Non-negative Tucker decomposition with graph regularization and smooth constraint for clustering
Non-negative Tucker decomposition (NTD) and its graph regularized extensions are the most popular techniques for representing high-dimensional non-negative data, which are typically found in a low-dimensional sub-manifold of ambient space, from a geometric perspective. Therefore, the performance of...
Saved in:
| Published in: | Pattern recognition Vol. 148; p. 110207 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.04.2024
|
| Subjects: | |
| ISSN: | 0031-3203 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Non-negative Tucker decomposition (NTD) and its graph regularized extensions are the most popular techniques for representing high-dimensional non-negative data, which are typically found in a low-dimensional sub-manifold of ambient space, from a geometric perspective. Therefore, the performance of the graph-based NTD methods relies heavily on the low-dimensional representation of the original data. However, most existing approaches treat the last factor matrix in NTD as a low-dimensional representation of the original data. This treatment leads to the loss of the original data’s multi-linear structure in the low-dimensional subspace. To remedy this defect, we propose a novel graph regularized Lp smooth NTD (GSNTD) method for high-dimensional data representation by incorporating graph regularization and an Lp smoothing constraint into NTD. The new graph regularization term constructed by the product of the core tensor and the last factor matrix in NTD, and it is used to uncover hidden semantics while maintaining the intrinsic multi-linear geometric structure of the data. The addition of the Lp smoothing constraint to NTD may produce a more accurate and smoother solution to the optimization problem. The update rules and the convergence of the GSNTD method are proposed. In addition, a randomized variant of the GSNTD algorithm based on fiber sampling is proposed. Finally, the experimental results on four standard image databases show that the proposed method and its randomized variant have better performance than some other state-of-the-art graph-based regularization methods for image clustering.
•We propose a NTD equipped with a novel graph regularization and an Lp smoothing constraint. The new constructed graph can maintain the multilinearity of the original data in the low-dimensional subspace. The Lp smoothing constraint can combine the merits of isotropic and anisotropic diffusion smoothing, and produces a more accurate and smooth solution to the optimization problem.•We use a random sampling technique to reduce the computational complexity and running time of the proposed method. |
|---|---|
| AbstractList | Non-negative Tucker decomposition (NTD) and its graph regularized extensions are the most popular techniques for representing high-dimensional non-negative data, which are typically found in a low-dimensional sub-manifold of ambient space, from a geometric perspective. Therefore, the performance of the graph-based NTD methods relies heavily on the low-dimensional representation of the original data. However, most existing approaches treat the last factor matrix in NTD as a low-dimensional representation of the original data. This treatment leads to the loss of the original data’s multi-linear structure in the low-dimensional subspace. To remedy this defect, we propose a novel graph regularized Lp smooth NTD (GSNTD) method for high-dimensional data representation by incorporating graph regularization and an Lp smoothing constraint into NTD. The new graph regularization term constructed by the product of the core tensor and the last factor matrix in NTD, and it is used to uncover hidden semantics while maintaining the intrinsic multi-linear geometric structure of the data. The addition of the Lp smoothing constraint to NTD may produce a more accurate and smoother solution to the optimization problem. The update rules and the convergence of the GSNTD method are proposed. In addition, a randomized variant of the GSNTD algorithm based on fiber sampling is proposed. Finally, the experimental results on four standard image databases show that the proposed method and its randomized variant have better performance than some other state-of-the-art graph-based regularization methods for image clustering.
•We propose a NTD equipped with a novel graph regularization and an Lp smoothing constraint. The new constructed graph can maintain the multilinearity of the original data in the low-dimensional subspace. The Lp smoothing constraint can combine the merits of isotropic and anisotropic diffusion smoothing, and produces a more accurate and smooth solution to the optimization problem.•We use a random sampling technique to reduce the computational complexity and running time of the proposed method. |
| ArticleNumber | 110207 |
| Author | Lu, Linzhang Chen, Zhen Liu, Qilong |
| Author_xml | – sequence: 1 givenname: Qilong surname: Liu fullname: Liu, Qilong email: qlliu@gznu.edu.cn organization: School of Mathematical Sciences, Guizhou Normal University, Guiyang, 550025, People’s Republic of China – sequence: 2 givenname: Linzhang surname: Lu fullname: Lu, Linzhang email: lzlu@xmu.edu.cn organization: School of Mathematical Sciences, Guizhou Normal University, Guiyang, 550025, People’s Republic of China – sequence: 3 givenname: Zhen surname: Chen fullname: Chen, Zhen email: zchen@gznu.edu.cn organization: School of Mathematical Sciences, Guizhou Normal University, Guiyang, 550025, People’s Republic of China |
| BookMark | eNqFkLtOwzAYhT0UibbwBgx-gQQ7zpUBCVXcpAqW7sb58yd1Se3Idovg6WkbJgaYznD0Hel8MzIx1iAhV5zFnPH8ehMPKoDt4oQlIuacJayYkCljgkciYeKczLzfMMYLniZT8vZiTWSwU0Hvka528I6ONgh2O1ivg7aGfuiwpp1Tw5o67Ha9cvpLnRplGuq31h56sMYHp7QJtLWOQr_zAZ023QU5a1Xv8fIn52T1cL9aPEXL18fnxd0yAsHyEIlStKrKq6poygqqIm2TmqUNJqhqrhpR11ABy7JWKaxKKNM2U3lRlQpYnWYo5iQdZ8FZ7x22cnB6q9yn5EwexciNHMXIoxg5ijlgN78w0OF07nim_w--HWE8_NprdNKDRgPYaIcQZGP13wPfh9-Iyw |
| CitedBy_id | crossref_primary_10_1007_s10915_025_02817_0 crossref_primary_10_1016_j_inffus_2025_103673 crossref_primary_10_1016_j_patcog_2024_111000 crossref_primary_10_1016_j_neunet_2025_107340 crossref_primary_10_1109_TASE_2025_3595545 crossref_primary_10_1038_s41598_024_59300_3 crossref_primary_10_1145_3767726 crossref_primary_10_1016_j_patcog_2025_111405 crossref_primary_10_1016_j_neucom_2025_131490 crossref_primary_10_1109_TSC_2024_3486171 crossref_primary_10_1016_j_neunet_2025_107713 crossref_primary_10_1109_TAI_2024_3373388 crossref_primary_10_1007_s10489_024_05920_1 crossref_primary_10_1016_j_patcog_2025_112066 crossref_primary_10_1080_17538947_2025_2525382 |
| Cites_doi | 10.1007/BF02289464 10.1016/j.patcog.2020.107441 10.1109/TNNLS.2015.2487364 10.1016/j.patcog.2011.12.015 10.1109/34.908974 10.1016/j.neucom.2020.06.049 10.1038/44565 10.1016/j.patcog.2022.109067 10.1016/S0167-8655(01)00070-8 10.1093/bioinformatics/btm134 10.1137/19M1294708 10.1137/07069239X 10.1016/j.patcog.2011.03.021 10.1016/j.patcog.2022.109083 10.1137/07070471X 10.1137/080716542 10.1007/s10915-021-01545-5 10.1145/1039488.1039494 10.1016/j.patcog.2022.109102 10.1109/TPAMI.2010.231 10.1109/TCYB.2018.2802934 10.1016/j.neucom.2015.08.122 10.1098/rsta.2015.0202 10.1007/s10444-018-9622-8 10.1007/s00211-022-01328-6 10.1109/TKDE.2005.198 10.1137/07070111X 10.1137/090771806 10.1137/S0895479896305696 10.1093/bioinformatics/btx545 10.1109/JAS.2019.1911417 10.1109/TPAMI.2012.274 10.1109/TSP.2012.2190406 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patcog.2023.110207 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_patcog_2023_110207 S0031320323009044 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABDPE ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABWVN ABXDB ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSH SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c306t-383fa96997d89c974f2b04de2eab1ad3bbc9c055faae98c84f5a6798ac0b45e3 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001142856100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Sat Nov 29 07:25:48 EST 2025 Tue Nov 18 22:14:16 EST 2025 Fri May 16 00:30:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Graph regularization Non-negative Tucker decomposition Randomized algorithm Clustering |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-383fa96997d89c974f2b04de2eab1ad3bbc9c055faae98c84f5a6798ac0b45e3 |
| ParticipantIDs | crossref_primary_10_1016_j_patcog_2023_110207 crossref_citationtrail_10_1016_j_patcog_2023_110207 elsevier_sciencedirect_doi_10_1016_j_patcog_2023_110207 |
| PublicationCentury | 2000 |
| PublicationDate | April 2024 2024-04-00 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Beck, Teboulle (b25) 2009; 2 De Handschutter, Gillis (b5) 2023; 134 Jiang, Ding, Tang, Luo (b16) 2018; 49 Chen, Xiao, Zhou (b20) 2020; 106 Cai, He, Han, Huang (b9) 2011; 33 Shang, Jiao, Wang (b10) 2012; 45 Lee, Seung (b4) 1999; 401 Pan, Ng, Liu, Zhang, Yan (b7) 2021; 43 Tucker (b6) 1966; 31 Cai, Lu, Yao, Li (b21) 2023; 134 Guan, Tao, Luo, Yuan (b26) 2012; 60 Che, Wei (b34) 2019; 45 Jolliffe, Cadima (b1) 2016; 374 Wang, He, Bu, Chen, Chen, Guan (b17) 2011; 44 Leng, Zhang, Cai, Cheng, Basu (b14) 2019; 6 Halko, Martinsson, Tropp (b33) 2011; 53 Yu, Zhou, Zheng, Qiu, Xie, Zhao (b15) 2022 Kim, Park (b29) 2008; 30 Drineas, Magdon Ismail, Mahoney, Woodruff (b36) 2012; 13 D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in: Proc. adv. neural inf. process. syst., 2000, pp. 556–562. Xiao, Luo, Liang, Cai, Ding (b11) 2018; 34 Che, Wei, Yan (b35) 2021; 88 Martinez, Kak (b2) 2001; 23 Zhou, Cichocki, Zhang, Mandic (b3) 2015; 27 Kim, Park (b30) 2007; 23 Huang, Yin, Chen, Wang, Chen (b13) 2020; 412 Drineas, Mahoney, Muthukrishnan (b37) 2008; 30 De Lathauwer, De Moor, Vandewalle (b31) 2000; 21 Jiang, Ng, Pan, Song (b23) 2023; 153 Welling, Weber (b8) 2001; 22 Y. Qiu, G. Zhou, Y. Wang, Y. Zhang, S. Xie, A generalized graph regularized non-negative Tucker decomposition framework for tensor data representation, IEEE Trans. Cybern. 1–14. Cai, He, Han (b32) 2005; 17 Frieze, Kannan, Vempala (b38) 2004; 51 Qiu, Zhou, Zhang, Xie (b18) 2019 Zhang, Zhao (b12) 2012; 35 Li, Ren, Sun, Xu (b22) 2023; 134 Kolda, Bader (b24) 2009; 51 Zhang, Zhou, Zhao, Cichocki, Wang (b27) 2016; 198 Chen (10.1016/j.patcog.2023.110207_b20) 2020; 106 Lee (10.1016/j.patcog.2023.110207_b4) 1999; 401 Drineas (10.1016/j.patcog.2023.110207_b37) 2008; 30 Che (10.1016/j.patcog.2023.110207_b35) 2021; 88 10.1016/j.patcog.2023.110207_b19 Guan (10.1016/j.patcog.2023.110207_b26) 2012; 60 Yu (10.1016/j.patcog.2023.110207_b15) 2022 Cai (10.1016/j.patcog.2023.110207_b21) 2023; 134 Pan (10.1016/j.patcog.2023.110207_b7) 2021; 43 Halko (10.1016/j.patcog.2023.110207_b33) 2011; 53 Welling (10.1016/j.patcog.2023.110207_b8) 2001; 22 Che (10.1016/j.patcog.2023.110207_b34) 2019; 45 Li (10.1016/j.patcog.2023.110207_b22) 2023; 134 Xiao (10.1016/j.patcog.2023.110207_b11) 2018; 34 Cai (10.1016/j.patcog.2023.110207_b9) 2011; 33 De Lathauwer (10.1016/j.patcog.2023.110207_b31) 2000; 21 Qiu (10.1016/j.patcog.2023.110207_b18) 2019 Jiang (10.1016/j.patcog.2023.110207_b23) 2023; 153 De Handschutter (10.1016/j.patcog.2023.110207_b5) 2023; 134 Tucker (10.1016/j.patcog.2023.110207_b6) 1966; 31 Kolda (10.1016/j.patcog.2023.110207_b24) 2009; 51 Wang (10.1016/j.patcog.2023.110207_b17) 2011; 44 Jiang (10.1016/j.patcog.2023.110207_b16) 2018; 49 Huang (10.1016/j.patcog.2023.110207_b13) 2020; 412 Leng (10.1016/j.patcog.2023.110207_b14) 2019; 6 Zhang (10.1016/j.patcog.2023.110207_b27) 2016; 198 10.1016/j.patcog.2023.110207_b28 Martinez (10.1016/j.patcog.2023.110207_b2) 2001; 23 Cai (10.1016/j.patcog.2023.110207_b32) 2005; 17 Zhang (10.1016/j.patcog.2023.110207_b12) 2012; 35 Beck (10.1016/j.patcog.2023.110207_b25) 2009; 2 Kim (10.1016/j.patcog.2023.110207_b29) 2008; 30 Kim (10.1016/j.patcog.2023.110207_b30) 2007; 23 Shang (10.1016/j.patcog.2023.110207_b10) 2012; 45 Zhou (10.1016/j.patcog.2023.110207_b3) 2015; 27 Drineas (10.1016/j.patcog.2023.110207_b36) 2012; 13 Frieze (10.1016/j.patcog.2023.110207_b38) 2004; 51 Jolliffe (10.1016/j.patcog.2023.110207_b1) 2016; 374 |
| References_xml | – volume: 134 year: 2023 ident: b22 article-title: Auto-weighted tensor schatten p-norm for robust multi-view graph clustering publication-title: Pattern Recognit. – volume: 30 start-page: 713 year: 2008 end-page: 730 ident: b29 article-title: Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method publication-title: SIAM J. matrix Anal. Appl. – volume: 153 start-page: 141 year: 2023 end-page: 170 ident: b23 article-title: Nonnegative low rank tensor approximations with multidimensional image applications publication-title: Numer. Math. – volume: 13 start-page: 3475 year: 2012 end-page: 3506 ident: b36 article-title: Fast approximation of matrix coherence and statistical leverage publication-title: J. Mach. Learn. Res. – volume: 35 start-page: 1717 year: 2012 end-page: 1729 ident: b12 article-title: Low-rank matrix approximation with manifold regularization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 134 year: 2023 ident: b21 article-title: High-order manifold regularized multi-view subspace clustering with robust affinity matrices and weighted TNN publication-title: Pattern Recognit. – volume: 88 start-page: 1 year: 2021 end-page: 29 ident: b35 article-title: An efficient randomized algorithm for computing the approximate tucker decomposition publication-title: J. Sci. Comput. – reference: Y. Qiu, G. Zhou, Y. Wang, Y. Zhang, S. Xie, A generalized graph regularized non-negative Tucker decomposition framework for tensor data representation, IEEE Trans. Cybern. 1–14. – volume: 53 start-page: 217 year: 2011 end-page: 288 ident: b33 article-title: Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions publication-title: SIAM Rev. – volume: 412 start-page: 72 year: 2020 end-page: 90 ident: b13 article-title: Robust nonnegative matrix factorization with structure regularization publication-title: Neurocomputing – volume: 45 start-page: 395 year: 2019 end-page: 428 ident: b34 article-title: Randomized algorithms for the approximations of Tucker and the tensor train decompositions publication-title: Adv. Comput. Math. – volume: 374 year: 2016 ident: b1 article-title: Principal component analysis: a review and recent developments publication-title: Phil. Trans. R. Soc. A – volume: 401 start-page: 788 year: 1999 end-page: 791 ident: b4 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature – volume: 23 start-page: 228 year: 2001 end-page: 233 ident: b2 article-title: PCA versus LDA publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 49 start-page: 1417 year: 2018 end-page: 1426 ident: b16 article-title: Image representation and learning with graph-Laplacian Tucker tensor decomposition publication-title: IEEE Trans. Cybern. – volume: 17 start-page: 1624 year: 2005 end-page: 1637 ident: b32 article-title: Document clustering using locality preserving indexing publication-title: IEEE Trans. Knowl. Data Eng. – volume: 44 start-page: 2516 year: 2011 end-page: 2526 ident: b17 article-title: Image representation using Laplacian regularized nonnegative tensor factorization publication-title: Pattern Recognit. – volume: 30 start-page: 844 year: 2008 end-page: 881 ident: b37 article-title: Relative-error CUR matrix decompositions publication-title: SIAM J. Matrix Anal. Appl. – volume: 45 start-page: 2237 year: 2012 end-page: 2250 ident: b10 article-title: Graph dual regularization non-negative matrix factorization for co-clustering publication-title: Pattern Recognit. – volume: 60 start-page: 2882 year: 2012 end-page: 2898 ident: b26 article-title: NeNMF: An optimal gradient method for nonnegative matrix factorization publication-title: IEEE Trans. Signal Process. – volume: 33 start-page: 1548 year: 2011 end-page: 1560 ident: b9 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 27 start-page: 2426 year: 2015 end-page: 2439 ident: b3 article-title: Group component analysis for multiblock data: Common and individual feature extraction publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 51 start-page: 455 year: 2009 end-page: 500 ident: b24 article-title: Tensor decompositions and applications publication-title: SIAM Rev. – volume: 198 start-page: 148 year: 2016 end-page: 154 ident: b27 article-title: Fast nonnegative tensor factorization based on accelerated proximal gradient and low-rank approximation publication-title: Neurocomputing – start-page: 8613 year: 2019 end-page: 8617 ident: b18 article-title: Graph regularized nonnegative tucker decomposition for tensor data representation publication-title: ICASSP 2019-2019 IEEE int. conf. acoust. speech signal process. (ICASSP) – volume: 34 start-page: 239 year: 2018 end-page: 248 ident: b11 article-title: A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations publication-title: Bioinformatics – volume: 43 start-page: B55 year: 2021 end-page: B81 ident: b7 article-title: Orthogonal nonnegative tucker decomposition publication-title: SIAM J. Sci. Comput. – volume: 2 start-page: 183 year: 2009 end-page: 202 ident: b25 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imaging Sci. – reference: D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in: Proc. adv. neural inf. process. syst., 2000, pp. 556–562. – year: 2022 ident: b15 article-title: Graph-regularized non-negative tensor-ring decomposition for multiway representation learning publication-title: IEEE Trans. Cybern. – volume: 23 start-page: 1495 year: 2007 end-page: 1502 ident: b30 article-title: Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis publication-title: Bioinformatics – volume: 106 year: 2020 ident: b20 article-title: Multi-view subspace clustering via simultaneously learning the representation tensor and affinity matrix publication-title: Pattern Recognit. – volume: 31 start-page: 279 year: 1966 end-page: 311 ident: b6 article-title: Some mathematical notes on three-mode factor analysis publication-title: Psychometrika – volume: 134 year: 2023 ident: b5 article-title: A consistent and flexible framework for deep matrix factorizations publication-title: Pattern Recognit. – volume: 22 start-page: 1255 year: 2001 end-page: 1261 ident: b8 article-title: Positive tensor factorization publication-title: Pattern Recognit. Lett. – volume: 21 start-page: 1253 year: 2000 end-page: 1278 ident: b31 article-title: A multilinear singular value decomposition publication-title: SIAM J. Matrix Anal. Appl. – volume: 51 start-page: 1025 year: 2004 end-page: 1041 ident: b38 article-title: Fast Monte-Carlo algorithms for finding low-rank approximations publication-title: J. ACM – volume: 6 start-page: 584 year: 2019 end-page: 595 ident: b14 article-title: Graph regularized publication-title: IEEE/CAA J. Autom. – volume: 31 start-page: 279 issue: 3 year: 1966 ident: 10.1016/j.patcog.2023.110207_b6 article-title: Some mathematical notes on three-mode factor analysis publication-title: Psychometrika doi: 10.1007/BF02289464 – volume: 106 issn: 0031-3203 year: 2020 ident: 10.1016/j.patcog.2023.110207_b20 article-title: Multi-view subspace clustering via simultaneously learning the representation tensor and affinity matrix publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107441 – volume: 27 start-page: 2426 issue: 11 year: 2015 ident: 10.1016/j.patcog.2023.110207_b3 article-title: Group component analysis for multiblock data: Common and individual feature extraction publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2487364 – volume: 45 start-page: 2237 issue: 6 year: 2012 ident: 10.1016/j.patcog.2023.110207_b10 article-title: Graph dual regularization non-negative matrix factorization for co-clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.12.015 – volume: 23 start-page: 228 issue: 2 year: 2001 ident: 10.1016/j.patcog.2023.110207_b2 article-title: PCA versus LDA publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.908974 – volume: 412 start-page: 72 year: 2020 ident: 10.1016/j.patcog.2023.110207_b13 article-title: Robust nonnegative matrix factorization with structure regularization publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.06.049 – volume: 401 start-page: 788 issue: 6755 year: 1999 ident: 10.1016/j.patcog.2023.110207_b4 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 134 issn: 0031-3203 year: 2023 ident: 10.1016/j.patcog.2023.110207_b21 article-title: High-order manifold regularized multi-view subspace clustering with robust affinity matrices and weighted TNN publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.109067 – volume: 22 start-page: 1255 issue: 12 year: 2001 ident: 10.1016/j.patcog.2023.110207_b8 article-title: Positive tensor factorization publication-title: Pattern Recognit. Lett. doi: 10.1016/S0167-8655(01)00070-8 – volume: 23 start-page: 1495 issue: 12 year: 2007 ident: 10.1016/j.patcog.2023.110207_b30 article-title: Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm134 – volume: 43 start-page: B55 issue: 1 year: 2021 ident: 10.1016/j.patcog.2023.110207_b7 article-title: Orthogonal nonnegative tucker decomposition publication-title: SIAM J. Sci. Comput. doi: 10.1137/19M1294708 – volume: 30 start-page: 713 issue: 2 year: 2008 ident: 10.1016/j.patcog.2023.110207_b29 article-title: Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method publication-title: SIAM J. matrix Anal. Appl. doi: 10.1137/07069239X – volume: 44 start-page: 2516 issue: 10 year: 2011 ident: 10.1016/j.patcog.2023.110207_b17 article-title: Image representation using Laplacian regularized nonnegative tensor factorization publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.03.021 – volume: 134 issn: 0031-3203 year: 2023 ident: 10.1016/j.patcog.2023.110207_b22 article-title: Auto-weighted tensor schatten p-norm for robust multi-view graph clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.109083 – volume: 30 start-page: 844 issue: 2 year: 2008 ident: 10.1016/j.patcog.2023.110207_b37 article-title: Relative-error CUR matrix decompositions publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/07070471X – volume: 2 start-page: 183 issue: 1 year: 2009 ident: 10.1016/j.patcog.2023.110207_b25 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – volume: 88 start-page: 1 issue: 2 year: 2021 ident: 10.1016/j.patcog.2023.110207_b35 article-title: An efficient randomized algorithm for computing the approximate tucker decomposition publication-title: J. Sci. Comput. doi: 10.1007/s10915-021-01545-5 – volume: 51 start-page: 1025 issue: 6 year: 2004 ident: 10.1016/j.patcog.2023.110207_b38 article-title: Fast Monte-Carlo algorithms for finding low-rank approximations publication-title: J. ACM doi: 10.1145/1039488.1039494 – volume: 134 year: 2023 ident: 10.1016/j.patcog.2023.110207_b5 article-title: A consistent and flexible framework for deep matrix factorizations publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.109102 – volume: 33 start-page: 1548 issue: 8 year: 2011 ident: 10.1016/j.patcog.2023.110207_b9 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.231 – start-page: 8613 year: 2019 ident: 10.1016/j.patcog.2023.110207_b18 article-title: Graph regularized nonnegative tucker decomposition for tensor data representation – volume: 49 start-page: 1417 issue: 4 year: 2018 ident: 10.1016/j.patcog.2023.110207_b16 article-title: Image representation and learning with graph-Laplacian Tucker tensor decomposition publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2802934 – volume: 198 start-page: 148 year: 2016 ident: 10.1016/j.patcog.2023.110207_b27 article-title: Fast nonnegative tensor factorization based on accelerated proximal gradient and low-rank approximation publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.122 – ident: 10.1016/j.patcog.2023.110207_b28 – volume: 374 issue: 2065 year: 2016 ident: 10.1016/j.patcog.2023.110207_b1 article-title: Principal component analysis: a review and recent developments publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2015.0202 – volume: 45 start-page: 395 issue: 1 year: 2019 ident: 10.1016/j.patcog.2023.110207_b34 article-title: Randomized algorithms for the approximations of Tucker and the tensor train decompositions publication-title: Adv. Comput. Math. doi: 10.1007/s10444-018-9622-8 – volume: 153 start-page: 141 issue: 1 year: 2023 ident: 10.1016/j.patcog.2023.110207_b23 article-title: Nonnegative low rank tensor approximations with multidimensional image applications publication-title: Numer. Math. doi: 10.1007/s00211-022-01328-6 – volume: 17 start-page: 1624 issue: 12 year: 2005 ident: 10.1016/j.patcog.2023.110207_b32 article-title: Document clustering using locality preserving indexing publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.198 – volume: 51 start-page: 455 issue: 3 year: 2009 ident: 10.1016/j.patcog.2023.110207_b24 article-title: Tensor decompositions and applications publication-title: SIAM Rev. doi: 10.1137/07070111X – volume: 53 start-page: 217 issue: 2 year: 2011 ident: 10.1016/j.patcog.2023.110207_b33 article-title: Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions publication-title: SIAM Rev. doi: 10.1137/090771806 – volume: 21 start-page: 1253 issue: 4 year: 2000 ident: 10.1016/j.patcog.2023.110207_b31 article-title: A multilinear singular value decomposition publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479896305696 – volume: 13 start-page: 3475 issue: 1 year: 2012 ident: 10.1016/j.patcog.2023.110207_b36 article-title: Fast approximation of matrix coherence and statistical leverage publication-title: J. Mach. Learn. Res. – year: 2022 ident: 10.1016/j.patcog.2023.110207_b15 article-title: Graph-regularized non-negative tensor-ring decomposition for multiway representation learning publication-title: IEEE Trans. Cybern. – volume: 34 start-page: 239 issue: 2 year: 2018 ident: 10.1016/j.patcog.2023.110207_b11 article-title: A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx545 – volume: 6 start-page: 584 issue: 2 year: 2019 ident: 10.1016/j.patcog.2023.110207_b14 article-title: Graph regularized Lp smooth non-negative matrix factorization for data representation publication-title: IEEE/CAA J. Autom. doi: 10.1109/JAS.2019.1911417 – volume: 35 start-page: 1717 issue: 7 year: 2012 ident: 10.1016/j.patcog.2023.110207_b12 article-title: Low-rank matrix approximation with manifold regularization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.274 – volume: 60 start-page: 2882 issue: 6 year: 2012 ident: 10.1016/j.patcog.2023.110207_b26 article-title: NeNMF: An optimal gradient method for nonnegative matrix factorization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2012.2190406 – ident: 10.1016/j.patcog.2023.110207_b19 |
| SSID | ssj0017142 |
| Score | 2.5190809 |
| Snippet | Non-negative Tucker decomposition (NTD) and its graph regularized extensions are the most popular techniques for representing high-dimensional non-negative... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110207 |
| SubjectTerms | Clustering Graph regularization Non-negative Tucker decomposition Randomized algorithm |
| Title | Non-negative Tucker decomposition with graph regularization and smooth constraint for clustering |
| URI | https://dx.doi.org/10.1016/j.patcog.2023.110207 |
| Volume | 148 |
| WOSCitedRecordID | wos001142856100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017142 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQculKcoBeQDtyqrJHY29rGqWgGqVkXaw4oDwXHsstWSrPZRVfx6xvZks0tRoQcuUWTFjpX5Mp6xv5kh5L2wYKNW2kY2gb-JK_BZhRly-PGk1ZynhgsfKHyej0ZiMpEXvd7XNhbmepbXtbi5kfP_KmpoA2G70Nl7iHszKDTAPQgdriB2uP6T4EdNHdXmMiT0DrSJo8o46jjys8Leq89UfbTwpegXGIzpTxKWP5om0NGXvn7EyjMR9WztUiq0Cx2asxc-O6eLiEEaUneofz5dO_F9ns4a7OMa17gP8NPtU3fUgqD7vnzHuDTchUi3ySuoWVkSsTRmO5o1JNFE3QiGRhoq3N5S22EH4Wowh-WnuRy4ku6D7vHdLNm_rV4bTmFLV7sqwiiFG6UIozwge2meSdEne8cfTyefNudMecJDPnmcfRtc6RmAt2fzZ-NlyyAZPyGP0ZOgxwEBT0nP1M_Iflulg6LSfk6-bQOCBkDQHUBQBwjqAUF3AUEBEDQAgnaAoAAI2gHiBRmfnY5PPkRYVyPS4CCuIiaYVXIoZV4JqcGhtGkZ88qkRpWJqlhZaqnjLLNKGSm04DZT7rBO6bjkmWEvSb9uavOK0LisUpsoVbrwalVxxdVQi2HJbCwqcCQOCGu_V6Ex57yb6ay4S1oHJNr0moecK395Pm9FUaDdGOzBAvB1Z8_X93zTIXnUgf8N6a8Wa_OWPNTXq-ly8Q7B9Qsnq5VU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-negative+Tucker+decomposition+with+graph+regularization+and+smooth+constraint+for+clustering&rft.jtitle=Pattern+recognition&rft.au=Liu%2C+Qilong&rft.au=Lu%2C+Linzhang&rft.au=Chen%2C+Zhen&rft.date=2024-04-01&rft.issn=0031-3203&rft.volume=148&rft.spage=110207&rft_id=info:doi/10.1016%2Fj.patcog.2023.110207&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2023_110207 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |