Parallel dynamic programming
Recurrence formulations for various problems, such as finding an optimal order of matrix multiplication, finding an optimal binary search tree, and optimal triangulation of polygons, assume a similar form. A. Gibbons and W. Rytter (1988) gave a CREW PRAM algorithm to solve such dynamic programming p...
Uloženo v:
| Vydáno v: | IEEE transactions on parallel and distributed systems Ročník 5; číslo 3; s. 326 - 328 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Los Alamitos, CA
IEEE
01.03.1994
IEEE Computer Society |
| Témata: | |
| ISSN: | 1045-9219 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Recurrence formulations for various problems, such as finding an optimal order of matrix multiplication, finding an optimal binary search tree, and optimal triangulation of polygons, assume a similar form. A. Gibbons and W. Rytter (1988) gave a CREW PRAM algorithm to solve such dynamic programming problems. The algorithm uses O(n/sup 6//log n) processors and runs in O(log/sup 2/ n) time. In this article, a modified algorithm is presented that reduces the processor requirement to O(n/sup 6//log /sup 5/n) while maintaining the same time complexity of O(log/sup 2/ n).< > |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1045-9219 |
| DOI: | 10.1109/71.277784 |