Convolutional neural network and recommendation algorithm for the new model of college music education
•Music education requires repeated practice and experience of music skills.•The algorithm studied in this paper can supplement information sources for the music.•Neural network combined with a recommendation algorithm to design a music.•It is helpful for teachers to timely and dynamically grasp the...
Gespeichert in:
| Veröffentlicht in: | Entertainment computing Jg. 48; S. 100612 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.01.2024
|
| Schlagworte: | |
| ISSN: | 1875-9521, 1875-953X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Music education requires repeated practice and experience of music skills.•The algorithm studied in this paper can supplement information sources for the music.•Neural network combined with a recommendation algorithm to design a music.•It is helpful for teachers to timely and dynamically grasp the types of music that students like.
With the rapid development of the field of artificial intelligence, we expect that AI+ music can produce a new music education model to help efficient college students improve their personal music level. In this paper, we design a convolutional neural network music recommendation system, including a user modeling module, audio feature extraction module recommendation algorithm module, etc., which can model students' music preferences to generate Top recommendations for target users. It is helpful for teachers to timely and dynamically grasp the types of music that students like. Experiments show that the proposed method has certain feasibility and effectiveness. Compared with other traditional music recommendation algorithms, we can make full use of the powerful advantages of deep neural network automatic feature extraction and integrate the historical behavior information of users' interaction with music. |
|---|---|
| AbstractList | •Music education requires repeated practice and experience of music skills.•The algorithm studied in this paper can supplement information sources for the music.•Neural network combined with a recommendation algorithm to design a music.•It is helpful for teachers to timely and dynamically grasp the types of music that students like.
With the rapid development of the field of artificial intelligence, we expect that AI+ music can produce a new music education model to help efficient college students improve their personal music level. In this paper, we design a convolutional neural network music recommendation system, including a user modeling module, audio feature extraction module recommendation algorithm module, etc., which can model students' music preferences to generate Top recommendations for target users. It is helpful for teachers to timely and dynamically grasp the types of music that students like. Experiments show that the proposed method has certain feasibility and effectiveness. Compared with other traditional music recommendation algorithms, we can make full use of the powerful advantages of deep neural network automatic feature extraction and integrate the historical behavior information of users' interaction with music. |
| ArticleNumber | 100612 |
| Author | Bai, Hua |
| Author_xml | – sequence: 1 givenname: Hua surname: Bai fullname: Bai, Hua email: 13903711261@163.com organization: Faculty of Arts, Henan University of Economics and Law, Zhengzhou 450046, China |
| BookMark | eNqFkN9KwzAUh4NMcM69gRd5gc6kaZrWC0GG_2DgjYJ3oU1Ot8w0kTTd8O3tVvHCCz035xDO9-PkO0cT5x0gdEnJghKaX20X4KLy7SIlKRueSE7TEzSlheBJydnb5GdO6Rmad92WDMVoVvBsipqldztv-2i8qyx20Idji3sf3nHlNA4whLfgdHXYwZVd-2DipsWNDzhuYFje49ZrsNg3WHlrYQ247TujMOheHbELdNpUtoP5d5-h1_u7l-Vjsnp-eFrerhLFSB4TVoqcFLoUGWlETUrgec1VzjXhqeaQFUJnpNZ5SQtFtaCi0TkTlIusBqZ4wWYoG3NV8F0XoJEfwbRV-JSUyIMuuZWjLnnQJUddA3b9C1MmHg-PoTL2P_hmhGH42M5AkJ0y4BRoM7iLUnvzd8AX1reL5A |
| CitedBy_id | crossref_primary_10_1016_j_sasc_2025_200305 crossref_primary_10_1002_ett_70190 crossref_primary_10_1177_14727978251380828 |
| Cites_doi | 10.1109/JPROC.2021.3117472 10.1109/TMM.2019.2918739 10.1109/TASLP.2018.2870742 10.17743/jaes.2019.0043 10.1007/s10462-019-09744-1 10.1007/s00521-020-05085-1 10.1007/s11042-020-10465-9 10.1007/s00521-021-05960-5 10.1109/TNNLS.2019.2955567 10.1007/s00521-021-05846-6 10.1038/s42256-020-00286-8 10.1007/s00500-020-05364-y 10.1007/s11042-020-10381-y 10.1007/s13748-019-00203-0 10.1007/s13042-019-00981-y 10.1109/TMI.2020.3046579 10.1109/JOE.2022.3223733 10.1007/s13735-021-00206-5 10.1007/s10660-020-09411-6 10.4018/JCIT.20210701.oa3 10.1109/JPROC.2020.2970615 10.1007/s11042-019-08192-x 10.1049/el.2019.4202 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.entcom.2023.100612 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1875-953X |
| ExternalDocumentID | 10_1016_j_entcom_2023_100612 S1875952123000678 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 4.4 457 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC C1A EBS EFJIC EFLBG EJD EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OKI OZT P-8 P-9 P2P PC. Q38 RIG ROL SDF SES SPC SPCBC SSV SSZ T5K ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-397608d9740f7b09e56b5c65d052d5e487d40bd6918c1d717fd6371574be3c583 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001098048900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1875-9521 |
| IngestDate | Tue Nov 18 21:07:23 EST 2025 Sat Nov 29 06:59:24 EST 2025 Fri Feb 23 02:34:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Music education New model Algorithm Convolutional neural network Music teaching |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-397608d9740f7b09e56b5c65d052d5e487d40bd6918c1d717fd6371574be3c583 |
| ParticipantIDs | crossref_primary_10_1016_j_entcom_2023_100612 crossref_citationtrail_10_1016_j_entcom_2023_100612 elsevier_sciencedirect_doi_10_1016_j_entcom_2023_100612 |
| PublicationCentury | 2000 |
| PublicationDate | January 2024 2024-01-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Entertainment computing |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Tahmasebi, Ravanmehr, Mohamadrezaei (b0065) 2021; 33 Miller, Xiang, Kesidis (b0090) 2020; 108 Dhillon, Verma (b0010) 2020; 9 Shuo, Ming (b0070) 2022; 34 Dong, Yang, Zhao, Li (b0100) 2019; 21 Yin, Ding, Wang (b0120) 2019; 9 Dou, Karimi, Rollins, Ortinau, Vasung, Velasco-Annis, Gholipour (b0055) 2020; 40 Shen, Yi, Liu, Zhang, Zhang, Liu, Xiong (b0025) 2019; 33 Abd Elaziz, Dahou, Abualigah, Yu, Alshinwan, Khasawneh, Lu (b0020) 2021; 33 Huang, Xu, Zhu, Zhou (b0040) 2020; 31 Zhou (b0035) 2020; 20 Apostolidis, Adamantidou, Metsai, Mezaris, Patras (b0085) 2021; 109 Zheng, Zhang (b0105) 2018; 27 Wen (b0115) 2021; 25 Vryzas, Vrysis, Matsiola, Kotsakis, Dimoulas, Kalliris (b0060) 2020; 68 Sarkar, Choudhury, Dutta, Roy, Saha (b0015) 2020; 79 Da’u, Salim (b0045) 2020; 53 Li, Han, Li, Zhu, Yuan, Gou (b0075) 2022; 81 Baby, Van Den Broucke, Verhulst (b0080) 2021; 3 Bi, Liu, Fan (b0030) 2020; 11 Zhou, Pang, Zhang (b0095) 2023; 48 Wang, Syu, Wongchaisuwat (b0125) 2021; 80 Elbir, Aydin (b0050) 2020; 56 Sheikh Fathollahi, Razzazi (b0005) 2021; 10 Choudhury, Mohanty, Jagadev (b0130) 2021; 13 Dalal, Khalaf (b0110) 2021; 23 Zhou (10.1016/j.entcom.2023.100612_b0035) 2020; 20 Dong (10.1016/j.entcom.2023.100612_b0100) 2019; 21 Li (10.1016/j.entcom.2023.100612_b0075) 2022; 81 Tahmasebi (10.1016/j.entcom.2023.100612_b0065) 2021; 33 Zheng (10.1016/j.entcom.2023.100612_b0105) 2018; 27 Wang (10.1016/j.entcom.2023.100612_b0125) 2021; 80 Yin (10.1016/j.entcom.2023.100612_b0120) 2019; 9 Dalal (10.1016/j.entcom.2023.100612_b0110) 2021; 23 Bi (10.1016/j.entcom.2023.100612_b0030) 2020; 11 Baby (10.1016/j.entcom.2023.100612_b0080) 2021; 3 Wen (10.1016/j.entcom.2023.100612_b0115) 2021; 25 Miller (10.1016/j.entcom.2023.100612_b0090) 2020; 108 Elbir (10.1016/j.entcom.2023.100612_b0050) 2020; 56 Sheikh Fathollahi (10.1016/j.entcom.2023.100612_b0005) 2021; 10 Dhillon (10.1016/j.entcom.2023.100612_b0010) 2020; 9 Abd Elaziz (10.1016/j.entcom.2023.100612_b0020) 2021; 33 Shen (10.1016/j.entcom.2023.100612_b0025) 2019; 33 Da’u (10.1016/j.entcom.2023.100612_b0045) 2020; 53 Apostolidis (10.1016/j.entcom.2023.100612_b0085) 2021; 109 Choudhury (10.1016/j.entcom.2023.100612_b0130) 2021; 13 Zhou (10.1016/j.entcom.2023.100612_b0095) 2023; 48 Huang (10.1016/j.entcom.2023.100612_b0040) 2020; 31 Shuo (10.1016/j.entcom.2023.100612_b0070) 2022; 34 Vryzas (10.1016/j.entcom.2023.100612_b0060) 2020; 68 Dou (10.1016/j.entcom.2023.100612_b0055) 2020; 40 Sarkar (10.1016/j.entcom.2023.100612_b0015) 2020; 79 |
| References_xml | – volume: 9 start-page: 1 year: 2019 end-page: 17 ident: b0120 article-title: Mobile marketing recommendation method based on user location feedback publication-title: HCIS – volume: 10 start-page: 43 year: 2021 end-page: 53 ident: b0005 article-title: Music similarity measurement and recommendation system using convolutional neural networks publication-title: Int. J. Multimedia Inform. Retr. – volume: 48 start-page: 474 year: 2023 end-page: 488 ident: b0095 article-title: Underwater image enhancement method by multi-interval histogram equalization publication-title: IEEE J. Ocean. Eng. – volume: 3 start-page: 134 year: 2021 end-page: 143 ident: b0080 article-title: A convolutional neural-network model of human cochlear mechanics and filter tuning for real-time applications publication-title: Nat. Mach. Intell. – volume: 13 start-page: 475 year: 2021 end-page: 482 ident: b0130 article-title: Multimodal trust based recommender system with machine learning approaches for movie recommendation publication-title: Int. J. Inf. Technol. – volume: 34 start-page: 2583 year: 2022 end-page: 2596 ident: b0070 article-title: Exploring online intelligent teaching method with machine learning and SVM algorithm publication-title: Neural Comput. Appl. – volume: 27 start-page: 63 year: 2018 end-page: 76 ident: b0105 article-title: Phase-aware speech enhancement based on deep neural networks publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. – volume: 20 start-page: 321 year: 2020 end-page: 342 ident: b0035 article-title: Product advertising recommendation in e-commerce based on deep learning and distributed expression publication-title: Electron. Commer. Res. – volume: 23 start-page: 27 year: 2021 end-page: 42 ident: b0110 article-title: Prediction of occupation stress by implementing convolutional neural network techniques publication-title: J. Cases Inform. Technol. (JCIT) – volume: 56 start-page: 627 year: 2020 end-page: 629 ident: b0050 article-title: Music genre classification and music recommendation by using deep learning publication-title: Electron. Lett – volume: 33 start-page: 14079 year: 2021 end-page: 14099 ident: b0020 article-title: Advanced metaheuristic optimization techniques in applications of deep neural networks: a review publication-title: Neural Comput. Appl. – volume: 11 start-page: 763 year: 2020 end-page: 777 ident: b0030 article-title: A deep neural networks based recommendation algorithm using user and item basic data publication-title: Int. J. Mach. Learn. Cybern. – volume: 68 start-page: 14 year: 2020 end-page: 24 ident: b0060 article-title: Continuous speech emotion recognition with convolutional neural networks publication-title: J. Audio Eng. Soc. – volume: 79 start-page: 765 year: 2020 end-page: 783 ident: b0015 article-title: Recognition of emotion in music based on deep convolutional neural network publication-title: Multimed. Tools Appl. – volume: 21 start-page: 3150 year: 2019 end-page: 3163 ident: b0100 article-title: Bidirectional convolutional recurrent sparse network (BCRSN): an efficient model for music emotion recognition publication-title: IEEE Trans. Multimedia – volume: 31 start-page: 4461 year: 2020 end-page: 4474 ident: b0040 article-title: An efficient group recommendation model with multiattention-based neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 53 start-page: 2709 year: 2020 end-page: 2748 ident: b0045 article-title: Recommendation system based on deep learning methods: a systematic review and new directions publication-title: Artif. Intell. Rev. – volume: 109 start-page: 1838 year: 2021 end-page: 1863 ident: b0085 article-title: Video summarization using deep neural networks: a survey publication-title: Proc. IEEE – volume: 9 start-page: 85 year: 2020 end-page: 112 ident: b0010 article-title: Convolutional neural network: a review of models, methodologies, and applications to object detection publication-title: Prog. Artif. Intell. – volume: 33 start-page: 1906 year: 2019 end-page: 1918 ident: b0025 article-title: Deep variational matrix factorization with knowledge embedding for recommendation system publication-title: IEEE Trans. Knowl. Data Eng. – volume: 33 start-page: 1607 year: 2021 end-page: 1623 ident: b0065 article-title: Social movie recommender system based on deep autoencoder network using Twitter data publication-title: Neural Comput. Appl. – volume: 81 start-page: 4621 year: 2022 end-page: 4647 ident: b0075 article-title: An evaluation of deep neural network models for music classification using spectrograms publication-title: Multimed. Tools Appl. – volume: 40 start-page: 1123 year: 2020 end-page: 1133 ident: b0055 article-title: A deep attentive convolutional neural network for automatic cortical plate segmentation in fetal MRI publication-title: IEEE Trans. Med. Imag. – volume: 25 start-page: 3087 year: 2021 end-page: 3096 ident: b0115 article-title: Using deep learning approach and IoT architecture to build the intelligent music recommendation system publication-title: Soft. Comput. – volume: 80 start-page: 15511 year: 2021 end-page: 15539 ident: b0125 article-title: A method of music autotagging based on audio and lyrics publication-title: Multimed. Tools Appl. – volume: 108 start-page: 402 year: 2020 end-page: 433 ident: b0090 article-title: Adversarial learning targeting deep neural network classification: a comprehensive review of defenses against attacks publication-title: Proc. IEEE – volume: 109 start-page: 1838 issue: 11 year: 2021 ident: 10.1016/j.entcom.2023.100612_b0085 article-title: Video summarization using deep neural networks: a survey publication-title: Proc. IEEE doi: 10.1109/JPROC.2021.3117472 – volume: 21 start-page: 3150 issue: 12 year: 2019 ident: 10.1016/j.entcom.2023.100612_b0100 article-title: Bidirectional convolutional recurrent sparse network (BCRSN): an efficient model for music emotion recognition publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2019.2918739 – volume: 27 start-page: 63 issue: 1 year: 2018 ident: 10.1016/j.entcom.2023.100612_b0105 article-title: Phase-aware speech enhancement based on deep neural networks publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2018.2870742 – volume: 68 start-page: 14 issue: 1/2 year: 2020 ident: 10.1016/j.entcom.2023.100612_b0060 article-title: Continuous speech emotion recognition with convolutional neural networks publication-title: J. Audio Eng. Soc. doi: 10.17743/jaes.2019.0043 – volume: 53 start-page: 2709 issue: 4 year: 2020 ident: 10.1016/j.entcom.2023.100612_b0045 article-title: Recommendation system based on deep learning methods: a systematic review and new directions publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-019-09744-1 – volume: 33 start-page: 1607 issue: 5 year: 2021 ident: 10.1016/j.entcom.2023.100612_b0065 article-title: Social movie recommender system based on deep autoencoder network using Twitter data publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05085-1 – volume: 81 start-page: 4621 issue: 4 year: 2022 ident: 10.1016/j.entcom.2023.100612_b0075 article-title: An evaluation of deep neural network models for music classification using spectrograms publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-10465-9 – volume: 33 start-page: 14079 issue: 21 year: 2021 ident: 10.1016/j.entcom.2023.100612_b0020 article-title: Advanced metaheuristic optimization techniques in applications of deep neural networks: a review publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-05960-5 – volume: 31 start-page: 4461 issue: 11 year: 2020 ident: 10.1016/j.entcom.2023.100612_b0040 article-title: An efficient group recommendation model with multiattention-based neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2955567 – volume: 34 start-page: 2583 issue: 4 year: 2022 ident: 10.1016/j.entcom.2023.100612_b0070 article-title: Exploring online intelligent teaching method with machine learning and SVM algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-05846-6 – volume: 3 start-page: 134 issue: 2 year: 2021 ident: 10.1016/j.entcom.2023.100612_b0080 article-title: A convolutional neural-network model of human cochlear mechanics and filter tuning for real-time applications publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-00286-8 – volume: 25 start-page: 3087 issue: 4 year: 2021 ident: 10.1016/j.entcom.2023.100612_b0115 article-title: Using deep learning approach and IoT architecture to build the intelligent music recommendation system publication-title: Soft. Comput. doi: 10.1007/s00500-020-05364-y – volume: 80 start-page: 15511 issue: 10 year: 2021 ident: 10.1016/j.entcom.2023.100612_b0125 article-title: A method of music autotagging based on audio and lyrics publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-10381-y – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.entcom.2023.100612_b0120 article-title: Mobile marketing recommendation method based on user location feedback publication-title: HCIS – volume: 9 start-page: 85 issue: 2 year: 2020 ident: 10.1016/j.entcom.2023.100612_b0010 article-title: Convolutional neural network: a review of models, methodologies, and applications to object detection publication-title: Prog. Artif. Intell. doi: 10.1007/s13748-019-00203-0 – volume: 11 start-page: 763 issue: 4 year: 2020 ident: 10.1016/j.entcom.2023.100612_b0030 article-title: A deep neural networks based recommendation algorithm using user and item basic data publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-019-00981-y – volume: 40 start-page: 1123 issue: 4 year: 2020 ident: 10.1016/j.entcom.2023.100612_b0055 article-title: A deep attentive convolutional neural network for automatic cortical plate segmentation in fetal MRI publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2020.3046579 – volume: 48 start-page: 474 issue: 2 year: 2023 ident: 10.1016/j.entcom.2023.100612_b0095 article-title: Underwater image enhancement method by multi-interval histogram equalization publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2022.3223733 – volume: 10 start-page: 43 issue: 1 year: 2021 ident: 10.1016/j.entcom.2023.100612_b0005 article-title: Music similarity measurement and recommendation system using convolutional neural networks publication-title: Int. J. Multimedia Inform. Retr. doi: 10.1007/s13735-021-00206-5 – volume: 20 start-page: 321 issue: 2 year: 2020 ident: 10.1016/j.entcom.2023.100612_b0035 article-title: Product advertising recommendation in e-commerce based on deep learning and distributed expression publication-title: Electron. Commer. Res. doi: 10.1007/s10660-020-09411-6 – volume: 23 start-page: 27 issue: 3 year: 2021 ident: 10.1016/j.entcom.2023.100612_b0110 article-title: Prediction of occupation stress by implementing convolutional neural network techniques publication-title: J. Cases Inform. Technol. (JCIT) doi: 10.4018/JCIT.20210701.oa3 – volume: 13 start-page: 475 issue: 2 year: 2021 ident: 10.1016/j.entcom.2023.100612_b0130 article-title: Multimodal trust based recommender system with machine learning approaches for movie recommendation publication-title: Int. J. Inf. Technol. – volume: 33 start-page: 1906 issue: 5 year: 2019 ident: 10.1016/j.entcom.2023.100612_b0025 article-title: Deep variational matrix factorization with knowledge embedding for recommendation system publication-title: IEEE Trans. Knowl. Data Eng. – volume: 108 start-page: 402 issue: 3 year: 2020 ident: 10.1016/j.entcom.2023.100612_b0090 article-title: Adversarial learning targeting deep neural network classification: a comprehensive review of defenses against attacks publication-title: Proc. IEEE doi: 10.1109/JPROC.2020.2970615 – volume: 79 start-page: 765 issue: 1 year: 2020 ident: 10.1016/j.entcom.2023.100612_b0015 article-title: Recognition of emotion in music based on deep convolutional neural network publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-08192-x – volume: 56 start-page: 627 issue: 12 year: 2020 ident: 10.1016/j.entcom.2023.100612_b0050 article-title: Music genre classification and music recommendation by using deep learning publication-title: Electron. Lett doi: 10.1049/el.2019.4202 |
| SSID | ssj0000314854 |
| Score | 2.3112364 |
| Snippet | •Music education requires repeated practice and experience of music skills.•The algorithm studied in this paper can supplement information sources for the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 100612 |
| SubjectTerms | Algorithm Convolutional neural network Music education Music teaching New model |
| Title | Convolutional neural network and recommendation algorithm for the new model of college music education |
| URI | https://dx.doi.org/10.1016/j.entcom.2023.100612 |
| Volume | 48 |
| WOSCitedRecordID | wos001098048900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1875-953X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000314854 issn: 1875-9521 databaseCode: AIEXJ dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3JTsMwEIYtKBy4sCPKJh-4IaNsjp0jqooAIcShoN6i2ElYRNOqlMLjM95CCxXLgUtSRY5j5UvtmdF4foQOqc94SYUgsNYKorYuEhGziPgwL4S89DKu1RpuL9nVFe92k2srCf-s5QRYVfG3t2Twr6jhGsBWW2f_gLvuFC7Ab4AOR8AOx1-Bb_WrsX0AvH5Vr1KfdLa3ySYHj7PXK6ya0lH2dNcfPozue3XGIVjaRiHH5JybyEJPCULbQq-OpYvoTyUWSK0T4VZEHSQ1ytgv2WSIIYgmQgxmVgSnhiTUbGV206YpkGnnPV-bSjOnZBMdeDyGEaj8HCXXfvzRfLoC9qeVqc4XdKloj6npJVW9pKaXebQQMJrwBlo4OW93L-oImyrMz7UMXj1-t3dSJ_h9HdBs22TC3uisomXrKOATA3gNzRXVOlpxIhzYzskbqJzijQ1vbHlj4I2neeOaNwbeGHhD41eseeN-iS1vrHnjmvcmujltd1pnxIpnEAle4IgoO9PjObiLXsmElxQ0FlTGNPdokNMC_NQ88kQeJz6Xfg5OfZnHIfMpi0QRSsrDLdSo-lWxjbAsQyHjEmzxMIsCWWRZkoFj6wVSZJHvh00UuteWSltZXgmcPKXfcWsiUt81MJVVfmjPHJHUWofG6kvhS_v2zp0_PmkXLX38C_ZQYzR8KfbRohyPHp6HB_YzewfCyInO |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+neural+network+and+recommendation+algorithm+for+the+new+model+of+college+music+education&rft.jtitle=Entertainment+computing&rft.au=Bai%2C+Hua&rft.date=2024-01-01&rft.issn=1875-9521&rft.volume=48&rft.spage=100612&rft_id=info:doi/10.1016%2Fj.entcom.2023.100612&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_entcom_2023_100612 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-9521&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-9521&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-9521&client=summon |