Mixed integer programming with a class of nonlinear convex constraints
We study solution approaches to a class of mixed-integer nonlinear programming problems that arise from recent developments in risk-averse stochastic optimization and contain second- and p-order cone programming as special cases. We explore possible applications of some of the solution techniques th...
Uloženo v:
| Vydáno v: | Discrete optimization Ročník 24; s. 66 - 86 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.05.2017
|
| Témata: | |
| ISSN: | 1572-5286, 1873-636X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study solution approaches to a class of mixed-integer nonlinear programming problems that arise from recent developments in risk-averse stochastic optimization and contain second- and p-order cone programming as special cases. We explore possible applications of some of the solution techniques that have been successfully used in mixed-integer conic programming and show how they can be generalized to the problems under consideration. Particularly, we consider a branch-and-bound method based on outer polyhedral approximations, lifted nonlinear cuts, and linear disjunctive cuts. Results of numerical experiments with discrete portfolio optimization models are presented. |
|---|---|
| ISSN: | 1572-5286 1873-636X |
| DOI: | 10.1016/j.disopt.2016.07.002 |