Adaptive joint sparse recovery algorithm based on Tabu Search
This paper introduces a novel metaheuristic methodology to address the Multiple Measurement Vectors problem using a well-known greedy search strategy. A modified version of Tabu Search algorithm is utilized to determine a precise estimation of row support and then joint sparse samples are reconstruc...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 224; s. 9 - 18 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
08.02.2017
|
| Témata: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper introduces a novel metaheuristic methodology to address the Multiple Measurement Vectors problem using a well-known greedy search strategy. A modified version of Tabu Search algorithm is utilized to determine a precise estimation of row support and then joint sparse samples are reconstructed using MMSE criterion. The proposed approach is more robust to the sparsity order variations and noise uncertainty, in comparison with the conventional MMV problem solvers. Furthermore, to avoid wastage of the sampling resources and reduce the implementation costs, a two-step joint sparse recovery framework is developed which the first step predicts and adjusts the optimum sampling rate and the second one reconstructs signal vectors applying obtained sampling rate. Numerical simulations demonstrate the superiority of proposed technique for both improving the performance and reducing the computational complexity and sampling costs. |
|---|---|
| ISSN: | 0925-2312 1872-8286 |
| DOI: | 10.1016/j.neucom.2016.10.056 |