zN0OCifgMxgdjmB2OL7J8E0tHT0G6E_BKUyWE-Qm0MiEaylZXfF3n1pimWgfvHRNwuG4tBXYf_43qyeWUqKl7czurqb1zeJ60g1rzywzCcoxG0KUJrUIooqer-DjaoFab-M4DIbLrLv_EAadWg7akgRXK4UVxF351DDueMWAOGUNfYvX-m63jXB75MhUjnAuS6pKkz2hyn62hLWFhU3N2m3qRklxlNSPsXTvA-uFMlbgvXvHv0_Hf9oFO5AkW0k_pHnD0pYBvrya9RFMJyoZfWGfKZ3gxw4G22zDVF_ZViPVwclzf2PXDSr4tOKACk6o4B1UcEIFp5aICr5CBbeowP4WFbyLCt6i4ju7PDsdnQw9EtnwNGSLC08UUWIGGiNTE5ZJ6aNkox9riHMzocE9R1qKMhLSRDJHUTod-H7h64GSpgjFD7ZZTSuzw7iMB5EqjSohI4jKoMxjbSDbz5NCoFhisstE87elmvjnUQblLn3NaLvMa3vNHP_KP9rLxiIpxZAuNkwBZq_23HvnTPvs0-p2OGCbi3ppfrKP-n5xM69_EcYeAa5EmWA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+the+optimum+synchronous+network+search+data+extraction+based+on+swarm+intelligence+algorithm&rft.jtitle=Future+generation+computer+systems&rft.au=Hu%2C+Su&rft.au=Yin%2C+Hua&rft.date=2021-12-01&rft.issn=0167-739X&rft.volume=125&rft.spage=151&rft.epage=155&rft_id=info:doi/10.1016%2Fj.future.2021.05.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2021_05_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon