Adaptive joint sparse recovery algorithm based on Tabu Search

This paper introduces a novel metaheuristic methodology to address the Multiple Measurement Vectors problem using a well-known greedy search strategy. A modified version of Tabu Search algorithm is utilized to determine a precise estimation of row support and then joint sparse samples are reconstruc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 224; s. 9 - 18
Hlavní autoři: Ghadyani, Mohsen, Shahzadi, Ali
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 08.02.2017
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper introduces a novel metaheuristic methodology to address the Multiple Measurement Vectors problem using a well-known greedy search strategy. A modified version of Tabu Search algorithm is utilized to determine a precise estimation of row support and then joint sparse samples are reconstructed using MMSE criterion. The proposed approach is more robust to the sparsity order variations and noise uncertainty, in comparison with the conventional MMV problem solvers. Furthermore, to avoid wastage of the sampling resources and reduce the implementation costs, a two-step joint sparse recovery framework is developed which the first step predicts and adjusts the optimum sampling rate and the second one reconstructs signal vectors applying obtained sampling rate. Numerical simulations demonstrate the superiority of proposed technique for both improving the performance and reducing the computational complexity and sampling costs.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2016.10.056