A novel multiobjective optimization algorithm for sparse signal reconstruction

Sparsity and reconstruction error are two main objectives to be optimized in sparse signal reconstruction. In this paper, sparse signals are reconstructed by optimizing these two objectives simultaneously. This reconstruction method mainly consists of three steps. First, a one-dimension-dominated me...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Signal processing Ročník 167; s. 107292
Hlavní autori: Yue, Caitong, Liang, Jing, Qu, Boyang, Han, Yuhong, Zhu, Yongsheng, Crisalle, Oscar D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.02.2020
Predmet:
ISSN:0165-1684, 1872-7557
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Sparsity and reconstruction error are two main objectives to be optimized in sparse signal reconstruction. In this paper, sparse signals are reconstructed by optimizing these two objectives simultaneously. This reconstruction method mainly consists of three steps. First, a one-dimension-dominated method is used to find a uniformly distributed optimal compromise solution set between these two objectives. Second, the Iterative Half Thresholding method is employed to improve the sparsity. Third, a robust selection method is proposed to choose a final solution from the solution set. The proposed method is compared with eight sparse reconstruction algorithms on twelve sparse test instances. Experimental results show that the proposed algorithm is able to reconstruct both noisy and noiseless sparse signals. In addition, the effectiveness of the proposed algorithm is demonstrated in practical application instances.
AbstractList Sparsity and reconstruction error are two main objectives to be optimized in sparse signal reconstruction. In this paper, sparse signals are reconstructed by optimizing these two objectives simultaneously. This reconstruction method mainly consists of three steps. First, a one-dimension-dominated method is used to find a uniformly distributed optimal compromise solution set between these two objectives. Second, the Iterative Half Thresholding method is employed to improve the sparsity. Third, a robust selection method is proposed to choose a final solution from the solution set. The proposed method is compared with eight sparse reconstruction algorithms on twelve sparse test instances. Experimental results show that the proposed algorithm is able to reconstruct both noisy and noiseless sparse signals. In addition, the effectiveness of the proposed algorithm is demonstrated in practical application instances.
ArticleNumber 107292
Author Liang, Jing
Yue, Caitong
Zhu, Yongsheng
Han, Yuhong
Qu, Boyang
Crisalle, Oscar D.
Author_xml – sequence: 1
  givenname: Caitong
  orcidid: 0000-0002-3362-0703
  surname: Yue
  fullname: Yue, Caitong
  email: zzuyuecaitong@163.com
  organization: School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 2
  givenname: Jing
  orcidid: 0000-0003-0811-0223
  surname: Liang
  fullname: Liang, Jing
  email: liangjing@zzu.edu.cn
  organization: School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 3
  givenname: Boyang
  surname: Qu
  fullname: Qu, Boyang
  email: qby1984@hotmail.com
  organization: School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China
– sequence: 4
  givenname: Yuhong
  surname: Han
  fullname: Han, Yuhong
  email: suthanyuhong@163.com
  organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 5
  givenname: Yongsheng
  surname: Zhu
  fullname: Zhu, Yongsheng
  email: zhuysdy@163.com
  organization: School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China
– sequence: 6
  givenname: Oscar D.
  surname: Crisalle
  fullname: Crisalle, Oscar D.
