Toward automated algorithm configuration for distributed hybrid flow shop scheduling with multiprocessor tasks
Due to the large volume of requests and the need to speed up the provision of services, production companies are migrating from a single service center to distributed centers. To support this migration, it is necessary to make intelligence decisions that benefit from automatic design of search algor...
Uložené v:
| Vydané v: | Knowledge-based systems Ročník 264; s. 110309 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
15.03.2023
|
| Predmet: | |
| ISSN: | 0950-7051, 1872-7409 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Due to the large volume of requests and the need to speed up the provision of services, production companies are migrating from a single service center to distributed centers. To support this migration, it is necessary to make intelligence decisions that benefit from automatic design of search algorithms. Considering these, this paper addresses the distributed hybrid flow shop scheduling problem with multiprocessor tasks (DHFSP-MT) as an extension of the hybrid flow shop scheduling problem with multiprocessor tasks (HFSP-MT) to minimize the maximum completion time among distributed factories. To provide effective decision support, we apply a novel framework called conditional markov chain search (CMCS) to automate the generation of heuristics, which is presented for the first time in the distributed shop scheduling problem to the best of our knowledge. We express the HFSP-MT as a markov decision process (MDP) and solve it through a hybrid Q-learning-local search algorithm. By using the characteristics of the problem under study, we introduce two new concepts, weight and impact, which are used to develop an initial construction algorithm and two local search methods. To balance jobs between factories at runtime, we propose a load balancing method, which transfers selected jobs from certain source factories to destination factories. We compare the proposed CMCS with two state-of-the-art metaheuristic algorithms from the literature using publicly available benchmark instances. The computational results show that the proposed CMCS provides better performance than that of the existing algorithms on solving the considered DHFSP-MT.
•Distributed hybrid flow shop scheduling problem with multiprocessor tasks (DHFSP-MT) is studied.•A conditional Markov Chain Search framework (CMCS)C is developed to minimize makespan.•A load balancing method is presented to balance the jobs between factories during runtime.•A hybrid Q-learning-local search algorithm is presented.•Two local search methods and one construction algorithm are presented. |
|---|---|
| AbstractList | Due to the large volume of requests and the need to speed up the provision of services, production companies are migrating from a single service center to distributed centers. To support this migration, it is necessary to make intelligence decisions that benefit from automatic design of search algorithms. Considering these, this paper addresses the distributed hybrid flow shop scheduling problem with multiprocessor tasks (DHFSP-MT) as an extension of the hybrid flow shop scheduling problem with multiprocessor tasks (HFSP-MT) to minimize the maximum completion time among distributed factories. To provide effective decision support, we apply a novel framework called conditional markov chain search (CMCS) to automate the generation of heuristics, which is presented for the first time in the distributed shop scheduling problem to the best of our knowledge. We express the HFSP-MT as a markov decision process (MDP) and solve it through a hybrid Q-learning-local search algorithm. By using the characteristics of the problem under study, we introduce two new concepts, weight and impact, which are used to develop an initial construction algorithm and two local search methods. To balance jobs between factories at runtime, we propose a load balancing method, which transfers selected jobs from certain source factories to destination factories. We compare the proposed CMCS with two state-of-the-art metaheuristic algorithms from the literature using publicly available benchmark instances. The computational results show that the proposed CMCS provides better performance than that of the existing algorithms on solving the considered DHFSP-MT.
•Distributed hybrid flow shop scheduling problem with multiprocessor tasks (DHFSP-MT) is studied.•A conditional Markov Chain Search framework (CMCS)C is developed to minimize makespan.•A load balancing method is presented to balance the jobs between factories during runtime.•A hybrid Q-learning-local search algorithm is presented.•Two local search methods and one construction algorithm are presented. |
| ArticleNumber | 110309 |
| Author | Sun, Hongyang Gholami, Hadi |
| Author_xml | – sequence: 1 givenname: Hadi orcidid: 0000-0003-4515-9384 surname: Gholami fullname: Gholami, Hadi email: gholamihd@gmail.com – sequence: 2 givenname: Hongyang surname: Sun fullname: Sun, Hongyang email: hongyang.sun@ku.edu |
| BookMark | eNqFkL1OwzAUhS1UJNrCGzD4BRKu4zg_DEio4k-qxFJmy7Gdxm0SV7ZD1bcnJUwMMN0z3O9I51ugWW97jdAtgZgAye528b63_uTjBBIaEwIUygs0J0WeRHkK5QzNoWQQ5cDIFVp4vwOAJCHFHPUbexROYTEE24mgx9RurTOh6bC0fW22gxPB2B7X1mFlfHCmGs5_zalyRuG6tUfsG3vAXjZaDa3pt_g48rgb2mAOzkrt_cgG4ff-Gl3WovX65ucu0cfz02b1Gq3fX95Wj-tIUshCRIEWEoqcZkxLSkWiakiY0iwtU6qKmkJRAtNM6KxSNcuSlAklMk0ymhakEnSJ0qlXOuu90zU_ONMJd-IE-NkZ3_HJGT8745OzEbv_hUkTvucHJ0z7H_wwwXoc9mm0414a3UutjNMycGXN3wVfeTiQIg |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2024_101681 crossref_primary_10_1088_1742_6596_3028_1_012016 crossref_primary_10_1109_TEVC_2024_3443874 crossref_primary_10_1016_j_engappai_2023_107818 crossref_primary_10_3389_fieng_2025_1611512 crossref_primary_10_1016_j_engappai_2024_109915 crossref_primary_10_1016_j_asoc_2025_113475 crossref_primary_10_1080_0305215X_2024_2328188 crossref_primary_10_1109_ACCESS_2025_3577044 crossref_primary_10_1109_TASE_2024_3422473 crossref_primary_10_1016_j_asoc_2025_112697 crossref_primary_10_1016_j_cor_2024_106833 crossref_primary_10_3934_jimo_2025150 crossref_primary_10_1016_j_jmsy_2024_10_019 crossref_primary_10_1016_j_aeue_2023_154723 crossref_primary_10_1016_j_swevo_2024_101479 crossref_primary_10_7717_peerj_cs_2168 crossref_primary_10_1016_j_swevo_2024_101771 crossref_primary_10_1016_j_eswa_2023_121570 crossref_primary_10_1007_s12190_024_02364_1 crossref_primary_10_3390_sym15112005 crossref_primary_10_1016_j_asoc_2024_112276 crossref_primary_10_1016_j_asoc_2024_112650 crossref_primary_10_1016_j_cie_2024_109916 crossref_primary_10_1007_s42979_023_02517_2 crossref_primary_10_3233_JIFS_238627 crossref_primary_10_1016_j_eswa_2023_121667 crossref_primary_10_1016_j_jpdc_2025_105069 crossref_primary_10_1016_j_eswa_2023_122434 crossref_primary_10_1016_j_cie_2025_110983 crossref_primary_10_1016_j_cor_2025_107079 crossref_primary_10_3390_pr13092930 crossref_primary_10_1109_ACCESS_2023_3268214 |
| Cites_doi | 10.1016/j.cie.2020.107082 10.1016/j.knosys.2020.105527 10.1016/j.eswa.2021.115453 10.1080/00207543.2020.1780333 10.1080/00207543.2020.1753897 10.1016/j.cie.2022.108126 10.1109/TCYB.2019.2939219 10.1016/j.eswa.2021.115493 10.1016/j.asoc.2010.03.008 10.1016/j.future.2017.02.005 10.1016/j.knosys.2022.108471 10.1016/S0377-2217(02)00644-6 10.1016/j.cor.2022.105733 10.1016/j.knosys.2020.105536 10.1016/j.eswa.2017.09.032 10.3390/machines10030210 10.1016/j.ejor.2017.01.001 10.1002/cpe.7148 10.1016/j.eswa.2019.113147 10.1016/j.engappai.2004.08.018 10.1007/s10951-005-1640-y 10.1016/j.jpdc.2013.12.003 10.1080/00207543.2020.1837982 10.1080/00207540701294627 10.1016/j.asoc.2022.109138 10.1016/j.eswa.2022.117984 10.1007/s00170-010-2868-z 10.1016/j.engappai.2021.104375 10.1016/j.cor.2021.105482 10.1080/0305215X.2019.1674295 10.1016/j.asoc.2020.106946 10.1057/palgrave.jors.2602625 10.1016/j.swevo.2018.10.012 10.1109/TCYB.2021.3086181 10.23919/CSMS.2022.0002 10.1504/EJIE.2012.045605 10.1016/j.knosys.2021.106959 10.1007/s00170-013-4759-6 10.1109/ACCESS.2019.2917273 10.1016/j.engappai.2020.103540 10.1109/ACCESS.2018.2873401 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.knosys.2023.110309 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| ExternalDocumentID | 10_1016_j_knosys_2023_110309 S095070512300059X |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET UHS WUQ ~HD |
| ID | FETCH-LOGICAL-c306t-3038c087365ec33a2df025de54943d8f308905e5ae6bdf56245ada6e163481ba3 |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000968641400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Tue Nov 18 20:49:12 EST 2025 Sat Nov 29 07:09:21 EST 2025 Fri Feb 23 02:38:41 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Conditional markov chain search Multiprocessor tasks Automated algorithm design Q-learning algorithm Distributed hybrid flow shop scheduling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-3038c087365ec33a2df025de54943d8f308905e5ae6bdf56245ada6e163481ba3 |
| ORCID | 0000-0003-4515-9384 |
| ParticipantIDs | crossref_primary_10_1016_j_knosys_2023_110309 crossref_citationtrail_10_1016_j_knosys_2023_110309 elsevier_sciencedirect_doi_10_1016_j_knosys_2023_110309 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-15 |
| PublicationDateYYYYMMDD | 2023-03-15 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Sutton, Barto (b59) 2018 Oğuz (b12) 2004; 152 Rani, Zoraida (b19) 2016; 8 Zhao (b29) 2022; 243 Shao, Shao, Pi (b24) 2022; 125 Sun, Stolf, Pierson (b2) 2017; 71 Shao, Shao, Pi (b33) 2021; 136 Zhao (b10) 2022 Xu (b18) 2013; 67 Oĝuz, Ercan (b4) 2005; 8 Zhao (b27) 2022 Kahraman (b15) 2010; 10 Liu (b61) 2022 Wang, Usher (b60) 2005; 18 Wang, Chou, Wu (b16) 2011; 53 Cai, Zhou, Lei (b35) 2020; 90 Ying, Lin (b3) 2018; 92 Carnein (b46) 2020 Tseng, Liao (b13) 2008; 46 Sun, Cao, Hsu (b48) 2011 Gholami, Zakerian (b1) 2020 Khare, Agrawal (b34) 2021; 59 Gholami, Rezvan (b54) 2022; 34 Shao, Shao, Pi (b23) 2020; 194 Karabulut (b28) 2022; 142 Gainaru (b55) 2019 Li (b41) 2018; 6 Rezvan, Gholami, Zakerian (b50) 2021; 6 McClymont, Keedwell (b44) 2011 Lifka (b56) 1995 López-Ibáñez (b45) 2016; 3 Min (b5) 2021 Yan, Wu, Wang (b7) 2022; 10 Perotin, Sun, Raghavan (b53) 2021 Lei, Wang (b38) 2020; 52 Zhao (b9) 2021; 153 Wang, Wang (b6) 2021 Sewak (b58) 2019 Shao, Pi, Shao (b22) 2020; 145 Shao, Shao, Pi (b31) 2021; 221 Cai, Lei, Li (b40) 2021; 59 Luo (b42) 2022; 207 Karapetyan, Punnen, Parkes (b43) 2017; 260 Sun (b52) 2018 Karapetyan, Goldengorin (b47) 2018 Ying (b17) 2012; 6 Kurdi (b20) 2019; 44 Li (b32) 2021; 59 Li, Li, Gao (b39) 2021; 100 Zhao, Di, Wang (b57) 2022 Ying (b14) 2009; 60 Meng, Qu (b11) 2021; 185 Shao, Shao, Pi (b36) 2021; 183 Hao (b37) 2019; 7 Chen (b26) 2021; 104 Xi, Lei (b8) 2022; 2 Zheng, Wang, Wang (b25) 2020; 194 Gholami, Rezvan (b21) 2020; 7 Sun, Hsu, Cao (b49) 2014; 74 Wang, Wang (b30) 2022; 168 Zhou (b51) 2019; 51 Zhou (10.1016/j.knosys.2023.110309_b51) 2019; 51 Zhao (10.1016/j.knosys.2023.110309_b10) 2022 Luo (10.1016/j.knosys.2023.110309_b42) 2022; 207 Rezvan (10.1016/j.knosys.2023.110309_b50) 2021; 6 Shao (10.1016/j.knosys.2023.110309_b31) 2021; 221 Hao (10.1016/j.knosys.2023.110309_b37) 2019; 7 Rani (10.1016/j.knosys.2023.110309_b19) 2016; 8 Xi (10.1016/j.knosys.2023.110309_b8) 2022; 2 Sun (10.1016/j.knosys.2023.110309_b2) 2017; 71 Wang (10.1016/j.knosys.2023.110309_b60) 2005; 18 McClymont (10.1016/j.knosys.2023.110309_b44) 2011 Sun (10.1016/j.knosys.2023.110309_b48) 2011 Zhao (10.1016/j.knosys.2023.110309_b57) 2022 Shao (10.1016/j.knosys.2023.110309_b23) 2020; 194 Zhao (10.1016/j.knosys.2023.110309_b27) 2022 Li (10.1016/j.knosys.2023.110309_b32) 2021; 59 Kahraman (10.1016/j.knosys.2023.110309_b15) 2010; 10 Lifka (10.1016/j.knosys.2023.110309_b56) 1995 Zheng (10.1016/j.knosys.2023.110309_b25) 2020; 194 Zhao (10.1016/j.knosys.2023.110309_b29) 2022; 243 Karapetyan (10.1016/j.knosys.2023.110309_b47) 2018 Gholami (10.1016/j.knosys.2023.110309_b54) 2022; 34 Sewak (10.1016/j.knosys.2023.110309_b58) 2019 Wang (10.1016/j.knosys.2023.110309_b16) 2011; 53 Tseng (10.1016/j.knosys.2023.110309_b13) 2008; 46 Shao (10.1016/j.knosys.2023.110309_b36) 2021; 183 Zhao (10.1016/j.knosys.2023.110309_b9) 2021; 153 Li (10.1016/j.knosys.2023.110309_b39) 2021; 100 Shao (10.1016/j.knosys.2023.110309_b24) 2022; 125 Cai (10.1016/j.knosys.2023.110309_b40) 2021; 59 Ying (10.1016/j.knosys.2023.110309_b3) 2018; 92 Li (10.1016/j.knosys.2023.110309_b41) 2018; 6 Shao (10.1016/j.knosys.2023.110309_b33) 2021; 136 Sutton (10.1016/j.knosys.2023.110309_b59) 2018 Xu (10.1016/j.knosys.2023.110309_b18) 2013; 67 López-Ibáñez (10.1016/j.knosys.2023.110309_b45) 2016; 3 Gainaru (10.1016/j.knosys.2023.110309_b55) 2019 Wang (10.1016/j.knosys.2023.110309_b30) 2022; 168 Khare (10.1016/j.knosys.2023.110309_b34) 2021; 59 Shao (10.1016/j.knosys.2023.110309_b22) 2020; 145 Wang (10.1016/j.knosys.2023.110309_b6) 2021 Kurdi (10.1016/j.knosys.2023.110309_b20) 2019; 44 Gholami (10.1016/j.knosys.2023.110309_b21) 2020; 7 Carnein (10.1016/j.knosys.2023.110309_b46) 2020 Liu (10.1016/j.knosys.2023.110309_b61) 2022 Gholami (10.1016/j.knosys.2023.110309_b1) 2020 Min (10.1016/j.knosys.2023.110309_b5) 2021 Cai (10.1016/j.knosys.2023.110309_b35) 2020; 90 Ying (10.1016/j.knosys.2023.110309_b14) 2009; 60 Oĝuz (10.1016/j.knosys.2023.110309_b4) 2005; 8 Meng (10.1016/j.knosys.2023.110309_b11) 2021; 185 Karapetyan (10.1016/j.knosys.2023.110309_b43) 2017; 260 Yan (10.1016/j.knosys.2023.110309_b7) 2022; 10 Lei (10.1016/j.knosys.2023.110309_b38) 2020; 52 Chen (10.1016/j.knosys.2023.110309_b26) 2021; 104 Oğuz (10.1016/j.knosys.2023.110309_b12) 2004; 152 Sun (10.1016/j.knosys.2023.110309_b52) 2018 Ying (10.1016/j.knosys.2023.110309_b17) 2012; 6 Sun (10.1016/j.knosys.2023.110309_b49) 2014; 74 Perotin (10.1016/j.knosys.2023.110309_b53) 2021 Karabulut (10.1016/j.knosys.2023.110309_b28) 2022; 142 |
| References_xml | – volume: 194 year: 2020 ident: b25 article-title: A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop publication-title: Knowl.-Based Syst. – volume: 59 start-page: 7266 year: 2021 end-page: 7282 ident: b34 article-title: Effective heuristics and metaheuristics to minimise total tardiness for the distributed permutation flowshop scheduling problem publication-title: Int. J. Prod. Res. – volume: 100 year: 2021 ident: b39 article-title: A discrete artificial bee colony algorithm for the distributed heterogeneous no-wait flowshop scheduling problem publication-title: Appl. Soft Comput. – volume: 44 start-page: 987 year: 2019 end-page: 1002 ident: b20 article-title: Ant colony system with a novel non-DaemonActions procedure for multiprocessor task scheduling in multistage hybrid flow shop publication-title: Swarm Evol. Comput. – volume: 46 start-page: 4655 year: 2008 end-page: 4670 ident: b13 article-title: A particle swarm optimization algorithm for hybrid flow-shop scheduling with multiprocessor tasks publication-title: Int. J. Prod. Res. – volume: 104 year: 2021 ident: b26 article-title: A population-based iterated greedy algorithm to minimize total flowtime for the distributed blocking flowshop scheduling problem publication-title: Eng. Appl. Artif. Intell. – volume: 90 year: 2020 ident: b35 article-title: Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with multiprocessor tasks publication-title: Eng. Appl. Artif. Intell. – year: 2018 ident: b59 article-title: Reinforcement Learning: An Introduction – volume: 60 start-page: 810 year: 2009 end-page: 817 ident: b14 article-title: An iterated greedy heuristic for multistage hybrid flowshop scheduling problems with multiprocessor tasks publication-title: J. Oper. Res. Soc. – volume: 10 start-page: 1293 year: 2010 end-page: 1300 ident: b15 article-title: Multiprocessor task scheduling in multistage hybrid flow-shops: A parallel greedy algorithm approach publication-title: Appl. Soft Comput. – volume: 7 start-page: 66879 year: 2019 end-page: 66894 ident: b37 article-title: Solving distributed hybrid flowshop scheduling problems by a hybrid brain storm optimization algorithm publication-title: Ieee Access – volume: 2 start-page: 113 year: 2022 end-page: 129 ident: b8 article-title: Q-learning-based teaching-learning optimization for distributed two-stage hybrid flow shop scheduling with fuzzy processing time publication-title: Complex Syst. Model. Simul. – volume: 142 year: 2022 ident: b28 article-title: An evolution strategy approach for the distributed permutation flowshop scheduling problem with sequence-dependent setup times publication-title: Comput. Oper. Res. – volume: 3 start-page: 43 year: 2016 end-page: 58 ident: b45 article-title: The irace package: Iterated racing for automatic algorithm configuration publication-title: Oper. Res. Perspect. – start-page: 51 year: 2019 end-page: 63 ident: b58 article-title: Temporal difference learning, SARSA, and Q-learning publication-title: Deep Reinforcement Learning – volume: 74 start-page: 2180 year: 2014 end-page: 2192 ident: b49 article-title: Competitive online adaptive scheduling for sets of parallel jobs with fairness and efficiency publication-title: J. Parallel Distrib. Comput. – volume: 260 start-page: 494 year: 2017 end-page: 506 ident: b43 article-title: Markov chain methods for the bipartite boolean quadratic programming problem publication-title: European J. Oper. Res. – volume: 67 start-page: 121 year: 2013 end-page: 135 ident: b18 article-title: An effective immune algorithm based on novel dispatching rules for the flexible flow-shop scheduling problem with multiprocessor tasks publication-title: Int. J. Adv. Manuf. Technol. – volume: 152 start-page: 115 year: 2004 end-page: 131 ident: b12 article-title: Hybrid flow-shop scheduling problems with multiprocessor task systems publication-title: European J. Oper. Res. – year: 2021 ident: b5 article-title: A Self-Adaptive Load Balancing Approach for Software-Defined Networks in IoT publication-title: 2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems – year: 2019 ident: b55 article-title: Speculative scheduling for stochastic HPC applications publication-title: Proceedings of the 48th International Conference on Parallel Processing – volume: 34 year: 2022 ident: b54 article-title: A cooperative multi-agent offline learning algorithm to scheduling IoT workflows in the cloud computing environment publication-title: Concurr. Comput.: Pract. Exper. – volume: 18 start-page: 73 year: 2005 end-page: 82 ident: b60 article-title: Application of reinforcement learning for agent-based production scheduling publication-title: Eng. Appl. Artif. Intell. – volume: 7 start-page: 127 year: 2020 end-page: 145 ident: b21 article-title: A memetic algorithm for multistage hybrid flow shop scheduling problem with multiprocessor tasks to minimize makespan publication-title: Int. J. Ind. Eng. Manag. Sci. – volume: 207 year: 2022 ident: b42 article-title: A distributed flexible job shop scheduling problem considering worker arrangement using an improved memetic algorithm publication-title: Expert Syst. Appl. – volume: 221 year: 2021 ident: b31 article-title: Effective constructive heuristic and iterated greedy algorithm for distributed mixed blocking permutation flow-shop scheduling problem publication-title: Knowl.-Based Syst. – volume: 243 year: 2022 ident: b29 article-title: An effective water wave optimization algorithm with problem-specific knowledge for the distributed assembly blocking flow-shop scheduling problem publication-title: Knowl.-Based Syst. – start-page: 123 year: 2018 end-page: 147 ident: b47 article-title: Conditional Markov chain search for the simple plant location problem improves upper bounds on twelve Körkel–Ghosh instances publication-title: Optimization Problems in Graph Theory – volume: 6 start-page: 58883 year: 2018 end-page: 58897 ident: b41 article-title: A hybrid Pareto-based Tabu search for the distributed flexible job shop scheduling problem with E/T criteria publication-title: IEEE Access – volume: 6 start-page: 199 year: 2012 end-page: 215 ident: b17 article-title: Minimising makespan for multistage hybrid flowshop scheduling problems with multiprocessor tasks by a hybrid immune algorithm publication-title: Eur. J. Ind. Eng. – volume: 59 start-page: 5404 year: 2021 end-page: 5421 ident: b40 article-title: A shuffled frog-leaping algorithm with memeplex quality for bi-objective distributed scheduling in hybrid flow shop publication-title: Int. J. Prod. Res. – year: 2022 ident: b61 article-title: A Graph Neural Networks-based Deep Q-Learning Approach for Job Shop Scheduling Problems in Traffic Management publication-title: Inf. Sci. – volume: 6 start-page: 115 year: 2021 end-page: 142 ident: b50 article-title: A new algorithm for solving the parallel machine scheduling problem to maximize benefit and the number of jobs processed publication-title: J. Qual. Eng. Prod. Optim. – year: 2022 ident: b57 article-title: A hyperheuristic with Q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem publication-title: IEEE Trans. Cybern. – volume: 92 start-page: 132 year: 2018 end-page: 141 ident: b3 article-title: Minimizing makespan for the distributed hybrid flowshop scheduling problem with multiprocessor tasks publication-title: Expert Syst. Appl. – volume: 185 year: 2021 ident: b11 article-title: Automated design of search algorithms: Learning on algorithmic components publication-title: Expert Syst. Appl. – volume: 153 year: 2021 ident: b9 article-title: A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem publication-title: Comput. Ind. Eng. – year: 2020 ident: b1 article-title: A list-based heuristic algorithm for static task scheduling in heterogeneous distributed computing systems publication-title: 2020 6th International Conference on Web Research – volume: 194 year: 2020 ident: b23 article-title: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem publication-title: Knowl.-Based Syst. – volume: 136 year: 2021 ident: b33 article-title: Effective constructive heuristics for distributed no-wait flexible flow shop scheduling problem publication-title: Comput. Oper. Res. – volume: 145 year: 2020 ident: b22 article-title: Hybrid enhanced discrete fruit fly optimization algorithm for scheduling blocking flow-shop in distributed environment publication-title: Expert Syst. Appl. – volume: 8 start-page: 323 year: 2005 end-page: 351 ident: b4 article-title: A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks publication-title: J. Sched. – year: 2021 ident: b53 article-title: Multi-resource list scheduling of moldable parallel jobs under precedence constraints publication-title: 50th International Conference on Parallel Processing – volume: 125 year: 2022 ident: b24 article-title: Multi-local search-based general variable neighborhood search for distributed flow shop scheduling in heterogeneous multi-factories publication-title: Appl. Soft Comput. – year: 2018 ident: b52 article-title: Scheduling parallel tasks under multiple resources: List scheduling vs. pack scheduling publication-title: 2018 IEEE International Parallel and Distributed Processing Symposium – year: 2022 ident: b27 article-title: A Population-Based Iterated Greedy Algorithm for Distributed Assembly No-Wait Flow-Shop Scheduling Problem publication-title: IEEE Trans. Ind. Inform. – year: 2020 ident: b46 article-title: Confstream: Automated algorithm selection and configuration of stream clustering algorithms publication-title: International Conference on Learning and Intelligent Optimization – volume: 8 start-page: 377 year: 2016 end-page: 391 ident: b19 article-title: Multistage multiprocessor task scheduling in hybrid flow shop problems using discrete firefly algorithm publication-title: Int. J. Adv. Intell. Paradigms – volume: 71 start-page: 157 year: 2017 end-page: 170 ident: b2 article-title: Spatio-temporal thermal-aware scheduling for homogeneous high-performance computing datacenters publication-title: Future Gener. Comput. Syst. – volume: 53 start-page: 761 year: 2011 end-page: 776 ident: b16 article-title: A simulated annealing for hybrid flow shop scheduling with multiprocessor tasks to minimize makespan publication-title: Int. J. Adv. Manuf. Technol. – year: 2021 ident: b6 article-title: A cooperative memetic algorithm with learning-based agent for energy-aware distributed hybrid flow-shop scheduling publication-title: IEEE Trans. Evol. Comput. – volume: 183 year: 2021 ident: b36 article-title: Multi-objective evolutionary algorithm based on multiple neighborhoods local search for multi-objective distributed hybrid flow shop scheduling problem publication-title: Expert Syst. Appl. – volume: 52 start-page: 1461 year: 2020 end-page: 1474 ident: b38 article-title: Solving distributed two-stage hybrid flowshop scheduling using a shuffled frog-leaping algorithm with memeplex grouping publication-title: Eng. Optim. – year: 1995 ident: b56 article-title: The anl/ibm sp scheduling system publication-title: Workshop on Job Scheduling Strategies for Parallel Processing – volume: 168 year: 2022 ident: b30 article-title: A cooperative memetic algorithm with feedback for the energy-aware distributed flow-shops with flexible assembly scheduling publication-title: Comput. Ind. Eng. – year: 2011 ident: b44 article-title: Markov chain hyper-heuristic (MCHH) an online selective hyper-heuristic for multi-objective continuous problems publication-title: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation – volume: 51 start-page: 1430 year: 2019 end-page: 1442 ident: b51 article-title: A self-adaptive differential evolution algorithm for scheduling a single batch-processing machine with arbitrary job sizes and release times publication-title: IEEE Trans. Cybern. – volume: 10 start-page: 210 year: 2022 ident: b7 article-title: Deep reinforcement learning for distributed flow shop scheduling with flexible maintenance publication-title: Machines – start-page: 1 year: 2022 end-page: 19 ident: b10 article-title: A reinforcement learning-driven brain storm optimisation algorithm for multi-objective energy-efficient distributed assembly no-wait flow shop scheduling problem publication-title: Int. J. Prod. Res. – volume: 59 start-page: 3880 year: 2021 end-page: 3899 ident: b32 article-title: A discrete artificial bee colony algorithm for distributed hybrid flowshop scheduling problem with sequence-dependent setup times publication-title: Int. J. Prod. Res. – year: 2011 ident: b48 article-title: Fair and efficient online adaptive scheduling for multiple sets of parallel applications publication-title: 2011 IEEE 17th International Conference on Parallel and Distributed Systems – volume: 153 year: 2021 ident: 10.1016/j.knosys.2023.110309_b9 article-title: A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.107082 – volume: 194 year: 2020 ident: 10.1016/j.knosys.2023.110309_b23 article-title: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105527 – volume: 183 year: 2021 ident: 10.1016/j.knosys.2023.110309_b36 article-title: Multi-objective evolutionary algorithm based on multiple neighborhoods local search for multi-objective distributed hybrid flow shop scheduling problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115453 – year: 2022 ident: 10.1016/j.knosys.2023.110309_b27 article-title: A Population-Based Iterated Greedy Algorithm for Distributed Assembly No-Wait Flow-Shop Scheduling Problem publication-title: IEEE Trans. Ind. Inform. – start-page: 51 year: 2019 ident: 10.1016/j.knosys.2023.110309_b58 article-title: Temporal difference learning, SARSA, and Q-learning – volume: 59 start-page: 5404 issue: 18 year: 2021 ident: 10.1016/j.knosys.2023.110309_b40 article-title: A shuffled frog-leaping algorithm with memeplex quality for bi-objective distributed scheduling in hybrid flow shop publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2020.1780333 – volume: 6 start-page: 115 issue: 2 year: 2021 ident: 10.1016/j.knosys.2023.110309_b50 article-title: A new algorithm for solving the parallel machine scheduling problem to maximize benefit and the number of jobs processed publication-title: J. Qual. Eng. Prod. Optim. – volume: 59 start-page: 3880 issue: 13 year: 2021 ident: 10.1016/j.knosys.2023.110309_b32 article-title: A discrete artificial bee colony algorithm for distributed hybrid flowshop scheduling problem with sequence-dependent setup times publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2020.1753897 – volume: 168 year: 2022 ident: 10.1016/j.knosys.2023.110309_b30 article-title: A cooperative memetic algorithm with feedback for the energy-aware distributed flow-shops with flexible assembly scheduling publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2022.108126 – volume: 51 start-page: 1430 issue: 3 year: 2019 ident: 10.1016/j.knosys.2023.110309_b51 article-title: A self-adaptive differential evolution algorithm for scheduling a single batch-processing machine with arbitrary job sizes and release times publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2939219 – year: 2020 ident: 10.1016/j.knosys.2023.110309_b1 article-title: A list-based heuristic algorithm for static task scheduling in heterogeneous distributed computing systems – volume: 185 year: 2021 ident: 10.1016/j.knosys.2023.110309_b11 article-title: Automated design of search algorithms: Learning on algorithmic components publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115493 – volume: 10 start-page: 1293 issue: 4 year: 2010 ident: 10.1016/j.knosys.2023.110309_b15 article-title: Multiprocessor task scheduling in multistage hybrid flow-shops: A parallel greedy algorithm approach publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.03.008 – volume: 71 start-page: 157 year: 2017 ident: 10.1016/j.knosys.2023.110309_b2 article-title: Spatio-temporal thermal-aware scheduling for homogeneous high-performance computing datacenters publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.02.005 – volume: 243 year: 2022 ident: 10.1016/j.knosys.2023.110309_b29 article-title: An effective water wave optimization algorithm with problem-specific knowledge for the distributed assembly blocking flow-shop scheduling problem publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108471 – volume: 152 start-page: 115 issue: 1 year: 2004 ident: 10.1016/j.knosys.2023.110309_b12 article-title: Hybrid flow-shop scheduling problems with multiprocessor task systems publication-title: European J. Oper. Res. doi: 10.1016/S0377-2217(02)00644-6 – volume: 142 year: 2022 ident: 10.1016/j.knosys.2023.110309_b28 article-title: An evolution strategy approach for the distributed permutation flowshop scheduling problem with sequence-dependent setup times publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2022.105733 – volume: 194 year: 2020 ident: 10.1016/j.knosys.2023.110309_b25 article-title: A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105536 – volume: 92 start-page: 132 year: 2018 ident: 10.1016/j.knosys.2023.110309_b3 article-title: Minimizing makespan for the distributed hybrid flowshop scheduling problem with multiprocessor tasks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.09.032 – volume: 10 start-page: 210 issue: 3 year: 2022 ident: 10.1016/j.knosys.2023.110309_b7 article-title: Deep reinforcement learning for distributed flow shop scheduling with flexible maintenance publication-title: Machines doi: 10.3390/machines10030210 – volume: 8 start-page: 377 issue: 4 year: 2016 ident: 10.1016/j.knosys.2023.110309_b19 article-title: Multistage multiprocessor task scheduling in hybrid flow shop problems using discrete firefly algorithm publication-title: Int. J. Adv. Intell. Paradigms – year: 2011 ident: 10.1016/j.knosys.2023.110309_b44 article-title: Markov chain hyper-heuristic (MCHH) an online selective hyper-heuristic for multi-objective continuous problems – volume: 260 start-page: 494 issue: 2 year: 2017 ident: 10.1016/j.knosys.2023.110309_b43 article-title: Markov chain methods for the bipartite boolean quadratic programming problem publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2017.01.001 – volume: 34 issue: 22 year: 2022 ident: 10.1016/j.knosys.2023.110309_b54 article-title: A cooperative multi-agent offline learning algorithm to scheduling IoT workflows in the cloud computing environment publication-title: Concurr. Comput.: Pract. Exper. doi: 10.1002/cpe.7148 – volume: 145 year: 2020 ident: 10.1016/j.knosys.2023.110309_b22 article-title: Hybrid enhanced discrete fruit fly optimization algorithm for scheduling blocking flow-shop in distributed environment publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.113147 – volume: 18 start-page: 73 issue: 1 year: 2005 ident: 10.1016/j.knosys.2023.110309_b60 article-title: Application of reinforcement learning for agent-based production scheduling publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2004.08.018 – year: 1995 ident: 10.1016/j.knosys.2023.110309_b56 article-title: The anl/ibm sp scheduling system – year: 2018 ident: 10.1016/j.knosys.2023.110309_b59 – year: 2011 ident: 10.1016/j.knosys.2023.110309_b48 article-title: Fair and efficient online adaptive scheduling for multiple sets of parallel applications – volume: 8 start-page: 323 issue: 4 year: 2005 ident: 10.1016/j.knosys.2023.110309_b4 article-title: A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks publication-title: J. Sched. doi: 10.1007/s10951-005-1640-y – year: 2021 ident: 10.1016/j.knosys.2023.110309_b5 article-title: A Self-Adaptive Load Balancing Approach for Software-Defined Networks in IoT – year: 2020 ident: 10.1016/j.knosys.2023.110309_b46 article-title: Confstream: Automated algorithm selection and configuration of stream clustering algorithms – volume: 74 start-page: 2180 issue: 3 year: 2014 ident: 10.1016/j.knosys.2023.110309_b49 article-title: Competitive online adaptive scheduling for sets of parallel jobs with fairness and efficiency publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2013.12.003 – volume: 59 start-page: 7266 issue: 23 year: 2021 ident: 10.1016/j.knosys.2023.110309_b34 article-title: Effective heuristics and metaheuristics to minimise total tardiness for the distributed permutation flowshop scheduling problem publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2020.1837982 – volume: 46 start-page: 4655 issue: 17 year: 2008 ident: 10.1016/j.knosys.2023.110309_b13 article-title: A particle swarm optimization algorithm for hybrid flow-shop scheduling with multiprocessor tasks publication-title: Int. J. Prod. Res. doi: 10.1080/00207540701294627 – year: 2018 ident: 10.1016/j.knosys.2023.110309_b52 article-title: Scheduling parallel tasks under multiple resources: List scheduling vs. pack scheduling – year: 2019 ident: 10.1016/j.knosys.2023.110309_b55 article-title: Speculative scheduling for stochastic HPC applications – start-page: 123 year: 2018 ident: 10.1016/j.knosys.2023.110309_b47 article-title: Conditional Markov chain search for the simple plant location problem improves upper bounds on twelve Körkel–Ghosh instances – volume: 125 year: 2022 ident: 10.1016/j.knosys.2023.110309_b24 article-title: Multi-local search-based general variable neighborhood search for distributed flow shop scheduling in heterogeneous multi-factories publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109138 – volume: 207 year: 2022 ident: 10.1016/j.knosys.2023.110309_b42 article-title: A distributed flexible job shop scheduling problem considering worker arrangement using an improved memetic algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117984 – volume: 53 start-page: 761 issue: 5 year: 2011 ident: 10.1016/j.knosys.2023.110309_b16 article-title: A simulated annealing for hybrid flow shop scheduling with multiprocessor tasks to minimize makespan publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-010-2868-z – volume: 104 year: 2021 ident: 10.1016/j.knosys.2023.110309_b26 article-title: A population-based iterated greedy algorithm to minimize total flowtime for the distributed blocking flowshop scheduling problem publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104375 – year: 2021 ident: 10.1016/j.knosys.2023.110309_b6 article-title: A cooperative memetic algorithm with learning-based agent for energy-aware distributed hybrid flow-shop scheduling publication-title: IEEE Trans. Evol. Comput. – start-page: 1 year: 2022 ident: 10.1016/j.knosys.2023.110309_b10 article-title: A reinforcement learning-driven brain storm optimisation algorithm for multi-objective energy-efficient distributed assembly no-wait flow shop scheduling problem publication-title: Int. J. Prod. Res. – volume: 136 year: 2021 ident: 10.1016/j.knosys.2023.110309_b33 article-title: Effective constructive heuristics for distributed no-wait flexible flow shop scheduling problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2021.105482 – volume: 52 start-page: 1461 issue: 9 year: 2020 ident: 10.1016/j.knosys.2023.110309_b38 article-title: Solving distributed two-stage hybrid flowshop scheduling using a shuffled frog-leaping algorithm with memeplex grouping publication-title: Eng. Optim. doi: 10.1080/0305215X.2019.1674295 – volume: 3 start-page: 43 year: 2016 ident: 10.1016/j.knosys.2023.110309_b45 article-title: The irace package: Iterated racing for automatic algorithm configuration publication-title: Oper. Res. Perspect. – volume: 100 year: 2021 ident: 10.1016/j.knosys.2023.110309_b39 article-title: A discrete artificial bee colony algorithm for the distributed heterogeneous no-wait flowshop scheduling problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106946 – volume: 60 start-page: 810 issue: 6 year: 2009 ident: 10.1016/j.knosys.2023.110309_b14 article-title: An iterated greedy heuristic for multistage hybrid flowshop scheduling problems with multiprocessor tasks publication-title: J. Oper. Res. Soc. doi: 10.1057/palgrave.jors.2602625 – volume: 44 start-page: 987 year: 2019 ident: 10.1016/j.knosys.2023.110309_b20 article-title: Ant colony system with a novel non-DaemonActions procedure for multiprocessor task scheduling in multistage hybrid flow shop publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.10.012 – year: 2022 ident: 10.1016/j.knosys.2023.110309_b57 article-title: A hyperheuristic with Q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3086181 – volume: 7 start-page: 127 issue: 1 year: 2020 ident: 10.1016/j.knosys.2023.110309_b21 article-title: A memetic algorithm for multistage hybrid flow shop scheduling problem with multiprocessor tasks to minimize makespan publication-title: Int. J. Ind. Eng. Manag. Sci. – volume: 2 start-page: 113 issue: 2 year: 2022 ident: 10.1016/j.knosys.2023.110309_b8 article-title: Q-learning-based teaching-learning optimization for distributed two-stage hybrid flow shop scheduling with fuzzy processing time publication-title: Complex Syst. Model. Simul. doi: 10.23919/CSMS.2022.0002 – year: 2021 ident: 10.1016/j.knosys.2023.110309_b53 article-title: Multi-resource list scheduling of moldable parallel jobs under precedence constraints – year: 2022 ident: 10.1016/j.knosys.2023.110309_b61 article-title: A Graph Neural Networks-based Deep Q-Learning Approach for Job Shop Scheduling Problems in Traffic Management publication-title: Inf. Sci. – volume: 6 start-page: 199 issue: 2 year: 2012 ident: 10.1016/j.knosys.2023.110309_b17 article-title: Minimising makespan for multistage hybrid flowshop scheduling problems with multiprocessor tasks by a hybrid immune algorithm publication-title: Eur. J. Ind. Eng. doi: 10.1504/EJIE.2012.045605 – volume: 221 year: 2021 ident: 10.1016/j.knosys.2023.110309_b31 article-title: Effective constructive heuristic and iterated greedy algorithm for distributed mixed blocking permutation flow-shop scheduling problem publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.106959 – volume: 67 start-page: 121 issue: 1 year: 2013 ident: 10.1016/j.knosys.2023.110309_b18 article-title: An effective immune algorithm based on novel dispatching rules for the flexible flow-shop scheduling problem with multiprocessor tasks publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-013-4759-6 – volume: 7 start-page: 66879 year: 2019 ident: 10.1016/j.knosys.2023.110309_b37 article-title: Solving distributed hybrid flowshop scheduling problems by a hybrid brain storm optimization algorithm publication-title: Ieee Access doi: 10.1109/ACCESS.2019.2917273 – volume: 90 year: 2020 ident: 10.1016/j.knosys.2023.110309_b35 article-title: Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with multiprocessor tasks publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103540 – volume: 6 start-page: 58883 year: 2018 ident: 10.1016/j.knosys.2023.110309_b41 article-title: A hybrid Pareto-based Tabu search for the distributed flexible job shop scheduling problem with E/T criteria publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2873401 |
| SSID | ssj0002218 |
| Score | 2.51461 |
| Snippet | Due to the large volume of requests and the need to speed up the provision of services, production companies are migrating from a single service center to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110309 |
| SubjectTerms | Automated algorithm design Conditional markov chain search Distributed hybrid flow shop scheduling Multiprocessor tasks Q-learning algorithm |
| Title | Toward automated algorithm configuration for distributed hybrid flow shop scheduling with multiprocessor tasks |
| URI | https://dx.doi.org/10.1016/j.knosys.2023.110309 |
| Volume | 264 |
| WOSCitedRecordID | wos000968641400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbapEOXvoumj4BDN4MGLUoiOQZF2jyKoEMKeBNokbKdOJJhyW3y73sUKcpug7QZugiGQFGE7_Pdd-d7IPQRbIJMdExJpEYxAUYsiOImJVrJURGJdGJUO7XkKz87E-Ox_OarS-p2nAAvS3F9LZf_VdRwD4RtS2fvIe6wKdyAzyB0uILY4fpvgm8TYQdq3VTARoFPqsW0Ws2b2ZVNMS_m0_WqTzDUtm-uHXkF62Y3tnprUCyqn4N6Vi0H4PiCIVqEcK1LPnSVBTY5UdWX9Sa5Pe3ic8TaRu27RAfS_sW60VduSrbS8_7vqFbxHVXl9EZ5O-rDEBGzeViuEDPEEynh1HeP9ao1SuMN5TiyI83krXrbhRAuhpdlBWcb2hcM--XbbbJ_M18hqbDLV7vI3C6Z3SVzuzxEuxFPJKi93YPjw_FJMNZR1IaAw-m76so2BfDP09zOXjYYyfkz9MS7EvjAQeA5emDKF-hpN6YDe639EpUOETggAgdE4C1EYEAE3kAEdojAFhHYIgL3iMAWEXgbEbhFxCv0_fPh-acj4sdskBz8xYYAiRE5FZylickZU5EugAhrk8QyZloUjApJE5Mok050AXw5TpRWqQEmH4PTo9hrtFNWpXmDsADTKZkotJ7wOAfmHUmqNdeJpkpPNN1DrPv6stz3oLejUBbZXcLbQyQ8tXQ9WP6ynneSyTyPdPwwA7jd-eTbe77pHXrc_xbeo51mtTYf0KP8RzOvV_sea78A9GOczA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+automated+algorithm+configuration+for+distributed+hybrid+flow+shop+scheduling+with+multiprocessor+tasks&rft.jtitle=Knowledge-based+systems&rft.au=Gholami%2C+Hadi&rft.au=Sun%2C+Hongyang&rft.date=2023-03-15&rft.issn=0950-7051&rft.volume=264&rft.spage=110309&rft_id=info:doi/10.1016%2Fj.knosys.2023.110309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2023_110309 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |