Mixed integer programming with a class of nonlinear convex constraints

We study solution approaches to a class of mixed-integer nonlinear programming problems that arise from recent developments in risk-averse stochastic optimization and contain second- and p-order cone programming as special cases. We explore possible applications of some of the solution techniques th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete optimization Ročník 24; s. 66 - 86
Hlavní autoři: Vinel, Alexander, Krokhmal, Pavlo A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.05.2017
Témata:
ISSN:1572-5286, 1873-636X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study solution approaches to a class of mixed-integer nonlinear programming problems that arise from recent developments in risk-averse stochastic optimization and contain second- and p-order cone programming as special cases. We explore possible applications of some of the solution techniques that have been successfully used in mixed-integer conic programming and show how they can be generalized to the problems under consideration. Particularly, we consider a branch-and-bound method based on outer polyhedral approximations, lifted nonlinear cuts, and linear disjunctive cuts. Results of numerical experiments with discrete portfolio optimization models are presented.
ISSN:1572-5286
1873-636X
DOI:10.1016/j.disopt.2016.07.002