Dynamic energy efficient data placement and cluster reconfiguration algorithm for MapReduce framework

With the recent emergence of cloud computing based services on the Internet, MapReduce and distributed file systems like HDFS have emerged as the paradigm of choice for developing large scale data intensive applications. Given the scale at which these applications are deployed, minimizing power cons...

Full description

Saved in:
Bibliographic Details
Published in:Future generation computer systems Vol. 28; no. 1; pp. 119 - 127
Main Authors: Maheshwari, Nitesh, Nanduri, Radheshyam, Varma, Vasudeva
Format: Journal Article
Language:English
Published: Elsevier B.V 2012
Subjects:
ISSN:0167-739X, 1872-7115
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the recent emergence of cloud computing based services on the Internet, MapReduce and distributed file systems like HDFS have emerged as the paradigm of choice for developing large scale data intensive applications. Given the scale at which these applications are deployed, minimizing power consumption of these clusters can significantly cut down operational costs and reduce their carbon footprint—thereby increasing the utility from a provider’s point of view. This paper addresses energy conservation for clusters of nodes that run MapReduce jobs. The algorithm dynamically reconfigures the cluster based on the current workload and turns cluster nodes on or off when the average cluster utilization rises above or falls below administrator specified thresholds, respectively. We evaluate our algorithm using the GridSim toolkit and our results show that the proposed algorithm achieves an energy reduction of 33% under average workloads and up to 54% under low workloads. ► Addressed the problem of energy conservation for large datacenters that run MapReduce jobs. ► Proposed an energy efficient data placement and a cluster reconfiguration algorithm. ► Dynamically scale the cluster in accordance with the workload imposed on it. ► The results show energy savings of 54% under low workloads and 33% under average workloads.
AbstractList With the recent emergence of cloud computing based services on the Internet, MapReduce and distributed file systems like HDFS have emerged as the paradigm of choice for developing large scale data intensive applications. Given the scale at which these applications are deployed, minimizing power consumption of these clusters can significantly cut down operational costs and reduce their carbon footprint—thereby increasing the utility from a provider’s point of view. This paper addresses energy conservation for clusters of nodes that run MapReduce jobs. The algorithm dynamically reconfigures the cluster based on the current workload and turns cluster nodes on or off when the average cluster utilization rises above or falls below administrator specified thresholds, respectively. We evaluate our algorithm using the GridSim toolkit and our results show that the proposed algorithm achieves an energy reduction of 33% under average workloads and up to 54% under low workloads. ► Addressed the problem of energy conservation for large datacenters that run MapReduce jobs. ► Proposed an energy efficient data placement and a cluster reconfiguration algorithm. ► Dynamically scale the cluster in accordance with the workload imposed on it. ► The results show energy savings of 54% under low workloads and 33% under average workloads.
Author Nanduri, Radheshyam
Maheshwari, Nitesh
Varma, Vasudeva
Author_xml – sequence: 1
  givenname: Nitesh
  surname: Maheshwari
  fullname: Maheshwari, Nitesh
  email: nitesh.maheshwari@research.iiit.ac.in, nitesh.maheshwari@gmail.com
– sequence: 2
  givenname: Radheshyam
  surname: Nanduri
  fullname: Nanduri, Radheshyam
  email: radheshyam.nanduri@research.iiit.ac.in
– sequence: 3
  givenname: Vasudeva
  surname: Varma
  fullname: Varma, Vasudeva
  email: vv@iiit.ac.in
BookMark eNqFkE9LAzEQxYNUsFa_gYd8gV0zm27T9SBI_QsVQRS8hZhMaurupmSzSr-9WevJg56GGd57zPsdklHrWyTkBFgODGan69z2sQ-YFwwgZyJnDPbIGOaiyARAOSLjJBOZ4NXLATnsujVLCsFhTPBy26rGaYothtWWorVOO2wjNSoquqmVxmZYVWuorvsuYqABtW-tW_VBRedbquqVDy6-NdT6QO_V5hFNr5HaoBr89OH9iOxbVXd4_DMn5Pn66mlxmy0fbu4WF8tMczaLGZ9aVpjKaADDVVmBqISwJeqCG_6q0m3KNdpKzzkvdbpwkyrZaiagBFsJPiFnu1wdfNcFtFK7-P1jDMrVEpgcgMm13AGTAzDJhEw4knn6y7wJrlFh-5_tfGfDVOzDYZDdAFCjcYlTlMa7vwO-ABjHjIs
CitedBy_id crossref_primary_10_1007_s10723_016_9370_2
crossref_primary_10_1016_j_compeleceng_2018_08_005
crossref_primary_10_1109_ACCESS_2020_2992748
crossref_primary_10_1007_s10723_018_9432_8
crossref_primary_10_1007_s10723_018_9433_7
crossref_primary_10_1007_s10586_015_0495_z
crossref_primary_10_1016_j_future_2024_04_059
crossref_primary_10_1109_TPDS_2017_2723004
crossref_primary_10_1016_j_jclepro_2017_05_151
crossref_primary_10_1007_s00500_019_04079_z
crossref_primary_10_1016_S1005_8885_11_60250_1
crossref_primary_10_1109_ACCESS_2015_2490085
crossref_primary_10_1016_j_future_2015_03_010
crossref_primary_10_3390_ijgi5100173
crossref_primary_10_1016_j_future_2013_07_004
crossref_primary_10_1016_j_future_2018_02_041
crossref_primary_10_1016_j_jss_2013_08_018
crossref_primary_10_1007_s10586_014_0346_3
crossref_primary_10_1016_j_future_2014_08_011
crossref_primary_10_1109_TPDS_2014_2358556
crossref_primary_10_1016_j_future_2015_01_005
crossref_primary_10_1016_j_future_2019_10_023
crossref_primary_10_1007_s00500_022_07805_2
crossref_primary_10_1007_s11760_016_0964_8
crossref_primary_10_1016_j_sysarc_2017_07_002
crossref_primary_10_1007_s11761_019_00273_x
crossref_primary_10_1007_s11227_014_1219_5
crossref_primary_10_1007_s11277_018_5936_6
crossref_primary_10_1016_j_knosys_2022_109713
crossref_primary_10_1155_2014_926251
crossref_primary_10_3390_app9071417
crossref_primary_10_1109_ACCESS_2021_3064917
crossref_primary_10_1016_j_future_2015_01_011
crossref_primary_10_1007_s11227_016_1653_7
crossref_primary_10_1007_s10586_020_03146_7
crossref_primary_10_1016_j_compeleceng_2016_10_009
crossref_primary_10_1016_j_procs_2014_05_006
crossref_primary_10_1016_j_jnca_2014_10_008
crossref_primary_10_1093_comjnl_bxv062
crossref_primary_10_1007_s11192_016_1945_y
crossref_primary_10_1016_j_future_2017_11_010
crossref_primary_10_1155_2012_396387
crossref_primary_10_1016_j_compeleceng_2018_07_007
crossref_primary_10_1016_j_future_2016_03_008
crossref_primary_10_1145_2788402_2788407
crossref_primary_10_1109_TCC_2016_2607738
crossref_primary_10_1109_TPDS_2018_2837743
Cites_doi 10.1109/CLUSTR.2009.5289182
10.1023/A:1019129116852
10.1109/IPDPSW.2010.5470908
10.1016/j.future.2008.12.001
10.1016/j.jpdc.2005.04.018
10.1145/1165389.945450
10.1109/MC.2007.443
10.1109/CCGRID.2007.85
10.1109/CLUSTR.2008.4663751
10.1093/comjnl/bxp080
10.1002/cpe.710
10.1145/1327452.1327492
10.1109/ISCA.2003.1206998
10.1145/1740390.1740405
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Copyright_xml – notice: 2011 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2011.07.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 127
ExternalDocumentID 10_1016_j_future_2011_07_001
S0167739X1100135X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-34f02d9dc11d3a5917977f5ec23d3bad3a43cef9c8335c3ba3d739f967151f973
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000295947900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Sat Nov 29 02:59:35 EST 2025
Tue Nov 18 22:35:04 EST 2025
Fri Feb 23 02:34:34 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cloud computing
Energy efficiency
MapReduce
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-34f02d9dc11d3a5917977f5ec23d3bad3a43cef9c8335c3ba3d739f967151f973
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_future_2011_07_001
crossref_primary_10_1016_j_future_2011_07_001
elsevier_sciencedirect_doi_10_1016_j_future_2011_07_001
PublicationCentury 2000
PublicationDate 2012
2012-1-00
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationTitle Future generation computer systems
PublicationYear 2012
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Server energy and efficiency report, Tech. Rep., 1E, 2009.
Vasić, Barisits, Salzgeber, Kostic (br000095) 2009
Lee, Zomaya (br000150) 2009
Dean, Ghemawat (br000010) 2008; 51
Y. Chen, T.X. Wang, Energy efficiency of MapReduce, 2008.
G. von Laszewski, L. Wang, A. Younge, X. He, Power-aware scheduling of virtual machines in DVFS-enabled clusters, in: Cluster Computing and Workshops, 2009. CLUSTER ’09. IEEE International Conference on, 2009, pp. 1–10.
Liu, Wang, Liu, Jin, He, Wang, Chen (br000165) 2009
Advanced Configuration and Power Interface (ACPI).
Buyya, Murshed (br000030) 2002; 14
Hadoop distributed file system.
Apache Hadoop.
L. Hu, H. Jin, X. Liao, X. Xiong, H. Liu, Magnet: a novel scheduling policy for power reduction in cluster with virtual machines, in: Cluster Computing, 2008 IEEE International Conference on, 2008, pp. 13–22.
S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, H. Franke, DRPM: dynamic speed control for power management in server class disks, in: Computer Architecture, International Symposium on, vol. 0, 2003, p. 169.
R. Buyya, A. Beloglazov, J.H. Abawajy, Energy-efficient management of data center resources for cloud computing: a vision, architectural elements, and open challenges. CoRR abs/1006.0308.
Leverich, Kozyrakis (br000115) 2010; 44
Milenkovic, Castro-Leon, Blakley (br000175) 2009; vol. 5931
T.V.T. Duy, Y. Sato, Y. Inoguchi, Performance evaluation of a green scheduling algorithm for energy savings in cloud computing, in: Parallel Distributed Processing, Workshops and Ph.D. Forum, IPDPSW, 2010 IEEE International Symposium on, 2010, pp. 1–8.
Amazon elastic MapReduce.
Helmbold, Long, Sconyers, Sherrod (br000050) 2000; 5
Pérez, Sánchez, Pena, Robles (br000135) 2005; 65
Barroso, Holzle (br000085) 2007; 40
[HDFS-385] Design a pluggable interface to place replicas of blocks in HDFS.
M. Weiser, B. Welch, A. Demers, S. Shenker, Scheduling for reduced CPU energy, in: OSDI’94: Proceedings of the 1st USENIX Conference on Operating Systems Design and Implementation, USENIX Association, Berkeley, CA, USA, 1994, p. 2.
Ghemawat, Gobioff, Leung (br000090) 2003; 37
K.H. Kim, R. Buyya, J. Kim, Power aware scheduling of bag-of-tasks applications with deadline constraints on DVS-enabled clusters, in: Cluster Computing and the Grid, 2007. CCGRID 2007. Seventh IEEE International Symposium on, 2007, pp. 541–548.
Kim, Beloglazov, Buyya (br000180) 2009
Lebeck, Fan, Zeng, Ellis (br000045) 2000
Fan, Weber, Barroso (br000110) 2007
Carrera, Pinheiro, Bianchini (br000060) 2003
.
E. Pinheiro, R. Bianchini, E.V. Carrera, T. Heath, Load balancing and unbalancing for power and performance in cluster-based systems, 2001.
Pinheiro, Bianchini, Carrera, Heath (br000130) 2004
Rangasamy, Nagpal, Srikant (br000040) 2008
Berl, Gelenbe, DiGirolamo, Giuliani, DeMeer, Dang, Pentikousis (br000160) 2010; 53
EPA Report to Congress on Server and Data Center Energy Efficiency, Tech. Rep., US Environmental Protection Agency, 2007.
M. Elnozahy, M. Kistler, R. Rajamony, Energy conservation policies for web servers, in: USITS’03: Proceedings of the 4th Conference on USENIX Symposium on Internet Technologies and Systems, USENIX Association, Berkeley, CA, USA, 2003.
Buyya, Yeo, Venugopal, Broberg, Brandic (br000080) 2009; 25
Hsu, Feng (br000155) 2005
Dhok, Maheshwari, Varma (br000070) 2010
Buyya (10.1016/j.future.2011.07.001_br000030) 2002; 14
10.1016/j.future.2011.07.001_br000020
10.1016/j.future.2011.07.001_br000185
10.1016/j.future.2011.07.001_br000065
10.1016/j.future.2011.07.001_br000120
10.1016/j.future.2011.07.001_br000140
Fan (10.1016/j.future.2011.07.001_br000110) 2007
Lebeck (10.1016/j.future.2011.07.001_br000045) 2000
Barroso (10.1016/j.future.2011.07.001_br000085) 2007; 40
Berl (10.1016/j.future.2011.07.001_br000160) 2010; 53
Hsu (10.1016/j.future.2011.07.001_br000155) 2005
10.1016/j.future.2011.07.001_br000035
Ghemawat (10.1016/j.future.2011.07.001_br000090) 2003; 37
10.1016/j.future.2011.07.001_br000055
Vasić (10.1016/j.future.2011.07.001_br000095) 2009
10.1016/j.future.2011.07.001_br000015
Kim (10.1016/j.future.2011.07.001_br000180) 2009
10.1016/j.future.2011.07.001_br000170
Pérez (10.1016/j.future.2011.07.001_br000135) 2005; 65
10.1016/j.future.2011.07.001_br000190
Carrera (10.1016/j.future.2011.07.001_br000060) 2003
10.1016/j.future.2011.07.001_br000075
Pinheiro (10.1016/j.future.2011.07.001_br000130) 2004
Lee (10.1016/j.future.2011.07.001_br000150) 2009
Buyya (10.1016/j.future.2011.07.001_br000080) 2009; 25
Rangasamy (10.1016/j.future.2011.07.001_br000040) 2008
Dhok (10.1016/j.future.2011.07.001_br000070) 2010
Dean (10.1016/j.future.2011.07.001_br000010) 2008; 51
Helmbold (10.1016/j.future.2011.07.001_br000050) 2000; 5
10.1016/j.future.2011.07.001_br000145
10.1016/j.future.2011.07.001_br000025
Milenkovic (10.1016/j.future.2011.07.001_br000175) 2009; vol. 5931
10.1016/j.future.2011.07.001_br000100
10.1016/j.future.2011.07.001_br000105
Liu (10.1016/j.future.2011.07.001_br000165) 2009
10.1016/j.future.2011.07.001_br000125
10.1016/j.future.2011.07.001_br000005
Leverich (10.1016/j.future.2011.07.001_br000115) 2010; 44
References_xml – reference: E. Pinheiro, R. Bianchini, E.V. Carrera, T. Heath, Load balancing and unbalancing for power and performance in cluster-based systems, 2001.
– reference: T.V.T. Duy, Y. Sato, Y. Inoguchi, Performance evaluation of a green scheduling algorithm for energy savings in cloud computing, in: Parallel Distributed Processing, Workshops and Ph.D. Forum, IPDPSW, 2010 IEEE International Symposium on, 2010, pp. 1–8.
– volume: 37
  start-page: 29
  year: 2003
  end-page: 43
  ident: br000090
  article-title: The google file system
  publication-title: SIGOPS Oper. Syst. Rev.
– reference: EPA Report to Congress on Server and Data Center Energy Efficiency, Tech. Rep., US Environmental Protection Agency, 2007.
– start-page: 105
  year: 2000
  end-page: 116
  ident: br000045
  article-title: Power aware page allocation
  publication-title: ASPLOS-IX: Proceedings of the Ninth International Conference on Architectural Support for Programming Languages and Operating Systems
– reference: Apache Hadoop.
– volume: 40
  start-page: 33
  year: 2007
  end-page: 37
  ident: br000085
  article-title: The case for energy-proportional computing
  publication-title: Computer
– volume: 25
  start-page: 599
  year: 2009
  end-page: 616
  ident: br000080
  article-title: Cloud computing and emerging it platforms: vision, hype, and reality for delivering computing as the 5th utility
  publication-title: Future Gener. Comput. Syst.
– start-page: 13
  year: 2007
  end-page: 23
  ident: br000110
  article-title: Power provisioning for a warehouse-sized computer
  publication-title: ISCA’07: Proceedings of the 34th Annual International Symposium on Computer Architecture
– reference: Amazon elastic MapReduce.
– reference: Y. Chen, T.X. Wang, Energy efficiency of MapReduce, 2008.
– reference: L. Hu, H. Jin, X. Liao, X. Xiong, H. Liu, Magnet: a novel scheduling policy for power reduction in cluster with virtual machines, in: Cluster Computing, 2008 IEEE International Conference on, 2008, pp. 13–22.
– volume: 53
  start-page: 1045
  year: 2010
  end-page: 1051
  ident: br000160
  article-title: Energy-efficient cloud computing
  publication-title: Comput. J.
– reference: [HDFS-385] Design a pluggable interface to place replicas of blocks in HDFS.
– volume: 44
  start-page: 61
  year: 2010
  end-page: 65
  ident: br000115
  article-title: On the energy (in)efficiency of hadoop clusters
  publication-title: SIGOPS Oper. Syst. Rev.
– reference: Hadoop distributed file system.
– reference: R. Buyya, A. Beloglazov, J.H. Abawajy, Energy-efficient management of data center resources for cloud computing: a vision, architectural elements, and open challenges. CoRR abs/1006.0308.
– start-page: 86
  year: 2003
  end-page: 97
  ident: br000060
  article-title: Conserving disk energy in network servers
  publication-title: ICS’03: Proceedings of the 17th Annual International Conference on Supercomputing
– volume: 14
  start-page: 1175
  year: 2002
  end-page: 1220
  ident: br000030
  article-title: Gridsim: a toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing
  publication-title: Concurr. Comput. Pract. Exp.
– volume: 65
  start-page: 1134
  year: 2005
  end-page: 1145
  ident: br000135
  article-title: A new formalism for dynamic reconfiguration of data servers in a cluster
  publication-title: J. Parallel Distrib. Comput.
– volume: 5
  start-page: 285
  year: 2000
  end-page: 297
  ident: br000050
  article-title: Adaptive disk spin-down for mobile computers
  publication-title: Mobile Netw. Appl.
– start-page: 1
  year: 2009
  end-page: 6
  ident: br000180
  article-title: Power-aware provisioning of cloud resources for real-time services
  publication-title: MGC’09: Proceedings of the 7th International Workshop on Middleware for Grids, Clouds and e-Science
– reference: G. von Laszewski, L. Wang, A. Younge, X. He, Power-aware scheduling of virtual machines in DVFS-enabled clusters, in: Cluster Computing and Workshops, 2009. CLUSTER ’09. IEEE International Conference on, 2009, pp. 1–10.
– start-page: 92
  year: 2009
  end-page: 99
  ident: br000150
  article-title: Minimizing energy consumption for precedence-constrained applications using dynamic voltage scaling
  publication-title: CCGRID’09: Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid
– volume: vol. 5931
  start-page: 668
  year: 2009
  end-page: 673
  ident: br000175
  article-title: Power-aware management in cloud data centers
  publication-title: Cloud Computing
– start-page: 29
  year: 2009
  end-page: 38
  ident: br000165
  article-title: Greencloud: a new architecture for green data center
  publication-title: ICAC-INDST’09: Proceedings of the 6th International Conference Industry Session on Autonomic Computing and Communications Industry Session
– reference: M. Elnozahy, M. Kistler, R. Rajamony, Energy conservation policies for web servers, in: USITS’03: Proceedings of the 4th Conference on USENIX Symposium on Internet Technologies and Systems, USENIX Association, Berkeley, CA, USA, 2003.
– start-page: 153
  year: 2010
  end-page: 160
  ident: br000070
  article-title: Learning based opportunistic admission control algorithm for MapReduce as a service
  publication-title: ISEC’10: Proceedings of the 3rd India Software Engineering Conference
– reference: M. Weiser, B. Welch, A. Demers, S. Shenker, Scheduling for reduced CPU energy, in: OSDI’94: Proceedings of the 1st USENIX Conference on Operating Systems Design and Implementation, USENIX Association, Berkeley, CA, USA, 1994, p. 2.
– volume: 51
  start-page: 107
  year: 2008
  end-page: 113
  ident: br000010
  article-title: Mapreduce: simplified data processing on large clusters
  publication-title: Commun. ACM
– start-page: 1
  year: 2005
  ident: br000155
  article-title: A power-aware run-time system for high-performance computing
  publication-title: SC’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing
– year: 2004
  ident: br000130
  article-title: Dynamic cluster reconfiguration for power and performance
  publication-title: Power and Energy Management for Server Systems
– start-page: 37
  year: 2009
  end-page: 42
  ident: br000095
  article-title: Making cluster applications energy-aware
  publication-title: ACDC’09: Proceedings of the 1st Workshop on Automated Control for Datacenters and Clouds
– start-page: 209
  year: 2008
  end-page: 218
  ident: br000040
  article-title: Compiler-directed frequency and voltage scaling for a multiple clock domain microarchitecture
  publication-title: CF’08: Proceedings of the 5th Conference on Computing Frontiers
– reference: K.H. Kim, R. Buyya, J. Kim, Power aware scheduling of bag-of-tasks applications with deadline constraints on DVS-enabled clusters, in: Cluster Computing and the Grid, 2007. CCGRID 2007. Seventh IEEE International Symposium on, 2007, pp. 541–548.
– reference: Server energy and efficiency report, Tech. Rep., 1E, 2009.
– reference: .
– reference: Advanced Configuration and Power Interface (ACPI).
– reference: S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, H. Franke, DRPM: dynamic speed control for power management in server class disks, in: Computer Architecture, International Symposium on, vol. 0, 2003, p. 169.
– ident: 10.1016/j.future.2011.07.001_br000185
  doi: 10.1109/CLUSTR.2009.5289182
– ident: 10.1016/j.future.2011.07.001_br000125
– start-page: 153
  year: 2010
  ident: 10.1016/j.future.2011.07.001_br000070
  article-title: Learning based opportunistic admission control algorithm for MapReduce as a service
– ident: 10.1016/j.future.2011.07.001_br000100
– volume: 5
  start-page: 285
  year: 2000
  ident: 10.1016/j.future.2011.07.001_br000050
  article-title: Adaptive disk spin-down for mobile computers
  publication-title: Mobile Netw. Appl.
  doi: 10.1023/A:1019129116852
– ident: 10.1016/j.future.2011.07.001_br000190
– ident: 10.1016/j.future.2011.07.001_br000020
– ident: 10.1016/j.future.2011.07.001_br000005
– start-page: 209
  year: 2008
  ident: 10.1016/j.future.2011.07.001_br000040
  article-title: Compiler-directed frequency and voltage scaling for a multiple clock domain microarchitecture
– ident: 10.1016/j.future.2011.07.001_br000140
  doi: 10.1109/IPDPSW.2010.5470908
– start-page: 29
  year: 2009
  ident: 10.1016/j.future.2011.07.001_br000165
  article-title: Greencloud: a new architecture for green data center
– ident: 10.1016/j.future.2011.07.001_br000075
– start-page: 92
  year: 2009
  ident: 10.1016/j.future.2011.07.001_br000150
  article-title: Minimizing energy consumption for precedence-constrained applications using dynamic voltage scaling
– volume: vol. 5931
  start-page: 668
  year: 2009
  ident: 10.1016/j.future.2011.07.001_br000175
  article-title: Power-aware management in cloud data centers
– ident: 10.1016/j.future.2011.07.001_br000035
– volume: 25
  start-page: 599
  issue: 6
  year: 2009
  ident: 10.1016/j.future.2011.07.001_br000080
  article-title: Cloud computing and emerging it platforms: vision, hype, and reality for delivering computing as the 5th utility
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2008.12.001
– volume: 65
  start-page: 1134
  issue: 10
  year: 2005
  ident: 10.1016/j.future.2011.07.001_br000135
  article-title: A new formalism for dynamic reconfiguration of data servers in a cluster
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2005.04.018
– start-page: 86
  year: 2003
  ident: 10.1016/j.future.2011.07.001_br000060
  article-title: Conserving disk energy in network servers
– volume: 37
  start-page: 29
  issue: 5
  year: 2003
  ident: 10.1016/j.future.2011.07.001_br000090
  article-title: The google file system
  publication-title: SIGOPS Oper. Syst. Rev.
  doi: 10.1145/1165389.945450
– start-page: 1
  year: 2009
  ident: 10.1016/j.future.2011.07.001_br000180
  article-title: Power-aware provisioning of cloud resources for real-time services
– start-page: 1
  year: 2005
  ident: 10.1016/j.future.2011.07.001_br000155
  article-title: A power-aware run-time system for high-performance computing
– volume: 40
  start-page: 33
  issue: 12
  year: 2007
  ident: 10.1016/j.future.2011.07.001_br000085
  article-title: The case for energy-proportional computing
  publication-title: Computer
  doi: 10.1109/MC.2007.443
– ident: 10.1016/j.future.2011.07.001_br000145
  doi: 10.1109/CCGRID.2007.85
– ident: 10.1016/j.future.2011.07.001_br000025
– start-page: 105
  year: 2000
  ident: 10.1016/j.future.2011.07.001_br000045
  article-title: Power aware page allocation
– ident: 10.1016/j.future.2011.07.001_br000170
  doi: 10.1109/CLUSTR.2008.4663751
– volume: 53
  start-page: 1045
  issue: 7
  year: 2010
  ident: 10.1016/j.future.2011.07.001_br000160
  article-title: Energy-efficient cloud computing
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxp080
– year: 2004
  ident: 10.1016/j.future.2011.07.001_br000130
  article-title: Dynamic cluster reconfiguration for power and performance
– start-page: 37
  year: 2009
  ident: 10.1016/j.future.2011.07.001_br000095
  article-title: Making cluster applications energy-aware
– ident: 10.1016/j.future.2011.07.001_br000055
– volume: 14
  start-page: 1175
  year: 2002
  ident: 10.1016/j.future.2011.07.001_br000030
  article-title: Gridsim: a toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.710
– start-page: 13
  year: 2007
  ident: 10.1016/j.future.2011.07.001_br000110
  article-title: Power provisioning for a warehouse-sized computer
– ident: 10.1016/j.future.2011.07.001_br000120
– volume: 51
  start-page: 107
  issue: 1
  year: 2008
  ident: 10.1016/j.future.2011.07.001_br000010
  article-title: Mapreduce: simplified data processing on large clusters
  publication-title: Commun. ACM
  doi: 10.1145/1327452.1327492
– ident: 10.1016/j.future.2011.07.001_br000105
– ident: 10.1016/j.future.2011.07.001_br000015
– ident: 10.1016/j.future.2011.07.001_br000065
  doi: 10.1109/ISCA.2003.1206998
– volume: 44
  start-page: 61
  issue: 1
  year: 2010
  ident: 10.1016/j.future.2011.07.001_br000115
  article-title: On the energy (in)efficiency of hadoop clusters
  publication-title: SIGOPS Oper. Syst. Rev.
  doi: 10.1145/1740390.1740405
SSID ssj0001731
Score 2.3135536
Snippet With the recent emergence of cloud computing based services on the Internet, MapReduce and distributed file systems like HDFS have emerged as the paradigm of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119
SubjectTerms Cloud computing
Energy efficiency
MapReduce
Title Dynamic energy efficient data placement and cluster reconfiguration algorithm for MapReduce framework
URI https://dx.doi.org/10.1016/j.future.2011.07.001
Volume 28
WOSCitedRecordID wos000295947900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3ojlJR-4VUFx3NTxcQW7AsRWaFlWvUWuY2-76martinLf-HHMmM7bkURL4lLVDlxk3q-eh6Z-YaQl2OVC50zDIFxm4CG6CdyLHSiXRJGyu3AdVE4-yCGw2I0kh87nW9tLcx6Juq6uL6W8_8qahgDYWPp7F-IO34pDMBnEDocQexw_CPBv_E95nvGV_UZxxGBb_wxGbTncrBiYrmeNUiU0HNusZ2eNwEPanZ-tZiuJpcuC_FYzU-Q4dX0bJvKtW3THjlaEuzFbMJ0HVpFBJ7oaLYfq4lZTr4oX90-BGt3uYlGw_M0_sSJqvC6r-qyPXmGgXeXkquWTWXWajtYwTZO7W79jA9nwjYtuGumC9rIb8GFAJuf-SLPdo_Oih0s-g2XhQ3X627meQZ21IKPUFy88jwtgbgVuSvZRg3G5MRP-FT4UMimx3g-ukH2MgGOV5fsHbw7HL2Pmp6J0O8y_Iq2NNPlD-7e6-emz5Y5c3qX3A5-CD3w-LlHOqa-T-60PT5o2PIfEBPgRD2caIQTRTjRCCcK4qMBTvQHONEIJwpwohFONMLpIfl8dHj6-m0SWnMkGnzMVcL7Ns0qWWnGKq5y8PnBj7C50Rmv-FjBWJ9rY6XGmj4NI7yCBbJyIMDCtFLwR6RbX9XmMaEit5bL1I4lcjFKrWyWFhpfp6dMVwO-T3i7aqUOvPXYPmVWtgmKF6Vf6xLXukwxoYLtkyTOmnvelt9cL1qBlMH29DZlCRj65cwn_zzzKbmF_xEf0HtGuqtFY56Tm3q9mi4XLwLYvgNuKLH3
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+energy+efficient+data+placement+and+cluster+reconfiguration+algorithm+for+MapReduce+framework&rft.jtitle=Future+generation+computer+systems&rft.au=Maheshwari%2C+Nitesh&rft.au=Nanduri%2C+Radheshyam&rft.au=Varma%2C+Vasudeva&rft.date=2012&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.eissn=1872-7115&rft.volume=28&rft.issue=1&rft.spage=119&rft.epage=127&rft_id=info:doi/10.1016%2Fj.future.2011.07.001&rft.externalDocID=S0167739X1100135X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon