Convolutional neural network and recommendation algorithm for the new model of college music education

•Music education requires repeated practice and experience of music skills.•The algorithm studied in this paper can supplement information sources for the music.•Neural network combined with a recommendation algorithm to design a music.•It is helpful for teachers to timely and dynamically grasp the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entertainment computing Jg. 48; S. 100612
1. Verfasser: Bai, Hua
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.01.2024
Schlagworte:
ISSN:1875-9521, 1875-953X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Music education requires repeated practice and experience of music skills.•The algorithm studied in this paper can supplement information sources for the music.•Neural network combined with a recommendation algorithm to design a music.•It is helpful for teachers to timely and dynamically grasp the types of music that students like. With the rapid development of the field of artificial intelligence, we expect that AI+ music can produce a new music education model to help efficient college students improve their personal music level. In this paper, we design a convolutional neural network music recommendation system, including a user modeling module, audio feature extraction module recommendation algorithm module, etc., which can model students' music preferences to generate Top recommendations for target users. It is helpful for teachers to timely and dynamically grasp the types of music that students like. Experiments show that the proposed method has certain feasibility and effectiveness. Compared with other traditional music recommendation algorithms, we can make full use of the powerful advantages of deep neural network automatic feature extraction and integrate the historical behavior information of users' interaction with music.
AbstractList •Music education requires repeated practice and experience of music skills.•The algorithm studied in this paper can supplement information sources for the music.•Neural network combined with a recommendation algorithm to design a music.•It is helpful for teachers to timely and dynamically grasp the types of music that students like. With the rapid development of the field of artificial intelligence, we expect that AI+ music can produce a new music education model to help efficient college students improve their personal music level. In this paper, we design a convolutional neural network music recommendation system, including a user modeling module, audio feature extraction module recommendation algorithm module, etc., which can model students' music preferences to generate Top recommendations for target users. It is helpful for teachers to timely and dynamically grasp the types of music that students like. Experiments show that the proposed method has certain feasibility and effectiveness. Compared with other traditional music recommendation algorithms, we can make full use of the powerful advantages of deep neural network automatic feature extraction and integrate the historical behavior information of users' interaction with music.
ArticleNumber 100612
Author Bai, Hua
Author_xml – sequence: 1
  givenname: Hua
  surname: Bai
  fullname: Bai, Hua
  email: 13903711261@163.com
  organization: Faculty of Arts, Henan University of Economics and Law, Zhengzhou 450046, China
BookMark eNqFkN9KwzAUh4NMcM69gRd5gc6kaZrWC0GG_2DgjYJ3oU1Ot8w0kTTd8O3tVvHCCz035xDO9-PkO0cT5x0gdEnJghKaX20X4KLy7SIlKRueSE7TEzSlheBJydnb5GdO6Rmad92WDMVoVvBsipqldztv-2i8qyx20Idji3sf3nHlNA4whLfgdHXYwZVd-2DipsWNDzhuYFje49ZrsNg3WHlrYQ247TujMOheHbELdNpUtoP5d5-h1_u7l-Vjsnp-eFrerhLFSB4TVoqcFLoUGWlETUrgec1VzjXhqeaQFUJnpNZ5SQtFtaCi0TkTlIusBqZ4wWYoG3NV8F0XoJEfwbRV-JSUyIMuuZWjLnnQJUddA3b9C1MmHg-PoTL2P_hmhGH42M5AkJ0y4BRoM7iLUnvzd8AX1reL5A
CitedBy_id crossref_primary_10_1016_j_sasc_2025_200305
crossref_primary_10_1002_ett_70190
crossref_primary_10_1177_14727978251380828
Cites_doi 10.1109/JPROC.2021.3117472
10.1109/TMM.2019.2918739
10.1109/TASLP.2018.2870742
10.17743/jaes.2019.0043
10.1007/s10462-019-09744-1
10.1007/s00521-020-05085-1
10.1007/s11042-020-10465-9
10.1007/s00521-021-05960-5
10.1109/TNNLS.2019.2955567
10.1007/s00521-021-05846-6
10.1038/s42256-020-00286-8
10.1007/s00500-020-05364-y
10.1007/s11042-020-10381-y
10.1007/s13748-019-00203-0
10.1007/s13042-019-00981-y
10.1109/TMI.2020.3046579
10.1109/JOE.2022.3223733
10.1007/s13735-021-00206-5
10.1007/s10660-020-09411-6
10.4018/JCIT.20210701.oa3
10.1109/JPROC.2020.2970615
10.1007/s11042-019-08192-x
10.1049/el.2019.4202
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.entcom.2023.100612
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-953X
ExternalDocumentID 10_1016_j_entcom_2023_100612
S1875952123000678
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
C1A
EBS
EFJIC
EFLBG
EJD
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OKI
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSV
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-397608d9740f7b09e56b5c65d052d5e487d40bd6918c1d717fd6371574be3c583
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001098048900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1875-9521
IngestDate Tue Nov 18 21:07:23 EST 2025
Sat Nov 29 06:59:24 EST 2025
Fri Feb 23 02:34:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Music education
New model
Algorithm
Convolutional neural network
Music teaching
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-397608d9740f7b09e56b5c65d052d5e487d40bd6918c1d717fd6371574be3c583
ParticipantIDs crossref_primary_10_1016_j_entcom_2023_100612
crossref_citationtrail_10_1016_j_entcom_2023_100612
elsevier_sciencedirect_doi_10_1016_j_entcom_2023_100612
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Entertainment computing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tahmasebi, Ravanmehr, Mohamadrezaei (b0065) 2021; 33
Miller, Xiang, Kesidis (b0090) 2020; 108
Dhillon, Verma (b0010) 2020; 9
Shuo, Ming (b0070) 2022; 34
Dong, Yang, Zhao, Li (b0100) 2019; 21
Yin, Ding, Wang (b0120) 2019; 9
Dou, Karimi, Rollins, Ortinau, Vasung, Velasco-Annis, Gholipour (b0055) 2020; 40
Shen, Yi, Liu, Zhang, Zhang, Liu, Xiong (b0025) 2019; 33
Abd Elaziz, Dahou, Abualigah, Yu, Alshinwan, Khasawneh, Lu (b0020) 2021; 33
Huang, Xu, Zhu, Zhou (b0040) 2020; 31
Zhou (b0035) 2020; 20
Apostolidis, Adamantidou, Metsai, Mezaris, Patras (b0085) 2021; 109
Zheng, Zhang (b0105) 2018; 27
Wen (b0115) 2021; 25
Vryzas, Vrysis, Matsiola, Kotsakis, Dimoulas, Kalliris (b0060) 2020; 68
Sarkar, Choudhury, Dutta, Roy, Saha (b0015) 2020; 79
Da’u, Salim (b0045) 2020; 53
Li, Han, Li, Zhu, Yuan, Gou (b0075) 2022; 81
Baby, Van Den Broucke, Verhulst (b0080) 2021; 3
Bi, Liu, Fan (b0030) 2020; 11
Zhou, Pang, Zhang (b0095) 2023; 48
Wang, Syu, Wongchaisuwat (b0125) 2021; 80
Elbir, Aydin (b0050) 2020; 56
Sheikh Fathollahi, Razzazi (b0005) 2021; 10
Choudhury, Mohanty, Jagadev (b0130) 2021; 13
Dalal, Khalaf (b0110) 2021; 23
Zhou (10.1016/j.entcom.2023.100612_b0035) 2020; 20
Dong (10.1016/j.entcom.2023.100612_b0100) 2019; 21
Li (10.1016/j.entcom.2023.100612_b0075) 2022; 81
Tahmasebi (10.1016/j.entcom.2023.100612_b0065) 2021; 33
Zheng (10.1016/j.entcom.2023.100612_b0105) 2018; 27
Wang (10.1016/j.entcom.2023.100612_b0125) 2021; 80
Yin (10.1016/j.entcom.2023.100612_b0120) 2019; 9
Dalal (10.1016/j.entcom.2023.100612_b0110) 2021; 23
Bi (10.1016/j.entcom.2023.100612_b0030) 2020; 11
Baby (10.1016/j.entcom.2023.100612_b0080) 2021; 3
Wen (10.1016/j.entcom.2023.100612_b0115) 2021; 25
Miller (10.1016/j.entcom.2023.100612_b0090) 2020; 108
Elbir (10.1016/j.entcom.2023.100612_b0050) 2020; 56
Sheikh Fathollahi (10.1016/j.entcom.2023.100612_b0005) 2021; 10
Dhillon (10.1016/j.entcom.2023.100612_b0010) 2020; 9
Abd Elaziz (10.1016/j.entcom.2023.100612_b0020) 2021; 33
Shen (10.1016/j.entcom.2023.100612_b0025) 2019; 33
Da’u (10.1016/j.entcom.2023.100612_b0045) 2020; 53
Apostolidis (10.1016/j.entcom.2023.100612_b0085) 2021; 109
Choudhury (10.1016/j.entcom.2023.100612_b0130) 2021; 13
Zhou (10.1016/j.entcom.2023.100612_b0095) 2023; 48
Huang (10.1016/j.entcom.2023.100612_b0040) 2020; 31
Shuo (10.1016/j.entcom.2023.100612_b0070) 2022; 34
Vryzas (10.1016/j.entcom.2023.100612_b0060) 2020; 68
Dou (10.1016/j.entcom.2023.100612_b0055) 2020; 40
Sarkar (10.1016/j.entcom.2023.100612_b0015) 2020; 79
References_xml – volume: 9
  start-page: 1
  year: 2019
  end-page: 17
  ident: b0120
  article-title: Mobile marketing recommendation method based on user location feedback
  publication-title: HCIS
– volume: 10
  start-page: 43
  year: 2021
  end-page: 53
  ident: b0005
  article-title: Music similarity measurement and recommendation system using convolutional neural networks
  publication-title: Int. J. Multimedia Inform. Retr.
– volume: 48
  start-page: 474
  year: 2023
  end-page: 488
  ident: b0095
  article-title: Underwater image enhancement method by multi-interval histogram equalization
  publication-title: IEEE J. Ocean. Eng.
– volume: 3
  start-page: 134
  year: 2021
  end-page: 143
  ident: b0080
  article-title: A convolutional neural-network model of human cochlear mechanics and filter tuning for real-time applications
  publication-title: Nat. Mach. Intell.
– volume: 13
  start-page: 475
  year: 2021
  end-page: 482
  ident: b0130
  article-title: Multimodal trust based recommender system with machine learning approaches for movie recommendation
  publication-title: Int. J. Inf. Technol.
– volume: 34
  start-page: 2583
  year: 2022
  end-page: 2596
  ident: b0070
  article-title: Exploring online intelligent teaching method with machine learning and SVM algorithm
  publication-title: Neural Comput. Appl.
– volume: 27
  start-page: 63
  year: 2018
  end-page: 76
  ident: b0105
  article-title: Phase-aware speech enhancement based on deep neural networks
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– volume: 20
  start-page: 321
  year: 2020
  end-page: 342
  ident: b0035
  article-title: Product advertising recommendation in e-commerce based on deep learning and distributed expression
  publication-title: Electron. Commer. Res.
– volume: 23
  start-page: 27
  year: 2021
  end-page: 42
  ident: b0110
  article-title: Prediction of occupation stress by implementing convolutional neural network techniques
  publication-title: J. Cases Inform. Technol. (JCIT)
– volume: 56
  start-page: 627
  year: 2020
  end-page: 629
  ident: b0050
  article-title: Music genre classification and music recommendation by using deep learning
  publication-title: Electron. Lett
– volume: 33
  start-page: 14079
  year: 2021
  end-page: 14099
  ident: b0020
  article-title: Advanced metaheuristic optimization techniques in applications of deep neural networks: a review
  publication-title: Neural Comput. Appl.
– volume: 11
  start-page: 763
  year: 2020
  end-page: 777
  ident: b0030
  article-title: A deep neural networks based recommendation algorithm using user and item basic data
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 68
  start-page: 14
  year: 2020
  end-page: 24
  ident: b0060
  article-title: Continuous speech emotion recognition with convolutional neural networks
  publication-title: J. Audio Eng. Soc.
– volume: 79
  start-page: 765
  year: 2020
  end-page: 783
  ident: b0015
  article-title: Recognition of emotion in music based on deep convolutional neural network
  publication-title: Multimed. Tools Appl.
– volume: 21
  start-page: 3150
  year: 2019
  end-page: 3163
  ident: b0100
  article-title: Bidirectional convolutional recurrent sparse network (BCRSN): an efficient model for music emotion recognition
  publication-title: IEEE Trans. Multimedia
– volume: 31
  start-page: 4461
  year: 2020
  end-page: 4474
  ident: b0040
  article-title: An efficient group recommendation model with multiattention-based neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 53
  start-page: 2709
  year: 2020
  end-page: 2748
  ident: b0045
  article-title: Recommendation system based on deep learning methods: a systematic review and new directions
  publication-title: Artif. Intell. Rev.
– volume: 109
  start-page: 1838
  year: 2021
  end-page: 1863
  ident: b0085
  article-title: Video summarization using deep neural networks: a survey
  publication-title: Proc. IEEE
– volume: 9
  start-page: 85
  year: 2020
  end-page: 112
  ident: b0010
  article-title: Convolutional neural network: a review of models, methodologies, and applications to object detection
  publication-title: Prog. Artif. Intell.
– volume: 33
  start-page: 1906
  year: 2019
  end-page: 1918
  ident: b0025
  article-title: Deep variational matrix factorization with knowledge embedding for recommendation system
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 33
  start-page: 1607
  year: 2021
  end-page: 1623
  ident: b0065
  article-title: Social movie recommender system based on deep autoencoder network using Twitter data
  publication-title: Neural Comput. Appl.
– volume: 81
  start-page: 4621
  year: 2022
  end-page: 4647
  ident: b0075
  article-title: An evaluation of deep neural network models for music classification using spectrograms
  publication-title: Multimed. Tools Appl.
– volume: 40
  start-page: 1123
  year: 2020
  end-page: 1133
  ident: b0055
  article-title: A deep attentive convolutional neural network for automatic cortical plate segmentation in fetal MRI
  publication-title: IEEE Trans. Med. Imag.
– volume: 25
  start-page: 3087
  year: 2021
  end-page: 3096
  ident: b0115
  article-title: Using deep learning approach and IoT architecture to build the intelligent music recommendation system
  publication-title: Soft. Comput.
– volume: 80
  start-page: 15511
  year: 2021
  end-page: 15539
  ident: b0125
  article-title: A method of music autotagging based on audio and lyrics
  publication-title: Multimed. Tools Appl.
– volume: 108
  start-page: 402
  year: 2020
  end-page: 433
  ident: b0090
  article-title: Adversarial learning targeting deep neural network classification: a comprehensive review of defenses against attacks
  publication-title: Proc. IEEE
– volume: 109
  start-page: 1838
  issue: 11
  year: 2021
  ident: 10.1016/j.entcom.2023.100612_b0085
  article-title: Video summarization using deep neural networks: a survey
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2021.3117472
– volume: 21
  start-page: 3150
  issue: 12
  year: 2019
  ident: 10.1016/j.entcom.2023.100612_b0100
  article-title: Bidirectional convolutional recurrent sparse network (BCRSN): an efficient model for music emotion recognition
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2019.2918739
– volume: 27
  start-page: 63
  issue: 1
  year: 2018
  ident: 10.1016/j.entcom.2023.100612_b0105
  article-title: Phase-aware speech enhancement based on deep neural networks
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2018.2870742
– volume: 68
  start-page: 14
  issue: 1/2
  year: 2020
  ident: 10.1016/j.entcom.2023.100612_b0060
  article-title: Continuous speech emotion recognition with convolutional neural networks
  publication-title: J. Audio Eng. Soc.
  doi: 10.17743/jaes.2019.0043
– volume: 53
  start-page: 2709
  issue: 4
  year: 2020
  ident: 10.1016/j.entcom.2023.100612_b0045
  article-title: Recommendation system based on deep learning methods: a systematic review and new directions
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09744-1
– volume: 33
  start-page: 1607
  issue: 5
  year: 2021
  ident: 10.1016/j.entcom.2023.100612_b0065
  article-title: Social movie recommender system based on deep autoencoder network using Twitter data
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05085-1
– volume: 81
  start-page: 4621
  issue: 4
  year: 2022
  ident: 10.1016/j.entcom.2023.100612_b0075
  article-title: An evaluation of deep neural network models for music classification using spectrograms
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-10465-9
– volume: 33
  start-page: 14079
  issue: 21
  year: 2021
  ident: 10.1016/j.entcom.2023.100612_b0020
  article-title: Advanced metaheuristic optimization techniques in applications of deep neural networks: a review
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05960-5
– volume: 31
  start-page: 4461
  issue: 11
  year: 2020
  ident: 10.1016/j.entcom.2023.100612_b0040
  article-title: An efficient group recommendation model with multiattention-based neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2955567
– volume: 34
  start-page: 2583
  issue: 4
  year: 2022
  ident: 10.1016/j.entcom.2023.100612_b0070
  article-title: Exploring online intelligent teaching method with machine learning and SVM algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05846-6
– volume: 3
  start-page: 134
  issue: 2
  year: 2021
  ident: 10.1016/j.entcom.2023.100612_b0080
  article-title: A convolutional neural-network model of human cochlear mechanics and filter tuning for real-time applications
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-00286-8
– volume: 25
  start-page: 3087
  issue: 4
  year: 2021
  ident: 10.1016/j.entcom.2023.100612_b0115
  article-title: Using deep learning approach and IoT architecture to build the intelligent music recommendation system
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-020-05364-y
– volume: 80
  start-page: 15511
  issue: 10
  year: 2021
  ident: 10.1016/j.entcom.2023.100612_b0125
  article-title: A method of music autotagging based on audio and lyrics
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-10381-y
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.entcom.2023.100612_b0120
  article-title: Mobile marketing recommendation method based on user location feedback
  publication-title: HCIS
– volume: 9
  start-page: 85
  issue: 2
  year: 2020
  ident: 10.1016/j.entcom.2023.100612_b0010
  article-title: Convolutional neural network: a review of models, methodologies, and applications to object detection
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-019-00203-0
– volume: 11
  start-page: 763
  issue: 4
  year: 2020
  ident: 10.1016/j.entcom.2023.100612_b0030
  article-title: A deep neural networks based recommendation algorithm using user and item basic data
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-019-00981-y
– volume: 40
  start-page: 1123
  issue: 4
  year: 2020
  ident: 10.1016/j.entcom.2023.100612_b0055
  article-title: A deep attentive convolutional neural network for automatic cortical plate segmentation in fetal MRI
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2020.3046579
– volume: 48
  start-page: 474
  issue: 2
  year: 2023
  ident: 10.1016/j.entcom.2023.100612_b0095
  article-title: Underwater image enhancement method by multi-interval histogram equalization
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2022.3223733
– volume: 10
  start-page: 43
  issue: 1
  year: 2021
  ident: 10.1016/j.entcom.2023.100612_b0005
  article-title: Music similarity measurement and recommendation system using convolutional neural networks
  publication-title: Int. J. Multimedia Inform. Retr.
  doi: 10.1007/s13735-021-00206-5
– volume: 20
  start-page: 321
  issue: 2
  year: 2020
  ident: 10.1016/j.entcom.2023.100612_b0035
  article-title: Product advertising recommendation in e-commerce based on deep learning and distributed expression
  publication-title: Electron. Commer. Res.
  doi: 10.1007/s10660-020-09411-6
– volume: 23
  start-page: 27
  issue: 3
  year: 2021
  ident: 10.1016/j.entcom.2023.100612_b0110
  article-title: Prediction of occupation stress by implementing convolutional neural network techniques
  publication-title: J. Cases Inform. Technol. (JCIT)
  doi: 10.4018/JCIT.20210701.oa3
– volume: 13
  start-page: 475
  issue: 2
  year: 2021
  ident: 10.1016/j.entcom.2023.100612_b0130
  article-title: Multimodal trust based recommender system with machine learning approaches for movie recommendation
  publication-title: Int. J. Inf. Technol.
– volume: 33
  start-page: 1906
  issue: 5
  year: 2019
  ident: 10.1016/j.entcom.2023.100612_b0025
  article-title: Deep variational matrix factorization with knowledge embedding for recommendation system
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 108
  start-page: 402
  issue: 3
  year: 2020
  ident: 10.1016/j.entcom.2023.100612_b0090
  article-title: Adversarial learning targeting deep neural network classification: a comprehensive review of defenses against attacks
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2020.2970615
– volume: 79
  start-page: 765
  issue: 1
  year: 2020
  ident: 10.1016/j.entcom.2023.100612_b0015
  article-title: Recognition of emotion in music based on deep convolutional neural network
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-08192-x
– volume: 56
  start-page: 627
  issue: 12
  year: 2020
  ident: 10.1016/j.entcom.2023.100612_b0050
  article-title: Music genre classification and music recommendation by using deep learning
  publication-title: Electron. Lett
  doi: 10.1049/el.2019.4202
SSID ssj0000314854
Score 2.3112364
Snippet •Music education requires repeated practice and experience of music skills.•The algorithm studied in this paper can supplement information sources for the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100612
SubjectTerms Algorithm
Convolutional neural network
Music education
Music teaching
New model
Title Convolutional neural network and recommendation algorithm for the new model of college music education
URI https://dx.doi.org/10.1016/j.entcom.2023.100612
Volume 48
WOSCitedRecordID wos001098048900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1875-953X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000314854
  issn: 1875-9521
  databaseCode: AIEXJ
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3JTsMwEIYtKBy4sCPKJh-4IaNsjp0jqooAIcShoN6i2ElYRNOqlMLjM95CCxXLgUtSRY5j5UvtmdF4foQOqc94SYUgsNYKorYuEhGziPgwL4S89DKu1RpuL9nVFe92k2srCf-s5QRYVfG3t2Twr6jhGsBWW2f_gLvuFC7Ab4AOR8AOx1-Bb_WrsX0AvH5Vr1KfdLa3ySYHj7PXK6ya0lH2dNcfPozue3XGIVjaRiHH5JybyEJPCULbQq-OpYvoTyUWSK0T4VZEHSQ1ytgv2WSIIYgmQgxmVgSnhiTUbGV206YpkGnnPV-bSjOnZBMdeDyGEaj8HCXXfvzRfLoC9qeVqc4XdKloj6npJVW9pKaXebQQMJrwBlo4OW93L-oImyrMz7UMXj1-t3dSJ_h9HdBs22TC3uisomXrKOATA3gNzRXVOlpxIhzYzskbqJzijQ1vbHlj4I2neeOaNwbeGHhD41eseeN-iS1vrHnjmvcmujltd1pnxIpnEAle4IgoO9PjObiLXsmElxQ0FlTGNPdokNMC_NQ88kQeJz6Xfg5OfZnHIfMpi0QRSsrDLdSo-lWxjbAsQyHjEmzxMIsCWWRZkoFj6wVSZJHvh00UuteWSltZXgmcPKXfcWsiUt81MJVVfmjPHJHUWofG6kvhS_v2zp0_PmkXLX38C_ZQYzR8KfbRohyPHp6HB_YzewfCyInO
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+neural+network+and+recommendation+algorithm+for+the+new+model+of+college+music+education&rft.jtitle=Entertainment+computing&rft.au=Bai%2C+Hua&rft.date=2024-01-01&rft.issn=1875-9521&rft.volume=48&rft.spage=100612&rft_id=info:doi/10.1016%2Fj.entcom.2023.100612&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_entcom_2023_100612
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-9521&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-9521&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-9521&client=summon