  email: crisalle@che.ufl.edu
  organization: Department of Chemical Engineering, University of Florida, Florida, United States
BookMark eNqFkM1OwzAQhC1UJErhDTj4BVJsx45TDkhVxZ9UwQXOluNsiqMkjmy3Ejw9LuHEAU4rjWZmd79zNBvcAAhdUbKkhBbX7TLY3ejdkhG6SpJkK3aC5rSULJNCyBmaJ5vIaFHyM3QeQksIoXlB5uh5jQd3gA73-y5aV7Vgoj0AdmO0vf3USRuw7nbO2_je48Z5HEbtA-C0ctAd9mDcEKLfm6P1Ap02ugtw-TMX6O3-7nXzmG1fHp42621mclLELC9AGLNqGANjigrSOaU0Mi8Zp5BXnLOKirqhvCpKKSpTE07qRteikVoIUeYLdDP1Gu9C8NAoY-P3sdFr2ylK1JGMatVERh3JqIlMCvNf4dHbXvuP_2K3UwzSYwcLXgVjYTBQ2wQhqtrZvwu-AJElhCA
CitedBy_id crossref_primary_10_1016_j_sigpro_2022_108747
crossref_primary_10_1109_TMI_2021_3073243
crossref_primary_10_3390_su12041337
crossref_primary_10_3390_s20185384
crossref_primary_10_1007_s11831_022_09778_9
crossref_primary_10_1109_ACCESS_2020_3029968
crossref_primary_10_1007_s00521_021_06635_x
crossref_primary_10_1016_j_ins_2021_09_043
crossref_primary_10_1145_3734865
crossref_primary_10_1016_j_bspc_2022_103610
crossref_primary_10_1016_j_ins_2021_07_011
crossref_primary_10_1016_j_sigpro_2021_108283
crossref_primary_10_1007_s00034_024_02927_4
crossref_primary_10_1016_j_infrared_2021_103838
crossref_primary_10_1007_s00366_021_01364_0
crossref_primary_10_1007_s10462_021_10073_5
crossref_primary_10_1109_ACCESS_2020_2974890
Cites_doi 10.1109/TEVC.2013.2287153
10.1109/TEVC.2006.872344
10.1109/TEVC.2010.2093582
10.1109/TNNLS.2015.2469673
10.1109/TMI.2016.2550080
10.1016/j.sigpro.2018.04.002
10.1109/TEVC.2009.2017515
10.1109/TEVC.2017.2754271
10.1109/TIT.2008.929958
10.1109/78.258082
10.1109/TNNLS.2012.2197412
10.1109/TIT.2006.871582
10.1016/j.sigpro.2018.11.007
10.1016/j.acha.2009.04.002
10.1109/TSP.2011.2160058
10.1016/j.patcog.2019.01.018
10.1109/TEVC.2014.2378512
10.1109/TSP.2018.2867995
10.1109/TIT.2007.909108
10.1109/TCSVT.2018.2812802
10.1016/j.sigpro.2018.12.007
10.1109/4235.996017
10.1109/TSP.2017.2711501
10.1007/s00521-015-2073-y
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2019.107292
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7557
ExternalDocumentID 10_1016_j_sigpro_2019_107292
S0165168419303469
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-36e5cc9f22ecc6be00087c738241e3b442b15df14b6875bcd040dfad5f7a55583
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000497600200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-1684
IngestDate Sat Nov 29 07:23:05 EST 2025
Tue Nov 18 22:16:53 EST 2025
Fri Feb 23 02:33:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Particle swarm optimization (PSO)
Sparse reconstruction
Multiobjective optimization
Compress sensing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-36e5cc9f22ecc6be00087c738241e3b442b15df14b6875bcd040dfad5f7a55583
ORCID 0000-0003-0811-0223
0000-0002-3362-0703
ParticipantIDs crossref_citationtrail_10_1016_j_sigpro_2019_107292
crossref_primary_10_1016_j_sigpro_2019_107292
elsevier_sciencedirect_doi_10_1016_j_sigpro_2019_107292
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hu, Wen, Wong, Tong, Cui (bib0003) 2018; 150
Alvarez-Benitez, Everson, Fieldsend (bib0034) 2005
Fanjul Fernández, Fernández, Santamaría Caballero, Beltrán Álvarez (bib0043) 2017; 65
Messai, Aïssa-El-Bey, Amis, Guilloud (bib0006) 2019; 157
Tropp, Gilbert (bib0013) 2006; 53
Qin, Suganthan (bib0023) 2005
Branke, Deb, Dierolf, Osswald (bib0037) 2004
Li, Fan, Zhang, Xu, Deng (bib0035) 2016
Mostaghim, Teich (bib0033) 2003
Eldar, Kutyniok (bib0005) 2012
Mallat, Zhang (bib0012) 1993; 41
Sudeng, Wattanapongsakorn (bib0038) 2015
Chen (bib0004) 2018; 66
Ekanadham, Tranchina, Simoncelli (bib0011) 2011; 59
Liu, Zhan, Cai, Guo, Chen, Qu (bib0040) 2016; 35
Donoho, Tsaig (bib0042) 2008; 54
Kennedy (bib0024) 2011
Li, Su, Xu, Zhang (bib0021) 2012
Donoho (bib0001) 2006; 52
Deng, Zeng, Zhang, Tian, Cao, Li, Liu (bib0008) 2019; 157
Hu, Wen, Lai, Wong, Shen (bib0014) 2019; 90
Liang, Gong, Li, Yue, Qu (bib0018) 2018
Wang, Cai (bib0020) 2012; 16
Liang, Qu, Suganthan, Niu (bib0027) 2012
Rachmawati, Srinivasan (bib0039) 2009; 13
Selesnick (bib0007) 2017; 65
Moore, Chapman (bib0028) 1999
Deb, Pratap, Agarwal (bib0032) 2002; 6
Li, Yao, Stolkin, Gong, He (bib0017) 2014; 18
Su, Chi (bib0026) 2017; 28
Gong, Liu, Li, Cai, Su (bib0022) 2015; 26
Li (bib0031) 2003
Zhang, Tian, Jin (bib0041) 2015; 19
Chen, Donoho (bib0010) 1994; 1
Xu, Chang, Xu, Zhang (bib0015) 2012; 23
Kaltenbacher, Neubauer, Scherzer (bib0009) 2008
Blumensath, Davies (bib0016) 2009; 27
Lai, Mo, Wen, Shen, Wong (bib0002) 2018; 29
Cai, Wang (bib0019) 2006; 10
Yue, Qu, Liang (bib0030) 2018; 22
Yue, Liang, Qu, Song, Li, Han (bib0036) 2017
Lalwani, Singhal, Kumar, Gupta (bib0029) 2013; 4115
Durillo, Garcíanieto, Nebro, Coello, Luna, Alba (bib0025) 2009; 5467
Kaltenbacher (10.1016/j.sigpro.2019.107292_bib0009) 2008
Li (10.1016/j.sigpro.2019.107292_bib0035) 2016
Deb (10.1016/j.sigpro.2019.107292_bib0032) 2002; 6
Li (10.1016/j.sigpro.2019.107292_bib0031) 2003
Zhang (10.1016/j.sigpro.2019.107292_bib0041) 2015; 19
Hu (10.1016/j.sigpro.2019.107292_bib0003) 2018; 150
Yue (10.1016/j.sigpro.2019.107292_bib0030) 2018; 22
Branke (10.1016/j.sigpro.2019.107292_bib0037) 2004
Gong (10.1016/j.sigpro.2019.107292_bib0022) 2015; 26
Messai (10.1016/j.sigpro.2019.107292_bib0006) 2019; 157
Donoho (10.1016/j.sigpro.2019.107292_bib0042) 2008; 54
Kennedy (10.1016/j.sigpro.2019.107292_bib0024) 2011
Moore (10.1016/j.sigpro.2019.107292_bib0028) 1999
Xu (10.1016/j.sigpro.2019.107292_bib0015) 2012; 23
Li (10.1016/j.sigpro.2019.107292_bib0021) 2012
Mostaghim (10.1016/j.sigpro.2019.107292_bib0033) 2003
Yue (10.1016/j.sigpro.2019.107292_bib0036) 2017
Deng (10.1016/j.sigpro.2019.107292_bib0008) 2019; 157
Donoho (10.1016/j.sigpro.2019.107292_bib0001) 2006; 52
Selesnick (10.1016/j.sigpro.2019.107292_bib0007) 2017; 65
Liang (10.1016/j.sigpro.2019.107292_bib0018) 2018
Chen (10.1016/j.sigpro.2019.107292_bib0010) 1994; 1
Lalwani (10.1016/j.sigpro.2019.107292_bib0029) 2013; 4115
Fanjul Fernández (10.1016/j.sigpro.2019.107292_bib0043) 2017; 65
Tropp (10.1016/j.sigpro.2019.107292_bib0013) 2006; 53
Liu (10.1016/j.sigpro.2019.107292_bib0040) 2016; 35
Eldar (10.1016/j.sigpro.2019.107292_bib0005) 2012
Liang (10.1016/j.sigpro.2019.107292_bib0027) 2012
Li (10.1016/j.sigpro.2019.107292_bib0017) 2014; 18
Chen (10.1016/j.sigpro.2019.107292_bib0004) 2018; 66
Durillo (10.1016/j.sigpro.2019.107292_bib0025) 2009; 5467
Lai (10.1016/j.sigpro.2019.107292_bib0002) 2018; 29
Mallat (10.1016/j.sigpro.2019.107292_bib0012) 1993; 41
Ekanadham (10.1016/j.sigpro.2019.107292_bib0011) 2011; 59
Blumensath (10.1016/j.sigpro.2019.107292_bib0016) 2009; 27
Wang (10.1016/j.sigpro.2019.107292_bib0020) 2012; 16
Qin (10.1016/j.sigpro.2019.107292_bib0023) 2005
Hu (10.1016/j.sigpro.2019.107292_bib0014) 2019; 90
Su (10.1016/j.sigpro.2019.107292_bib0026) 2017; 28
Sudeng (10.1016/j.sigpro.2019.107292_bib0038) 2015
Alvarez-Benitez (10.1016/j.sigpro.2019.107292_bib0034) 2005
Rachmawati (10.1016/j.sigpro.2019.107292_bib0039) 2009; 13
Cai (10.1016/j.sigpro.2019.107292_bib0019) 2006; 10
References_xml – volume: 65
  start-page: 4481
  year: 2017
  end-page: 4494
  ident: bib0007
  article-title: Sparse regularization via convex analysis
  publication-title: IEEE Trans. Signal Process.
– volume: 1
  start-page: 41
  year: 1994
  end-page: 44
  ident: bib0010
  article-title: Basis pursuit
  publication-title: Proc. 28th Asilomar Conference on Systems and Computers
– start-page: 1
  year: 2012
  end-page: 8
  ident: bib0027
  article-title: Dynamic multi-swarm particle swarm optimization for multiobjective optimization problems
  publication-title: Proc. IEEE Congress on Evolutionary Computation
– volume: 59
  start-page: 4735
  year: 2011
  end-page: 4744
  ident: bib0011
  article-title: Recovery of sparse translation-invariant signals with continuous basis pursuit
  publication-title: IEEE Trans. Signal Process.
– volume: 66
  start-page: 5313
  year: 2018
  end-page: 5323
  ident: bib0004
  article-title: Simultaneously sparse and low-rank matrix reconstruction via nonconvex and nonseparable regularization
  publication-title: IEEE Trans. Signal Process.
– start-page: 760
  year: 2011
  end-page: 766
  ident: bib0024
  article-title: Particle swarm optimization
  publication-title: Encyclopedia of Machine Learning
– start-page: 89
  year: 2015
  end-page: 94
  ident: bib0038
  article-title: Finding knee solutions in multiobjective optimization using extended angle dominance approach
  publication-title: Inf. Sci. Appl.
– volume: 29
  start-page: 756
  year: 2018
  end-page: 772
  ident: bib0002
  article-title: Generalized robust regression for jointly sparse subspace learning
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 157
  start-page: 280
  year: 2019
  end-page: 287
  ident: bib0008
  article-title: Compressed sensing for image reconstruction via back-off and rectification of greedy algorithm
  publication-title: Signal Process.
– volume: 35
  start-page: 2130
  year: 2016
  end-page: 2140
  ident: bib0040
  article-title: Projected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging
  publication-title: IEEE Trans. Med. Imaging
– volume: 90
  start-page: 147
  year: 2019
  end-page: 160
  ident: bib0014
  article-title: Binary sparse signal recovery algorithms based on logic observation
  publication-title: Pattern Recognit.
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  ident: bib0001
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
– start-page: 601
  year: 2016
  end-page: 608
  ident: bib0035
  article-title: A multi-phase multiobjective approach based on decomposition for sparse reconstruction
  publication-title: Proc. IEEE Congress on Evolutionary Computation
– start-page: 459
  year: 2005
  end-page: 473
  ident: bib0034
  article-title: A MOPSO algorithm based exclusively on Pareto dominance concepts
  publication-title: Proc. International Conference on Evolutionary Multi-Criterion Optimization
– start-page: 37
  year: 2003
  end-page: 48
  ident: bib0031
  article-title: A non-dominated sorting particle swarm optimizer for multiobjective optimization
  publication-title: Proc. Genetic and Evolutionary Computation Conference
– start-page: 722
  year: 2004
  end-page: 731
  ident: bib0037
  article-title: Finding knees in multiobjective optimization
  publication-title: Proc. International Conference on Parallel Problem Solving from Nature
– volume: 27
  start-page: 265
  year: 2009
  end-page: 274
  ident: bib0016
  article-title: Iterative hard thresholding for compressed sensing
  publication-title: Appl. Comput. Harmon. Anal.
– start-page: 26
  year: 2003
  end-page: 33
  ident: bib0033
  article-title: Strategies for finding good local guides in multiobjective particle swarm optimization (MOPSO)
  publication-title: Proc. IEEE Swarm Intelligence Symposium
– volume: 41
  start-page: 3397
  year: 1993
  end-page: 3415
  ident: bib0012
  article-title: Matching pursuits with time-frequency dictionaries
  publication-title: IEEE Trans. Signal Process.
– year: 1999
  ident: bib0028
  article-title: Application of particle swarm to multiobjective optimization
  publication-title: Department of Computer Science and Software Engineering
– volume: 5467
  start-page: 495
  year: 2009
  end-page: 509
  ident: bib0025
  article-title: Multiobjective particle swarm optimizers: an experimental comparison
  publication-title: Proc. International Conference on Evolutionary Multi-Criterion Optimization
– volume: 16
  start-page: 117
  year: 2012
  end-page: 134
  ident: bib0020
  article-title: Combining multiobjective optimization with differential evolution to solve constrained optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 23
  start-page: 1013
  year: 2012
  end-page: 1027
  ident: bib0015
  article-title: regularization: a thresholding representation theory and a fast solver
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 28
  start-page: 407
  year: 2017
  end-page: 418
  ident: bib0026
  article-title: Multiobjective particle swarm-differential evolution algorithm
  publication-title: Neural Comput. Appl.
– volume: 54
  start-page: 4789
  year: 2008
  end-page: 4812
  ident: bib0042
  article-title: Fast solution of
  publication-title: IEEE Trans. Inf. Theory
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0032
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 22
  start-page: 805
  year: 2018
  end-page: 817
  ident: bib0030
  article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems
  publication-title: IEEE Trans. Evol. Comput.
– year: 2012
  ident: bib0005
  article-title: Compressed Sensing: Theory and Applications
– start-page: 911
  year: 2017
  end-page: 919
  ident: bib0036
  article-title: A knee point driven particle swarm optimization algorithm for sparse reconstruction
  publication-title: Proc. International Conference on Simulated Evolution and Learning
– volume: 18
  start-page: 827
  year: 2014
  end-page: 845
  ident: bib0017
  article-title: An evolutionary multiobjective approach to sparse reconstruction
  publication-title: IEEE Trans. Evol. Comput.
– volume: 10
  start-page: 658
  year: 2006
  end-page: 675
  ident: bib0019
  article-title: A multiobjective optimization-based evolutionary algorithm for constrained optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 761
  year: 2015
  end-page: 776
  ident: bib0041
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 2008
  ident: bib0009
  article-title: Iterative regularization methods for nonlinear ill-posed problems
  publication-title: Walter de Gruyter
– volume: 26
  start-page: 3263
  year: 2015
  end-page: 3277
  ident: bib0022
  article-title: A multiobjective sparse feature learning model for deep neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 4115
  start-page: 72
  year: 2013
  end-page: 80
  ident: bib0029
  article-title: A comprehensive survey: applications of multiobjective particle swarm optimization (MOPSO) algorithm
  publication-title: Lect. Notes Comput. Sci.
– volume: 150
  start-page: 66
  year: 2018
  end-page: 74
  ident: bib0003
  article-title: On uniqueness of sparse signal recovery
  publication-title: Signal Process.
– volume: 157
  start-page: 73
  year: 2019
  end-page: 77
  ident: bib0006
  article-title: Iteratively reweighted two-stage LASSO for block-sparse signal recovery under finite-alphabet constraints
  publication-title: Signal Process.
– start-page: 1
  year: 2018
  end-page: 6
  ident: bib0018
  article-title: Problem definitions and evaluation criteria for the CEC special session on evolutionary algorithms for sparse optimization
– volume: 53
  start-page: 4655
  year: 2006
  end-page: 4666
  ident: bib0013
  article-title: Signal recovery from partial information via orthogonal matching pursuit
  publication-title: IEEE Trans. Inf. Theory
– volume: 65
  year: 2017
  ident: bib0043
  article-title: Homotopy continuation for spatial interference alignment in arbitrary MIMO X networks
  publication-title: IEEE Trans. Signal Process.
– start-page: 93
  year: 2012
  end-page: 101
  ident: bib0021
  article-title: MOEA/D with iterative thresholding algorithm for sparse optimization problems
  publication-title: Proc. International Conference on Parallel Problem Solving from Nature
– start-page: 1785
  year: 2005
  end-page: 1791
  ident: bib0023
  article-title: Self-adaptive differential evolution algorithm for numerical optimization
  publication-title: Proc. IEEE Congress on Evolutionary Computation
– volume: 13
  start-page: 810
  year: 2009
  end-page: 824
  ident: bib0039
  article-title: Multiobjective evolutionary algorithm with controllable focus on the knees of the PF
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 827
  issue: 6
  year: 2014
  ident: 10.1016/j.sigpro.2019.107292_bib0017
  article-title: An evolutionary multiobjective approach to sparse reconstruction
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2287153
– year: 1999
  ident: 10.1016/j.sigpro.2019.107292_bib0028
  article-title: Application of particle swarm to multiobjective optimization
– volume: 10
  start-page: 658
  issue: 6
  year: 2006
  ident: 10.1016/j.sigpro.2019.107292_bib0019
  article-title: A multiobjective optimization-based evolutionary algorithm for constrained optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.872344
– volume: 16
  start-page: 117
  issue: 1
  year: 2012
  ident: 10.1016/j.sigpro.2019.107292_bib0020
  article-title: Combining multiobjective optimization with differential evolution to solve constrained optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2093582
– volume: 26
  start-page: 3263
  issue: 12
  year: 2015
  ident: 10.1016/j.sigpro.2019.107292_bib0022
  article-title: A multiobjective sparse feature learning model for deep neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2469673
– year: 2012
  ident: 10.1016/j.sigpro.2019.107292_bib0005
– start-page: 1
  year: 2012
  ident: 10.1016/j.sigpro.2019.107292_bib0027
  article-title: Dynamic multi-swarm particle swarm optimization for multiobjective optimization problems
– start-page: 760
  year: 2011
  ident: 10.1016/j.sigpro.2019.107292_bib0024
  article-title: Particle swarm optimization
– start-page: 89
  year: 2015
  ident: 10.1016/j.sigpro.2019.107292_bib0038
  article-title: Finding knee solutions in multiobjective optimization using extended angle dominance approach
  publication-title: Inf. Sci. Appl.
– volume: 35
  start-page: 2130
  issue: 9
  year: 2016
  ident: 10.1016/j.sigpro.2019.107292_bib0040
  article-title: Projected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2550080
– volume: 150
  start-page: 66
  year: 2018
  ident: 10.1016/j.sigpro.2019.107292_bib0003
  article-title: On uniqueness of sparse signal recovery
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.04.002
– volume: 13
  start-page: 810
  issue: 4
  year: 2009
  ident: 10.1016/j.sigpro.2019.107292_bib0039
  article-title: Multiobjective evolutionary algorithm with controllable focus on the knees of the PF
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2017515
– volume: 22
  start-page: 805
  issue: 5
  year: 2018
  ident: 10.1016/j.sigpro.2019.107292_bib0030
  article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2754271
– volume: 54
  start-page: 4789
  issue: 11
  year: 2008
  ident: 10.1016/j.sigpro.2019.107292_bib0042
  article-title: Fast solution of l1-norm minimization problems when the solution may be sparse
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2008.929958
– volume: 41
  start-page: 3397
  year: 1993
  ident: 10.1016/j.sigpro.2019.107292_bib0012
  article-title: Matching pursuits with time-frequency dictionaries
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.258082
– start-page: 459
  year: 2005
  ident: 10.1016/j.sigpro.2019.107292_bib0034
  article-title: A MOPSO algorithm based exclusively on Pareto dominance concepts
– start-page: 1
  year: 2018
  ident: 10.1016/j.sigpro.2019.107292_bib0018
– start-page: 37
  year: 2003
  ident: 10.1016/j.sigpro.2019.107292_bib0031
  article-title: A non-dominated sorting particle swarm optimizer for multiobjective optimization
– volume: 23
  start-page: 1013
  issue: 7
  year: 2012
  ident: 10.1016/j.sigpro.2019.107292_bib0015
  article-title: L1/2 regularization: a thresholding representation theory and a fast solver
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2197412
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 10.1016/j.sigpro.2019.107292_bib0001
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– volume: 157
  start-page: 73
  year: 2019
  ident: 10.1016/j.sigpro.2019.107292_bib0006
  article-title: Iteratively reweighted two-stage LASSO for block-sparse signal recovery under finite-alphabet constraints
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.11.007
– volume: 27
  start-page: 265
  issue: 3
  year: 2009
  ident: 10.1016/j.sigpro.2019.107292_bib0016
  article-title: Iterative hard thresholding for compressed sensing
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2009.04.002
– volume: 4115
  start-page: 72
  issue: 1
  year: 2013
  ident: 10.1016/j.sigpro.2019.107292_bib0029
  article-title: A comprehensive survey: applications of multiobjective particle swarm optimization (MOPSO) algorithm
  publication-title: Lect. Notes Comput. Sci.
– volume: 59
  start-page: 4735
  issue: 10
  year: 2011
  ident: 10.1016/j.sigpro.2019.107292_bib0011
  article-title: Recovery of sparse translation-invariant signals with continuous basis pursuit
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2160058
– start-page: 93
  year: 2012
  ident: 10.1016/j.sigpro.2019.107292_bib0021
  article-title: MOEA/D with iterative thresholding algorithm for sparse optimization problems
– year: 2008
  ident: 10.1016/j.sigpro.2019.107292_bib0009
  article-title: Iterative regularization methods for nonlinear ill-posed problems
  publication-title: Walter de Gruyter
– volume: 5467
  start-page: 495
  year: 2009
  ident: 10.1016/j.sigpro.2019.107292_bib0025
  article-title: Multiobjective particle swarm optimizers: an experimental comparison
– start-page: 1785
  year: 2005
  ident: 10.1016/j.sigpro.2019.107292_bib0023
  article-title: Self-adaptive differential evolution algorithm for numerical optimization
– volume: 90
  start-page: 147
  year: 2019
  ident: 10.1016/j.sigpro.2019.107292_bib0014
  article-title: Binary sparse signal recovery algorithms based on logic observation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.01.018
– start-page: 911
  year: 2017
  ident: 10.1016/j.sigpro.2019.107292_bib0036
  article-title: A knee point driven particle swarm optimization algorithm for sparse reconstruction
– start-page: 722
  year: 2004
  ident: 10.1016/j.sigpro.2019.107292_bib0037
  article-title: Finding knees in multiobjective optimization
– volume: 19
  start-page: 761
  issue: 6
  year: 2015
  ident: 10.1016/j.sigpro.2019.107292_bib0041
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2378512
– volume: 66
  start-page: 5313
  issue: 20
  year: 2018
  ident: 10.1016/j.sigpro.2019.107292_bib0004
  article-title: Simultaneously sparse and low-rank matrix reconstruction via nonconvex and nonseparable regularization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2867995
– volume: 65
  issue: 7
  year: 2017
  ident: 10.1016/j.sigpro.2019.107292_bib0043
  article-title: Homotopy continuation for spatial interference alignment in arbitrary MIMO X networks
  publication-title: IEEE Trans. Signal Process.
– volume: 53
  start-page: 4655
  year: 2006
  ident: 10.1016/j.sigpro.2019.107292_bib0013
  article-title: Signal recovery from partial information via orthogonal matching pursuit
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2007.909108
– volume: 1
  start-page: 41
  year: 1994
  ident: 10.1016/j.sigpro.2019.107292_bib0010
  article-title: Basis pursuit
– volume: 29
  start-page: 756
  issue: 3
  year: 2018
  ident: 10.1016/j.sigpro.2019.107292_bib0002
  article-title: Generalized robust regression for jointly sparse subspace learning
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2018.2812802
– volume: 157
  start-page: 280
  year: 2019
  ident: 10.1016/j.sigpro.2019.107292_bib0008
  article-title: Compressed sensing for image reconstruction via back-off and rectification of greedy algorithm
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.12.007
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.sigpro.2019.107292_bib0032
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 65
  start-page: 4481
  issue: 17
  year: 2017
  ident: 10.1016/j.sigpro.2019.107292_bib0007
  article-title: Sparse regularization via convex analysis
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2711501
– start-page: 601
  year: 2016
  ident: 10.1016/j.sigpro.2019.107292_bib0035
  article-title: A multi-phase multiobjective approach based on decomposition for sparse reconstruction
– volume: 28
  start-page: 407
  issue: 2
  year: 2017
  ident: 10.1016/j.sigpro.2019.107292_bib0026
  article-title: Multiobjective particle swarm-differential evolution algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2073-y
– start-page: 26
  year: 2003
  ident: 10.1016/j.sigpro.2019.107292_bib0033
  article-title: Strategies for finding good local guides in multiobjective particle swarm optimization (MOPSO)
SSID ssj0001360
Score 2.392244
Snippet Sparsity and reconstruction error are two main objectives to be optimized in sparse signal reconstruction. In this paper, sparse signals are reconstructed by...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107292
SubjectTerms Compress sensing
Multiobjective optimization
Particle swarm optimization (PSO)
Sparse reconstruction
Title A novel multiobjective optimization algorithm for sparse signal reconstruction
URI https://dx.doi.org/10.1016/j.sigpro.2019.107292
Volume 167
WOSCitedRecordID wos000497600200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELZ47AEOK2AXAQvIB26VEYmTuD5WCAQIVSBAKqfIcRxoVZKqLQj-PeNHHgXEwoFLFFm2Y3u-zIxH80BoD6QMyCXpE4-HggQ0DYmgQUAoZSn1Kc04E6bYBOt2270ev3DRJRNTToDlefv5mY9-lNTQBsTWobPfIHc1KTTAOxAdnkB2eH6J8J1WXjypoXUVLJKB5WitAnjDgwu6bInhXTHuT-8fjJchMJXxRLW0K4dJ8y-LOq1sU3m9sh1GNraglHmmqpf1JxTAHurW876zRZ81ul4-GkQVL6JuO7FG2NvH-3K0M0PAnfOgculwlskoJF5k671VrNWW2nDM0dNZyv0P-bY1IQz2YaewCe1xx_fr7rNpst-Ir8qpsPRXG8R2lljPEttZ5tGiz0IOnHuxc3rUO6uEtUdNIHm1-jK60rgAvl_Nx9pLQyO5XkG_3VUCdywEVtGcytfQciPB5B_U7WADBjwLBtwEA67AgAEM2IIBWzDgWTD8RTfHR9eHJ8RV0CASroJTQiMVSskz34c_NUqU1viYZLQNepuiSRD4iRemmRckEdxbE5kCS08zkYYZEzoRHF1HC3mRqw2EM6A5yEKdoysK2koIfpDJNAtUKoTyFN9EtDyZWLr08rrKyTD-jC6biFSjRja9yn_6s_LQY6ciWtUvBiR9OnLrm1_6h5ZqmG-jBThptYN-yadpfzLedTB6Bb2SjIs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+multiobjective+optimization+algorithm+for+sparse+signal+reconstruction&rft.jtitle=Signal+processing&rft.au=Yue%2C+Caitong&rft.au=Liang%2C+Jing&rft.au=Qu%2C+Boyang&rft.au=Han%2C+Yuhong&rft.date=2020-02-01&rft.issn=0165-1684&rft.volume=167&rft.spage=107292&rft_id=info:doi/10.1016%2Fj.sigpro.2019.107292&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2019_107292
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon