Non-negative Tucker decomposition with graph regularization and smooth constraint for clustering

Non-negative Tucker decomposition (NTD) and its graph regularized extensions are the most popular techniques for representing high-dimensional non-negative data, which are typically found in a low-dimensional sub-manifold of ambient space, from a geometric perspective. Therefore, the performance of...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition Vol. 148; p. 110207
Main Authors: Liu, Qilong, Lu, Linzhang, Chen, Zhen
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.04.2024
Subjects:
ISSN:0031-3203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Non-negative Tucker decomposition (NTD) and its graph regularized extensions are the most popular techniques for representing high-dimensional non-negative data, which are typically found in a low-dimensional sub-manifold of ambient space, from a geometric perspective. Therefore, the performance of the graph-based NTD methods relies heavily on the low-dimensional representation of the original data. However, most existing approaches treat the last factor matrix in NTD as a low-dimensional representation of the original data. This treatment leads to the loss of the original data’s multi-linear structure in the low-dimensional subspace. To remedy this defect, we propose a novel graph regularized Lp smooth NTD (GSNTD) method for high-dimensional data representation by incorporating graph regularization and an Lp smoothing constraint into NTD. The new graph regularization term constructed by the product of the core tensor and the last factor matrix in NTD, and it is used to uncover hidden semantics while maintaining the intrinsic multi-linear geometric structure of the data. The addition of the Lp smoothing constraint to NTD may produce a more accurate and smoother solution to the optimization problem. The update rules and the convergence of the GSNTD method are proposed. In addition, a randomized variant of the GSNTD algorithm based on fiber sampling is proposed. Finally, the experimental results on four standard image databases show that the proposed method and its randomized variant have better performance than some other state-of-the-art graph-based regularization methods for image clustering. •We propose a NTD equipped with a novel graph regularization and an Lp smoothing constraint. The new constructed graph can maintain the multilinearity of the original data in the low-dimensional subspace. The Lp smoothing constraint can combine the merits of isotropic and anisotropic diffusion smoothing, and produces a more accurate and smooth solution to the optimization problem.•We use a random sampling technique to reduce the computational complexity and running time of the proposed method.
AbstractList Non-negative Tucker decomposition (NTD) and its graph regularized extensions are the most popular techniques for representing high-dimensional non-negative data, which are typically found in a low-dimensional sub-manifold of ambient space, from a geometric perspective. Therefore, the performance of the graph-based NTD methods relies heavily on the low-dimensional representation of the original data. However, most existing approaches treat the last factor matrix in NTD as a low-dimensional representation of the original data. This treatment leads to the loss of the original data’s multi-linear structure in the low-dimensional subspace. To remedy this defect, we propose a novel graph regularized Lp smooth NTD (GSNTD) method for high-dimensional data representation by incorporating graph regularization and an Lp smoothing constraint into NTD. The new graph regularization term constructed by the product of the core tensor and the last factor matrix in NTD, and it is used to uncover hidden semantics while maintaining the intrinsic multi-linear geometric structure of the data. The addition of the Lp smoothing constraint to NTD may produce a more accurate and smoother solution to the optimization problem. The update rules and the convergence of the GSNTD method are proposed. In addition, a randomized variant of the GSNTD algorithm based on fiber sampling is proposed. Finally, the experimental results on four standard image databases show that the proposed method and its randomized variant have better performance than some other state-of-the-art graph-based regularization methods for image clustering. •We propose a NTD equipped with a novel graph regularization and an Lp smoothing constraint. The new constructed graph can maintain the multilinearity of the original data in the low-dimensional subspace. The Lp smoothing constraint can combine the merits of isotropic and anisotropic diffusion smoothing, and produces a more accurate and smooth solution to the optimization problem.•We use a random sampling technique to reduce the computational complexity and running time of the proposed method.
ArticleNumber 110207
Author Lu, Linzhang
Chen, Zhen
Liu, Qilong
Author_xml – sequence: 1
  givenname: Qilong
  surname: Liu
  fullname: Liu, Qilong
  email: qlliu@gznu.edu.cn
  organization: School of Mathematical Sciences, Guizhou Normal University, Guiyang, 550025, People’s Republic of China
– sequence: 2
  givenname: Linzhang
  surname: Lu
  fullname: Lu, Linzhang
  email: lzlu@xmu.edu.cn
  organization: School of Mathematical Sciences, Guizhou Normal University, Guiyang, 550025, People’s Republic of China
– sequence: 3
  givenname: Zhen
  surname: Chen
  fullname: Chen, Zhen
  email: zchen@gznu.edu.cn
  organization: School of Mathematical Sciences, Guizhou Normal University, Guiyang, 550025, People’s Republic of China
BookMark eNqFkLtOwzAYhT0UibbwBgx-gQQ7zpUBCVXcpAqW7sb58yd1Se3Idovg6WkbJgaYznD0Hel8MzIx1iAhV5zFnPH8ehMPKoDt4oQlIuacJayYkCljgkciYeKczLzfMMYLniZT8vZiTWSwU0Hvka528I6ONgh2O1ivg7aGfuiwpp1Tw5o67Ha9cvpLnRplGuq31h56sMYHp7QJtLWOQr_zAZ023QU5a1Xv8fIn52T1cL9aPEXL18fnxd0yAsHyEIlStKrKq6poygqqIm2TmqUNJqhqrhpR11ABy7JWKaxKKNM2U3lRlQpYnWYo5iQdZ8FZ7x22cnB6q9yn5EwexciNHMXIoxg5ijlgN78w0OF07nim_w--HWE8_NprdNKDRgPYaIcQZGP13wPfh9-Iyw
CitedBy_id crossref_primary_10_1007_s10915_025_02817_0
crossref_primary_10_1016_j_inffus_2025_103673
crossref_primary_10_1016_j_patcog_2024_111000
crossref_primary_10_1016_j_neunet_2025_107340
crossref_primary_10_1109_TASE_2025_3595545
crossref_primary_10_1038_s41598_024_59300_3
crossref_primary_10_1145_3767726
crossref_primary_10_1016_j_patcog_2025_111405
crossref_primary_10_1016_j_neucom_2025_131490
crossref_primary_10_1109_TSC_2024_3486171
crossref_primary_10_1016_j_neunet_2025_107713
crossref_primary_10_1109_TAI_2024_3373388
crossref_primary_10_1007_s10489_024_05920_1
crossref_primary_10_1016_j_patcog_2025_112066
crossref_primary_10_1080_17538947_2025_2525382
Cites_doi 10.1007/BF02289464
10.1016/j.patcog.2020.107441
10.1109/TNNLS.2015.2487364
10.1016/j.patcog.2011.12.015
10.1109/34.908974
10.1016/j.neucom.2020.06.049
10.1038/44565
10.1016/j.patcog.2022.109067
10.1016/S0167-8655(01)00070-8
10.1093/bioinformatics/btm134
10.1137/19M1294708
10.1137/07069239X
10.1016/j.patcog.2011.03.021
10.1016/j.patcog.2022.109083
10.1137/07070471X
10.1137/080716542
10.1007/s10915-021-01545-5
10.1145/1039488.1039494
10.1016/j.patcog.2022.109102
10.1109/TPAMI.2010.231
10.1109/TCYB.2018.2802934
10.1016/j.neucom.2015.08.122
10.1098/rsta.2015.0202
10.1007/s10444-018-9622-8
10.1007/s00211-022-01328-6
10.1109/TKDE.2005.198
10.1137/07070111X
10.1137/090771806
10.1137/S0895479896305696
10.1093/bioinformatics/btx545
10.1109/JAS.2019.1911417
10.1109/TPAMI.2012.274
10.1109/TSP.2012.2190406
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2023.110207
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_patcog_2023_110207
S0031320323009044
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABWVN
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-383fa96997d89c974f2b04de2eab1ad3bbc9c055faae98c84f5a6798ac0b45e3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001142856100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Nov 29 07:25:48 EST 2025
Tue Nov 18 22:14:16 EST 2025
Fri May 16 00:30:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Graph regularization
Non-negative Tucker decomposition
Randomized algorithm
Clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-383fa96997d89c974f2b04de2eab1ad3bbc9c055faae98c84f5a6798ac0b45e3
ParticipantIDs crossref_primary_10_1016_j_patcog_2023_110207
crossref_citationtrail_10_1016_j_patcog_2023_110207
elsevier_sciencedirect_doi_10_1016_j_patcog_2023_110207
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Beck, Teboulle (b25) 2009; 2
De Handschutter, Gillis (b5) 2023; 134
Jiang, Ding, Tang, Luo (b16) 2018; 49
Chen, Xiao, Zhou (b20) 2020; 106
Cai, He, Han, Huang (b9) 2011; 33
Shang, Jiao, Wang (b10) 2012; 45
Lee, Seung (b4) 1999; 401
Pan, Ng, Liu, Zhang, Yan (b7) 2021; 43
Tucker (b6) 1966; 31
Cai, Lu, Yao, Li (b21) 2023; 134
Guan, Tao, Luo, Yuan (b26) 2012; 60
Che, Wei (b34) 2019; 45
Jolliffe, Cadima (b1) 2016; 374
Wang, He, Bu, Chen, Chen, Guan (b17) 2011; 44
Leng, Zhang, Cai, Cheng, Basu (b14) 2019; 6
Halko, Martinsson, Tropp (b33) 2011; 53
Yu, Zhou, Zheng, Qiu, Xie, Zhao (b15) 2022
Kim, Park (b29) 2008; 30
Drineas, Magdon Ismail, Mahoney, Woodruff (b36) 2012; 13
D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in: Proc. adv. neural inf. process. syst., 2000, pp. 556–562.
