CMOS transconductance multipliers: a tutorial
Real time analog multiplication of two signals is one of the most important operations in analog signal processing. The multiplier is used not only as a computational building block but also as a programming element in systems such as filters, neural networks, and as mixers and modulators in a commu...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on circuits and systems. 2, Analog and digital signal processing Jg. 45; H. 12; S. 1550 - 1563 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
IEEE
01.12.1998
Institute of Electrical and Electronics Engineers |
| Schlagworte: | |
| ISSN: | 1057-7130 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Real time analog multiplication of two signals is one of the most important operations in analog signal processing. The multiplier is used not only as a computational building block but also as a programming element in systems such as filters, neural networks, and as mixers and modulators in a communication system. Although high performance bipolar junction transistor multipliers have been available for some time, the CMOS multiplier implementation is still a challenging subject especially for low-voltage and low-power circuit design. Despite the large number of papers proposing new CMOS multiplier structures, they can be roughly grouped into a few categories. This tutorial provides a complete survey of CMOS multipliers, presents a unified generation of multiplier architectures, and proposes the most recommended MOS multiplier structure. This tutorial could serve as a starting reference point (and metric) for comparison of new CMOS multiplier circuit configurations. An illustrative CMOS chip prototype verifying theoretical results is presented. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1057-7130 |
| DOI: | 10.1109/82.746667 |