Xiao, Luo, Liang, Cai, Ding (b11) 2018; 34
Che, Wei, Yan (b35) 2021; 88
Martinez, Kak (b2) 2001; 23
Zhou, Cichocki, Zhang, Mandic (b3) 2015; 27
Kim, Park (b30) 2007; 23
Huang, Yin, Chen, Wang, Chen (b13) 2020; 412
Drineas, Mahoney, Muthukrishnan (b37) 2008; 30
De Lathauwer, De Moor, Vandewalle (b31) 2000; 21
Jiang, Ng, Pan, Song (b23) 2023; 153
Welling, Weber (b8) 2001; 22
Y. Qiu, G. Zhou, Y. Wang, Y. Zhang, S. Xie, A generalized graph regularized non-negative Tucker decomposition framework for tensor data representation, IEEE Trans. Cybern. 1–14.
Cai, He, Han (b32) 2005; 17
Frieze, Kannan, Vempala (b38) 2004; 51
Qiu, Zhou, Zhang, Xie (b18) 2019
Zhang, Zhao (b12) 2012; 35
Li, Ren, Sun, Xu (b22) 2023; 134
Kolda, Bader (b24) 2009; 51
Zhang, Zhou, Zhao, Cichocki, Wang (b27) 2016; 198
Chen (10.1016/j.patcog.2023.110207_b20) 2020; 106
Lee (10.1016/j.patcog.2023.110207_b4) 1999; 401
Drineas (10.1016/j.patcog.2023.110207_b37) 2008; 30
Che (10.1016/j.patcog.2023.110207_b35) 2021; 88
10.1016/j.patcog.2023.110207_b19
Guan (10.1016/j.patcog.2023.110207_b26) 2012; 60
Yu (10.1016/j.patcog.2023.110207_b15) 2022
Cai (10.1016/j.patcog.2023.110207_b21) 2023; 134
Pan (10.1016/j.patcog.2023.110207_b7) 2021; 43
Halko (10.1016/j.patcog.2023.110207_b33) 2011; 53
Welling (10.1016/j.patcog.2023.110207_b8) 2001; 22
Che (10.1016/j.patcog.2023.110207_b34) 2019; 45
Li (10.1016/j.patcog.2023.110207_b22) 2023; 134
Xiao (10.1016/j.patcog.2023.110207_b11) 2018; 34
Cai (10.1016/j.patcog.2023.110207_b9) 2011; 33
De Lathauwer (10.1016/j.patcog.2023.110207_b31) 2000; 21
Qiu (10.1016/j.patcog.2023.110207_b18) 2019
Jiang (10.1016/j.patcog.2023.110207_b23) 2023; 153
De Handschutter (10.1016/j.patcog.2023.110207_b5) 2023; 134
Tucker (10.1016/j.patcog.2023.110207_b6) 1966; 31
Kolda (10.1016/j.patcog.2023.110207_b24) 2009; 51
Wang (10.1016/j.patcog.2023.110207_b17) 2011; 44
Jiang (10.1016/j.patcog.2023.110207_b16) 2018; 49
Huang (10.1016/j.patcog.2023.110207_b13) 2020; 412
Leng (10.1016/j.patcog.2023.110207_b14) 2019; 6
Zhang (10.1016/j.patcog.2023.110207_b27) 2016; 198
10.1016/j.patcog.2023.110207_b28
Martinez (10.1016/j.patcog.2023.110207_b2) 2001; 23
Cai (10.1016/j.patcog.2023.110207_b32) 2005; 17
Zhang (10.1016/j.patcog.2023.110207_b12) 2012; 35
Beck (10.1016/j.patcog.2023.110207_b25) 2009; 2
Kim (10.1016/j.patcog.2023.110207_b29) 2008; 30
Kim (10.1016/j.patcog.2023.110207_b30) 2007; 23
Shang (10.1016/j.patcog.2023.110207_b10) 2012; 45
Zhou (10.1016/j.patcog.2023.110207_b3) 2015; 27
Drineas (10.1016/j.patcog.2023.110207_b36) 2012; 13
Frieze (10.1016/j.patcog.2023.110207_b38) 2004; 51
Jolliffe (10.1016/j.patcog.2023.110207_b1) 2016; 374
References_xml – volume: 134
  year: 2023
  ident: b22
  article-title: Auto-weighted tensor schatten p-norm for robust multi-view graph clustering
  publication-title: Pattern Recognit.
– volume: 30
  start-page: 713
  year: 2008
  end-page: 730
  ident: b29
  article-title: Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method
  publication-title: SIAM J. matrix Anal. Appl.
– volume: 153
  start-page: 141
  year: 2023
  end-page: 170
  ident: b23
  article-title: Nonnegative low rank tensor approximations with multidimensional image applications
  publication-title: Numer. Math.
– volume: 13
  start-page: 3475
  year: 2012
  end-page: 3506
  ident: b36
  article-title: Fast approximation of matrix coherence and statistical leverage
  publication-title: J. Mach. Learn. Res.
– volume: 35
  start-page: 1717
  year: 2012
  end-page: 1729
  ident: b12
  article-title: Low-rank matrix approximation with manifold regularization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 134
  year: 2023
  ident: b21
  article-title: High-order manifold regularized multi-view subspace clustering with robust affinity matrices and weighted TNN
  publication-title: Pattern Recognit.
– volume: 88
  start-page: 1
  year: 2021
  end-page: 29
  ident: b35
  article-title: An efficient randomized algorithm for computing the approximate tucker decomposition
  publication-title: J. Sci. Comput.
– reference: Y. Qiu, G. Zhou, Y. Wang, Y. Zhang, S. Xie, A generalized graph regularized non-negative Tucker decomposition framework for tensor data representation, IEEE Trans. Cybern. 1–14.
– volume: 53
  start-page: 217
  year: 2011
  end-page: 288
  ident: b33
  article-title: Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
  publication-title: SIAM Rev.
– volume: 412
  start-page: 72
  year: 2020
  end-page: 90
  ident: b13
  article-title: Robust nonnegative matrix factorization with structure regularization
  publication-title: Neurocomputing
– volume: 45
  start-page: 395
  year: 2019
  end-page: 428
  ident: b34
  article-title: Randomized algorithms for the approximations of Tucker and the tensor train decompositions
  publication-title: Adv. Comput. Math.
– volume: 374
  year: 2016
  ident: b1
  article-title: Principal component analysis: a review and recent developments
  publication-title: Phil. Trans. R. Soc. A
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: b4
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– volume: 23
  start-page: 228
  year: 2001
  end-page: 233
  ident: b2
  article-title: PCA versus LDA
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 49
  start-page: 1417
  year: 2018
  end-page: 1426
  ident: b16
  article-title: Image representation and learning with graph-Laplacian Tucker tensor decomposition
  publication-title: IEEE Trans. Cybern.
– volume: 17
  start-page: 1624
  year: 2005
  end-page: 1637
  ident: b32
  article-title: Document clustering using locality preserving indexing
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 44
  start-page: 2516
  year: 2011
  end-page: 2526
  ident: b17
  article-title: Image representation using Laplacian regularized nonnegative tensor factorization
  publication-title: Pattern Recognit.
– volume: 30
  start-page: 844
  year: 2008
  end-page: 881
  ident: b37
  article-title: Relative-error CUR matrix decompositions
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 45
  start-page: 2237
  year: 2012
  end-page: 2250
  ident: b10
  article-title: Graph dual regularization non-negative matrix factorization for co-clustering
  publication-title: Pattern Recognit.
– volume: 60
  start-page: 2882
  year: 2012
  end-page: 2898
  ident: b26
  article-title: NeNMF: An optimal gradient method for nonnegative matrix factorization
  publication-title: IEEE Trans. Signal Process.
– volume: 33
  start-page: 1548
  year: 2011
  end-page: 1560
  ident: b9
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 27
  start-page: 2426
  year: 2015
  end-page: 2439
  ident: b3
  article-title: Group component analysis for multiblock data: Common and individual feature extraction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 51
  start-page: 455
  year: 2009
  end-page: 500
  ident: b24
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev.
– volume: 198
  start-page: 148
  year: 2016
  end-page: 154
  ident: b27
  article-title: Fast nonnegative tensor factorization based on accelerated proximal gradient and low-rank approximation
  publication-title: Neurocomputing
– start-page: 8613
  year: 2019
  end-page: 8617
  ident: b18
  article-title: Graph regularized nonnegative tucker decomposition for tensor data representation
  publication-title: ICASSP 2019-2019 IEEE int. conf. acoust. speech signal process. (ICASSP)
– volume: 34
  start-page: 239
  year: 2018
  end-page: 248
  ident: b11
  article-title: A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations
  publication-title: Bioinformatics
– volume: 43
  start-page: B55
  year: 2021
  end-page: B81
  ident: b7
  article-title: Orthogonal nonnegative tucker decomposition
  publication-title: SIAM J. Sci. Comput.
– volume: 2
  start-page: 183
  year: 2009
  end-page: 202
  ident: b25
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
– reference: D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in: Proc. adv. neural inf. process. syst., 2000, pp. 556–562.
– year: 2022
  ident: b15
  article-title: Graph-regularized non-negative tensor-ring decomposition for multiway representation learning
  publication-title: IEEE Trans. Cybern.
– volume: 23
  start-page: 1495
  year: 2007
  end-page: 1502
  ident: b30
  article-title: Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
  publication-title: Bioinformatics
– volume: 106
  year: 2020
  ident: b20
  article-title: Multi-view subspace clustering via simultaneously learning the representation tensor and affinity matrix
  publication-title: Pattern Recognit.
– volume: 31
  start-page: 279
  year: 1966
  end-page: 311
  ident: b6
  article-title: Some mathematical notes on three-mode factor analysis
  publication-title: Psychometrika
– volume: 134
  year: 2023
  ident: b5
  article-title: A consistent and flexible framework for deep matrix factorizations
  publication-title: Pattern Recognit.
– volume: 22
  start-page: 1255
  year: 2001
  end-page: 1261
  ident: b8
  article-title: Positive tensor factorization
  publication-title: Pattern Recognit. Lett.
– volume: 21
  start-page: 1253
  year: 2000
  end-page: 1278
  ident: b31
  article-title: A multilinear singular value decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 51
  start-page: 1025
  year: 2004
  end-page: 1041
  ident: b38
  article-title: Fast Monte-Carlo algorithms for finding low-rank approximations
  publication-title: J. ACM
– volume: 6
  start-page: 584
  year: 2019
  end-page: 595
  ident: b14
  article-title: Graph regularized
  publication-title: IEEE/CAA J. Autom.
– volume: 31
  start-page: 279
  issue: 3
  year: 1966
  ident: 10.1016/j.patcog.2023.110207_b6
  article-title: Some mathematical notes on three-mode factor analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02289464
– volume: 106
  issn: 0031-3203
  year: 2020
  ident: 10.1016/j.patcog.2023.110207_b20
  article-title: Multi-view subspace clustering via simultaneously learning the representation tensor and affinity matrix
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107441
– volume: 27
  start-page: 2426
  issue: 11
  year: 2015
  ident: 10.1016/j.patcog.2023.110207_b3
  article-title: Group component analysis for multiblock data: Common and individual feature extraction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2487364
– volume: 45
  start-page: 2237
  issue: 6
  year: 2012
  ident: 10.1016/j.patcog.2023.110207_b10
  article-title: Graph dual regularization non-negative matrix factorization for co-clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.12.015
– volume: 23
  start-page: 228
  issue: 2
  year: 2001
  ident: 10.1016/j.patcog.2023.110207_b2
  article-title: PCA versus LDA
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.908974
– volume: 412
  start-page: 72
  year: 2020
  ident: 10.1016/j.patcog.2023.110207_b13
  article-title: Robust nonnegative matrix factorization with structure regularization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.06.049
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: 10.1016/j.patcog.2023.110207_b4
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 134
  issn: 0031-3203
  year: 2023
  ident: 10.1016/j.patcog.2023.110207_b21
  article-title: High-order manifold regularized multi-view subspace clustering with robust affinity matrices and weighted TNN
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.109067
– volume: 22
  start-page: 1255
  issue: 12
  year: 2001
  ident: 10.1016/j.patcog.2023.110207_b8
  article-title: Positive tensor factorization
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(01)00070-8
– volume: 23
  start-page: 1495
  issue: 12
  year: 2007
  ident: 10.1016/j.patcog.2023.110207_b30
  article-title: Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm134
– volume: 43
  start-page: B55
  issue: 1
  year: 2021
  ident: 10.1016/j.patcog.2023.110207_b7
  article-title: Orthogonal nonnegative tucker decomposition
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/19M1294708
– volume: 30
  start-page: 713
  issue: 2
  year: 2008
  ident: 10.1016/j.patcog.2023.110207_b29
  article-title: Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method
  publication-title: SIAM J. matrix Anal. Appl.
  doi: 10.1137/07069239X
– volume: 44
  start-page: 2516
  issue: 10
  year: 2011
  ident: 10.1016/j.patcog.2023.110207_b17
  article-title: Image representation using Laplacian regularized nonnegative tensor factorization
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.03.021
– volume: 134
  issn: 0031-3203
  year: 2023
  ident: 10.1016/j.patcog.2023.110207_b22
  article-title: Auto-weighted tensor schatten p-norm for robust multi-view graph clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.109083
– volume: 30
  start-page: 844
  issue: 2
  year: 2008
  ident: 10.1016/j.patcog.2023.110207_b37
  article-title: Relative-error CUR matrix decompositions
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/07070471X
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 10.1016/j.patcog.2023.110207_b25
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 88
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.patcog.2023.110207_b35
  article-title: An efficient randomized algorithm for computing the approximate tucker decomposition
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-021-01545-5
– volume: 51
  start-page: 1025
  issue: 6
  year: 2004
  ident: 10.1016/j.patcog.2023.110207_b38
  article-title: Fast Monte-Carlo algorithms for finding low-rank approximations
  publication-title: J. ACM
  doi: 10.1145/1039488.1039494
– volume: 134
  year: 2023
  ident: 10.1016/j.patcog.2023.110207_b5
  article-title: A consistent and flexible framework for deep matrix factorizations
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.109102
– volume: 33
  start-page: 1548
  issue: 8
  year: 2011
  ident: 10.1016/j.patcog.2023.110207_b9
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.231
– start-page: 8613
  year: 2019
  ident: 10.1016/j.patcog.2023.110207_b18
  article-title: Graph regularized nonnegative tucker decomposition for tensor data representation
– volume: 49
  start-page: 1417
  issue: 4
  year: 2018
  ident: 10.1016/j.patcog.2023.110207_b16
  article-title: Image representation and learning with graph-Laplacian Tucker tensor decomposition
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2802934
– volume: 198
  start-page: 148
  year: 2016
  ident: 10.1016/j.patcog.2023.110207_b27
  article-title: Fast nonnegative tensor factorization based on accelerated proximal gradient and low-rank approximation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.122
– ident: 10.1016/j.patcog.2023.110207_b28
– volume: 374
  issue: 2065
  year: 2016
  ident: 10.1016/j.patcog.2023.110207_b1
  article-title: Principal component analysis: a review and recent developments
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2015.0202
– volume: 45
  start-page: 395
  issue: 1
  year: 2019
  ident: 10.1016/j.patcog.2023.110207_b34
  article-title: Randomized algorithms for the approximations of Tucker and the tensor train decompositions
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-018-9622-8
– volume: 153
  start-page: 141
  issue: 1
  year: 2023
  ident: 10.1016/j.patcog.2023.110207_b23
  article-title: Nonnegative low rank tensor approximations with multidimensional image applications
  publication-title: Numer. Math.
  doi: 10.1007/s00211-022-01328-6
– volume: 17
  start-page: 1624
  issue: 12
  year: 2005
  ident: 10.1016/j.patcog.2023.110207_b32
  article-title: Document clustering using locality preserving indexing
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.198
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: 10.1016/j.patcog.2023.110207_b24
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– volume: 53
  start-page: 217
  issue: 2
  year: 2011
  ident: 10.1016/j.patcog.2023.110207_b33
  article-title: Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
  publication-title: SIAM Rev.
  doi: 10.1137/090771806
– volume: 21
  start-page: 1253
  issue: 4
  year: 2000
  ident: 10.1016/j.patcog.2023.110207_b31
  article-title: A multilinear singular value decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479896305696
– volume: 13
  start-page: 3475
  issue: 1
  year: 2012
  ident: 10.1016/j.patcog.2023.110207_b36
  article-title: Fast approximation of matrix coherence and statistical leverage
  publication-title: J. Mach. Learn. Res.
– year: 2022
  ident: 10.1016/j.patcog.2023.110207_b15
  article-title: Graph-regularized non-negative tensor-ring decomposition for multiway representation learning
  publication-title: IEEE Trans. Cybern.
– volume: 34
  start-page: 239
  issue: 2
  year: 2018
  ident: 10.1016/j.patcog.2023.110207_b11
  article-title: A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx545
– volume: 6
  start-page: 584
  issue: 2
  year: 2019
  ident: 10.1016/j.patcog.2023.110207_b14
  article-title: Graph regularized Lp smooth non-negative matrix factorization for data representation
  publication-title: IEEE/CAA J. Autom.
  doi: 10.1109/JAS.2019.1911417
– volume: 35
  start-page: 1717
  issue: 7
  year: 2012
  ident: 10.1016/j.patcog.2023.110207_b12
  article-title: Low-rank matrix approximation with manifold regularization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.274
– volume: 60
  start-page: 2882
  issue: 6
  year: 2012
  ident: 10.1016/j.patcog.2023.110207_b26
  article-title: NeNMF: An optimal gradient method for nonnegative matrix factorization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2190406
– ident: 10.1016/j.patcog.2023.110207_b19
SSID ssj0017142
Score 2.5190809
Snippet Non-negative Tucker decomposition (NTD) and its graph regularized extensions are the most popular techniques for representing high-dimensional non-negative...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110207
SubjectTerms Clustering
Graph regularization
Non-negative Tucker decomposition
Randomized algorithm
Title Non-negative Tucker decomposition with graph regularization and smooth constraint for clustering
URI https://dx.doi.org/10.1016/j.patcog.2023.110207
Volume 148
WOSCitedRecordID wos001142856100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017142
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQculKcoBeQDtyqrJHY29rGqWgGqVkXaw4oDwXHsstWSrPZRVfx6xvZks0tRoQcuUWTFjpX5Mp6xv5kh5L2wYKNW2kY2gb-JK_BZhRly-PGk1ZynhgsfKHyej0ZiMpEXvd7XNhbmepbXtbi5kfP_KmpoA2G70Nl7iHszKDTAPQgdriB2uP6T4EdNHdXmMiT0DrSJo8o46jjys8Leq89UfbTwpegXGIzpTxKWP5om0NGXvn7EyjMR9WztUiq0Cx2asxc-O6eLiEEaUneofz5dO_F9ns4a7OMa17gP8NPtU3fUgqD7vnzHuDTchUi3ySuoWVkSsTRmO5o1JNFE3QiGRhoq3N5S22EH4Wowh-WnuRy4ku6D7vHdLNm_rV4bTmFLV7sqwiiFG6UIozwge2meSdEne8cfTyefNudMecJDPnmcfRtc6RmAt2fzZ-NlyyAZPyGP0ZOgxwEBT0nP1M_Iflulg6LSfk6-bQOCBkDQHUBQBwjqAUF3AUEBEDQAgnaAoAAI2gHiBRmfnY5PPkRYVyPS4CCuIiaYVXIoZV4JqcGhtGkZ88qkRpWJqlhZaqnjLLNKGSm04DZT7rBO6bjkmWEvSb9uavOK0LisUpsoVbrwalVxxdVQi2HJbCwqcCQOCGu_V6Ex57yb6ay4S1oHJNr0moecK395Pm9FUaDdGOzBAvB1Z8_X93zTIXnUgf8N6a8Wa_OWPNTXq-ly8Q7B9Qsnq5VU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-negative+Tucker+decomposition+with+graph+regularization+and+smooth+constraint+for+clustering&rft.jtitle=Pattern+recognition&rft.au=Liu%2C+Qilong&rft.au=Lu%2C+Linzhang&rft.au=Chen%2C+Zhen&rft.date=2024-04-01&rft.issn=0031-3203&rft.volume=148&rft.spage=110207&rft_id=info:doi/10.1016%2Fj.patcog.2023.110207&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2023_110207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon