Toward automated algorithm configuration for distributed hybrid flow shop scheduling with multiprocessor tasks

Due to the large volume of requests and the need to speed up the provision of services, production companies are migrating from a single service center to distributed centers. To support this migration, it is necessary to make intelligence decisions that benefit from automatic design of search algor...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems Vol. 264; p. 110309
Main Authors: Gholami, Hadi, Sun, Hongyang
Format: Journal Article
Language:English
Published: Elsevier B.V 15.03.2023
Subjects:
ISSN:0950-7051, 1872-7409
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to the large volume of requests and the need to speed up the provision of services, production companies are migrating from a single service center to distributed centers. To support this migration, it is necessary to make intelligence decisions that benefit from automatic design of search algorithms. Considering these, this paper addresses the distributed hybrid flow shop scheduling problem with multiprocessor tasks (DHFSP-MT) as an extension of the hybrid flow shop scheduling problem with multiprocessor tasks (HFSP-MT) to minimize the maximum completion time among distributed factories. To provide effective decision support, we apply a novel framework called conditional markov chain search (CMCS) to automate the generation of heuristics, which is presented for the first time in the distributed shop scheduling problem to the best of our knowledge. We express the HFSP-MT as a markov decision process (MDP) and solve it through a hybrid Q-learning-local search algorithm. By using the characteristics of the problem under study, we introduce two new concepts, weight and impact, which are used to develop an initial construction algorithm and two local search methods. To balance jobs between factories at runtime, we propose a load balancing method, which transfers selected jobs from certain source factories to destination factories. We compare the proposed CMCS with two state-of-the-art metaheuristic algorithms from the literature using publicly available benchmark instances. The computational results show that the proposed CMCS provides better performance than that of the existing algorithms on solving the considered DHFSP-MT. •Distributed hybrid flow shop scheduling problem with multiprocessor tasks (DHFSP-MT) is studied.•A conditional Markov Chain Search framework (CMCS)C is developed to minimize makespan.•A load balancing method is presented to balance the jobs between factories during runtime.•A hybrid Q-learning-local search algorithm is presented.•Two local search methods and one construction algorithm are presented.
AbstractList Due to the large volume of requests and the need to speed up the provision of services, production companies are migrating from a single service center to distributed centers. To support this migration, it is necessary to make intelligence decisions that benefit from automatic design of search algorithms. Considering these, this paper addresses the distributed hybrid flow shop scheduling problem with multiprocessor tasks (DHFSP-MT) as an extension of the hybrid flow shop scheduling problem with multiprocessor tasks (HFSP-MT) to minimize the maximum completion time among distributed factories. To provide effective decision support, we apply a novel framework called conditional markov chain search (CMCS) to automate the generation of heuristics, which is presented for the first time in the distributed shop scheduling problem to the best of our knowledge. We express the HFSP-MT as a markov decision process (MDP) and solve it through a hybrid Q-learning-local search algorithm. By using the characteristics of the problem under study, we introduce two new concepts, weight and impact, which are used to develop an initial construction algorithm and two local search methods. To balance jobs between factories at runtime, we propose a load balancing method, which transfers selected jobs from certain source factories to destination factories. We compare the proposed CMCS with two state-of-the-art metaheuristic algorithms from the literature using publicly available benchmark instances. The computational results show that the proposed CMCS provides better performance than that of the existing algorithms on solving the considered DHFSP-MT. •Distributed hybrid flow shop scheduling problem with multiprocessor tasks (DHFSP-MT) is studied.•A conditional Markov Chain Search framework (CMCS)C is developed to minimize makespan.•A load balancing method is presented to balance the jobs between factories during runtime.•A hybrid Q-learning-local search algorithm is presented.•Two local search methods and one construction algorithm are presented.
ArticleNumber 110309
Author Sun, Hongyang
Gholami, Hadi
Author_xml – sequence: 1
  givenname: Hadi
  orcidid: 0000-0003-4515-9384
  surname: Gholami
  fullname: Gholami, Hadi
  email: gholamihd@gmail.com
– sequence: 2
  givenname: Hongyang
  surname: Sun
  fullname: Sun, Hongyang
  email: hongyang.sun@ku.edu
BookMark eNqFkL1OwzAUhS1UJNrCGzD4BRKu4zg_DEio4k-qxFJmy7Gdxm0SV7ZD1bcnJUwMMN0z3O9I51ugWW97jdAtgZgAye528b63_uTjBBIaEwIUygs0J0WeRHkK5QzNoWQQ5cDIFVp4vwOAJCHFHPUbexROYTEE24mgx9RurTOh6bC0fW22gxPB2B7X1mFlfHCmGs5_zalyRuG6tUfsG3vAXjZaDa3pt_g48rgb2mAOzkrt_cgG4ff-Gl3WovX65ucu0cfz02b1Gq3fX95Wj-tIUshCRIEWEoqcZkxLSkWiakiY0iwtU6qKmkJRAtNM6KxSNcuSlAklMk0ymhakEnSJ0qlXOuu90zU_ONMJd-IE-NkZ3_HJGT8745OzEbv_hUkTvucHJ0z7H_wwwXoc9mm0414a3UutjNMycGXN3wVfeTiQIg
CitedBy_id crossref_primary_10_1016_j_swevo_2024_101681
crossref_primary_10_1088_1742_6596_3028_1_012016
crossref_primary_10_1109_TEVC_2024_3443874
crossref_primary_10_1016_j_engappai_2023_107818
crossref_primary_10_3389_fieng_2025_1611512
crossref_primary_10_1016_j_engappai_2024_109915
crossref_primary_10_1016_j_asoc_2025_113475
crossref_primary_10_1080_0305215X_2024_2328188
crossref_primary_10_1109_ACCESS_2025_3577044
crossref_primary_10_1109_TASE_2024_3422473
crossref_primary_10_1016_j_asoc_2025_112697
crossref_primary_10_1016_j_cor_2024_106833
crossref_primary_10_3934_jimo_2025150
crossref_primary_10_1016_j_jmsy_2024_10_019
crossref_primary_10_1016_j_aeue_2023_154723
crossref_primary_10_1016_j_swevo_2024_101479
crossref_primary_10_7717_peerj_cs_2168
crossref_primary_10_1016_j_swevo_2024_101771
crossref_primary_10_1016_j_eswa_2023_121570
crossref_primary_10_1007_s12190_024_02364_1
crossref_primary_10_3390_sym15112005
crossref_primary_10_1016_j_asoc_2024_112276
crossref_primary_10_1016_j_asoc_2024_112650
crossref_primary_10_1016_j_cie_2024_109916
crossref_primary_10_1007_s42979_023_02517_2
crossref_primary_10_3233_JIFS_238627
crossref_primary_10_1016_j_eswa_2023_121667
crossref_primary_10_1016_j_jpdc_2025_105069
crossref_primary_10_1016_j_eswa_2023_122434
crossref_primary_10_1016_j_cie_2025_110983
crossref_primary_10_1016_j_cor_2025_107079
crossref_primary_10_3390_pr13092930
crossref_primary_10_1109_ACCESS_2023_3268214
Cites_doi 10.1016/j.cie.2020.107082
10.1016/j.knosys.2020.105527
10.1016/j.eswa.2021.115453
10.1080/00207543.2020.1780333
10.1080/00207543.2020.1753897
10.1016/j.cie.2022.108126
10.1109/TCYB.2019.2939219
10.1016/j.eswa.2021.115493
10.1016/j.asoc.2010.03.008
10.1016/j.future.2017.02.005
10.1016/j.knosys.2022.108471
10.1016/S0377-2217(02)00644-6
10.1016/j.cor.2022.105733
10.1016/j.knosys.2020.105536
10.1016/j.eswa.2017.09.032
10.3390/machines10030210
10.1016/j.ejor.2017.01.001
10.1002/cpe.7148
10.1016/j.eswa.2019.113147
10.1016/j.engappai.2004.08.018
10.1007/s10951-005-1640-y
10.1016/j.jpdc.2013.12.003
10.1080/00207543.2020.1837982
10.1080/00207540701294627
10.1016/j.asoc.2022.109138
10.1016/j.eswa.2022.117984
10.1007/s00170-010-2868-z
10.1016/j.engappai.2021.104375
10.1016/j.cor.2021.105482
10.1080/0305215X.2019.1674295
10.1016/j.asoc.2020.106946
10.1057/palgrave.jors.2602625
10.1016/j.swevo.2018.10.012
10.1109/TCYB.2021.3086181
10.23919/CSMS.2022.0002
10.1504/EJIE.2012.045605
10.1016/j.knosys.2021.106959
10.1007/s00170-013-4759-6
10.1109/ACCESS.2019.2917273
10.1016/j.engappai.2020.103540
10.1109/ACCESS.2018.2873401
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2023.110309
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2023_110309
S095070512300059X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
UHS
WUQ
~HD
ID FETCH-LOGICAL-c306t-3038c087365ec33a2df025de54943d8f308905e5ae6bdf56245ada6e163481ba3
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000968641400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Tue Nov 18 20:49:12 EST 2025
Sat Nov 29 07:09:21 EST 2025
Fri Feb 23 02:38:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Conditional markov chain search
Multiprocessor tasks
Automated algorithm design
Q-learning algorithm
Distributed hybrid flow shop scheduling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-3038c087365ec33a2df025de54943d8f308905e5ae6bdf56245ada6e163481ba3
ORCID 0000-0003-4515-9384
ParticipantIDs crossref_primary_10_1016_j_knosys_2023_110309
crossref_citationtrail_10_1016_j_knosys_2023_110309
elsevier_sciencedirect_doi_10_1016_j_knosys_2023_110309
PublicationCentury 2000
PublicationDate 2023-03-15
PublicationDateYYYYMMDD 2023-03-15
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sutton, Barto (b59) 2018
Oğuz (b12) 2004; 152
Rani, Zoraida (b19) 2016; 8
Zhao (b29) 2022; 243
Shao, Shao, Pi (b24) 2022; 125
Sun, Stolf, Pierson (b2) 2017; 71
Shao, Shao, Pi (b33) 2021; 136
Zhao (b10) 2022
Xu (b18) 2013; 67
Oĝuz, Ercan (b4) 2005; 8
Zhao (b27) 2022
Kahraman (b15) 2010; 10
Liu (b61) 2022
Wang, Usher (b60) 2005; 18
Wang, Chou, Wu (b16) 2011; 53
Cai, Zhou, Lei (b35) 2020; 90
Ying, Lin (b3) 2018; 92
Carnein (b46) 2020
Tseng, Liao (b13) 2008; 46
Sun, Cao, Hsu (b48) 2011
Gholami, Zakerian (b1) 2020
Khare, Agrawal (b34) 2021; 59
Gholami, Rezvan (b54) 2022; 34
Shao, Shao, Pi (b23) 2020; 194
Karabulut (b28) 2022; 142
Gainaru (b55) 2019
Li (b41) 2018; 6
Rezvan, Gholami, Zakerian (b50) 2021; 6
McClymont, Keedwell (b44) 2011
Lifka (b56) 1995
López-Ibáñez (b45) 2016; 3
Min (b5) 2021
Yan, Wu, Wang (b7) 2022; 10
Perotin, Sun, Raghavan (b53) 2021
Lei, Wang (b38) 2020; 52
Zhao (b9) 2021; 153
Wang, Wang (b6) 2021
Sewak (b58) 2019
Shao, Pi, Shao (b22) 2020; 145
Shao, Shao, Pi (b31) 2021; 221
Cai, Lei, Li (b40) 2021; 59
Luo (b42) 2022; 207
Karapetyan, Punnen, Parkes (b43) 2017; 260
Sun (b52) 2018
Karapetyan, Goldengorin (b47) 2018
Ying (b17) 2012; 6
Kurdi (b20) 2019; 44
Li (b32) 2021; 59
Li, Li, Gao (b39) 2021; 100
Zhao, Di, Wang (b57) 2022
Ying (b14) 2009; 60
Meng, Qu (b11) 2021; 185
Shao, Shao, Pi (b36) 2021; 183
Hao (b37) 2019; 7
Chen (b26) 2021; 104
Xi, Lei (b8) 2022; 2
Zheng, Wang, Wang (b25) 2020; 194
Gholami, Rezvan (b21) 2020; 7
Sun, Hsu, Cao (b49) 2014; 74
Wang, Wang (b30) 2022; 168
Zhou (b51) 2019; 51
Zhou (10.1016/j.knosys.2023.110309_b51) 2019; 51
Zhao (10.1016/j.knosys.2023.110309_b10) 2022
Luo (10.1016/j.knosys.2023.110309_b42) 2022; 207
Rezvan (10.1016/j.knosys.2023.110309_b50) 2021; 6
Shao (10.1016/j.knosys.2023.110309_b31) 2021; 221
Hao (10.1016/j.knosys.2023.110309_b37) 2019; 7
Rani (10.1016/j.knosys.2023.110309_b19) 2016; 8
Xi (10.1016/j.knosys.2023.110309_b8) 2022; 2
Sun (10.1016/j.knosys.2023.110309_b2) 2017; 71
Wang (10.1016/j.knosys.2023.110309_b60) 2005; 18
McClymont (10.1016/j.knosys.2023.110309_b44) 2011
Sun (10.1016/j.knosys.2023.110309_b48) 2011
Zhao (10.1016/j.knosys.2023.110309_b57) 2022
Shao (10.1016/j.knosys.2023.110309_b23) 2020; 194
Zhao (10.1016/j.knosys.2023.110309_b27) 2022
Li (10.1016/j.knosys.2023.110309_b32) 2021; 59
Kahraman (10.1016/j.knosys.2023.110309_b15) 2010; 10
Lifka (10.1016/j.knosys.2023.110309_b56) 1995
Zheng (10.1016/j.knosys.2023.110309_b25) 2020; 194
Zhao (10.1016/j.knosys.2023.110309_b29) 2022; 243
Karapetyan (10.1016/j.knosys.2023.110309_b47) 2018
Gholami (10.1016/j.knosys.2023.110309_b54) 2022; 34
Sewak (10.1016/j.knosys.2023.110309_b58) 2019
Wang (10.1016/j.knosys.2023.110309_b16) 2011; 53
Tseng (10.1016/j.knosys.2023.110309_b13) 2008; 46
Shao (10.1016/j.knosys.2023.110309_b36) 2021; 183
Zhao (10.1016/j.knosys.2023.110309_b9) 2021; 153
Li (10.1016/j.knosys.2023.110309_b39) 2021; 100
Shao (10.1016/j.knosys.2023.110309_b24) 2022; 125
Cai (10.1016/j.knosys.2023.110309_b40) 2021; 59
Ying (10.1016/j.knosys.2023.110309_b3) 2018; 92
Li (10.1016/j.knosys.2023.110309_b41) 2018; 6
Shao (10.1016/j.knosys.2023.110309_b33) 2021; 136
Sutton (10.1016/j.knosys.2023.110309_b59) 2018
Xu (10.1016/j.knosys.2023.110309_b18) 2013; 67
López-Ibáñez (10.1016/j.knosys.2023.110309_b45) 2016; 3
Gainaru (10.1016/j.knosys.2023.110309_b55) 2019
Wang (10.1016/j.knosys.2023.110309_b30) 2022; 168
Khare (10.1016/j.knosys.2023.110309_b34) 2021; 59
Shao (10.1016/j.knosys.2023.110309_b22) 2020; 145
Wang (10.1016/j.knosys.2023.110309_b6) 2021
Kurdi (10.1016/j.knosys.2023.110309_b20) 2019; 44
Gholami (10.1016/j.knosys.2023.110309_b21) 2020; 7
Carnein (10.1016/j.knosys.2023.110309_b46) 2020
Liu (10.1016/j.knosys.2023.110309_b61) 2022
Gholami (10.1016/j.knosys.2023.110309_b1) 2020
Min (10.1016/j.knosys.2023.110309_b5) 2021
Cai (10.1016/j.knosys.2023.110309_b35) 2020; 90
Ying (10.1016/j.knosys.2023.110309_b14) 2009; 60
Oĝuz (10.1016/j.knosys.2023.110309_b4) 2005; 8
Meng (10.1016/j.knosys.2023.110309_b11) 2021; 185
Karapetyan (10.1016/j.knosys.2023.110309_b43) 2017; 260
Yan (10.1016/j.knosys.2023.110309_b7) 2022; 10
Lei (10.1016/j.knosys.2023.110309_b38) 2020; 52
Chen (10.1016/j.knosys.2023.110309_b26) 2021; 104
Oğuz (10.1016/j.knosys.2023.110309_b12) 2004; 152
Sun (10.1016/j.knosys.2023.110309_b52) 2018
Ying (10.1016/j.knosys.2023.110309_b17) 2012; 6
Sun (10.1016/j.knosys.2023.110309_b49) 2014; 74
Perotin (10.1016/j.knosys.2023.110309_b53) 2021
Karabulut (10.1016/j.knosys.2023.110309_b28) 2022; 142
References_xml – volume: 194
  year: 2020
  ident: b25
  article-title: A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop
  publication-title: Knowl.-Based Syst.
– volume: 59
  start-page: 7266
  year: 2021
  end-page: 7282
  ident: b34
  article-title: Effective heuristics and metaheuristics to minimise total tardiness for the distributed permutation flowshop scheduling problem
  publication-title: Int. J. Prod. Res.
– volume: 100
  year: 2021
  ident: b39
  article-title: A discrete artificial bee colony algorithm for the distributed heterogeneous no-wait flowshop scheduling problem
  publication-title: Appl. Soft Comput.
– volume: 44
  start-page: 987
  year: 2019
  end-page: 1002
  ident: b20
  article-title: Ant colony system with a novel non-DaemonActions procedure for multiprocessor task scheduling in multistage hybrid flow shop
  publication-title: Swarm Evol. Comput.
– volume: 46
  start-page: 4655
  year: 2008
  end-page: 4670
  ident: b13
  article-title: A particle swarm optimization algorithm for hybrid flow-shop scheduling with multiprocessor tasks
  publication-title: Int. J. Prod. Res.
– volume: 104
  year: 2021
  ident: b26
  article-title: A population-based iterated greedy algorithm to minimize total flowtime for the distributed blocking flowshop scheduling problem
  publication-title: Eng. Appl. Artif. Intell.
– volume: 90
  year: 2020
  ident: b35
  article-title: Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with multiprocessor tasks
  publication-title: Eng. Appl. Artif. Intell.
– year: 2018
  ident: b59
  article-title: Reinforcement Learning: An Introduction
– volume: 60
  start-page: 810
  year: 2009
  end-page: 817
  ident: b14
  article-title: An iterated greedy heuristic for multistage hybrid flowshop scheduling problems with multiprocessor tasks
  publication-title: J. Oper. Res. Soc.
– volume: 10
  start-page: 1293
  year: 2010
  end-page: 1300
  ident: b15
  article-title: Multiprocessor task scheduling in multistage hybrid flow-shops: A parallel greedy algorithm approach
  publication-title: Appl. Soft Comput.
– volume: 7
  start-page: 66879
  year: 2019
  end-page: 66894
  ident: b37
  article-title: Solving distributed hybrid flowshop scheduling problems by a hybrid brain storm optimization algorithm
  publication-title: Ieee Access
– volume: 2
  start-page: 113
  year: 2022
  end-page: 129
  ident: b8
  article-title: Q-learning-based teaching-learning optimization for distributed two-stage hybrid flow shop scheduling with fuzzy processing time
  publication-title: Complex Syst. Model. Simul.
– volume: 142
  year: 2022
  ident: b28
  article-title: An evolution strategy approach for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Comput. Oper. Res.
– volume: 3
  start-page: 43
  year: 2016
  end-page: 58
  ident: b45
  article-title: The irace package: Iterated racing for automatic algorithm configuration
  publication-title: Oper. Res. Perspect.
– start-page: 51
  year: 2019
  end-page: 63
  ident: b58
  article-title: Temporal difference learning, SARSA, and Q-learning
  publication-title: Deep Reinforcement Learning
– volume: 74
  start-page: 2180
  year: 2014
  end-page: 2192
  ident: b49
  article-title: Competitive online adaptive scheduling for sets of parallel jobs with fairness and efficiency
  publication-title: J. Parallel Distrib. Comput.
– volume: 260
  start-page: 494
  year: 2017
  end-page: 506
  ident: b43
  article-title: Markov chain methods for the bipartite boolean quadratic programming problem
  publication-title: European J. Oper. Res.
– volume: 67
  start-page: 121
  year: 2013
  end-page: 135
  ident: b18
  article-title: An effective immune algorithm based on novel dispatching rules for the flexible flow-shop scheduling problem with multiprocessor tasks
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 152
  start-page: 115
  year: 2004
  end-page: 131
  ident: b12
  article-title: Hybrid flow-shop scheduling problems with multiprocessor task systems
  publication-title: European J. Oper. Res.
– year: 2021
  ident: b5
  article-title: A Self-Adaptive Load Balancing Approach for Software-Defined Networks in IoT
  publication-title: 2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems
– year: 2019
  ident: b55
  article-title: Speculative scheduling for stochastic HPC applications
  publication-title: Proceedings of the 48th International Conference on Parallel Processing
– volume: 34
  year: 2022
  ident: b54
  article-title: A cooperative multi-agent offline learning algorithm to scheduling IoT workflows in the cloud computing environment
  publication-title: Concurr. Comput.: Pract. Exper.
– volume: 18
  start-page: 73
  year: 2005
  end-page: 82
  ident: b60
  article-title: Application of reinforcement learning for agent-based production scheduling
  publication-title: Eng. Appl. Artif. Intell.
– volume: 7
  start-page: 127
  year: 2020
  end-page: 145
  ident: b21
  article-title: A memetic algorithm for multistage hybrid flow shop scheduling problem with multiprocessor tasks to minimize makespan
  publication-title: Int. J. Ind. Eng. Manag. Sci.
– volume: 207
  year: 2022
  ident: b42
  article-title: A distributed flexible job shop scheduling problem considering worker arrangement using an improved memetic algorithm
  publication-title: Expert Syst. Appl.
– volume: 221
  year: 2021
  ident: b31
  article-title: Effective constructive heuristic and iterated greedy algorithm for distributed mixed blocking permutation flow-shop scheduling problem
  publication-title: Knowl.-Based Syst.
– volume: 243
  year: 2022
  ident: b29
  article-title: An effective water wave optimization algorithm with problem-specific knowledge for the distributed assembly blocking flow-shop scheduling problem
  publication-title: Knowl.-Based Syst.
– start-page: 123
  year: 2018
  end-page: 147
  ident: b47
  article-title: Conditional Markov chain search for the simple plant location problem improves upper bounds on twelve Körkel–Ghosh instances
  publication-title: Optimization Problems in Graph Theory
– volume: 6
  start-page: 58883
  year: 2018
  end-page: 58897
  ident: b41
  article-title: A hybrid Pareto-based Tabu search for the distributed flexible job shop scheduling problem with E/T criteria
  publication-title: IEEE Access
– volume: 6
  start-page: 199
  year: 2012
  end-page: 215
  ident: b17
  article-title: Minimising makespan for multistage hybrid flowshop scheduling problems with multiprocessor tasks by a hybrid immune algorithm
  publication-title: Eur. J. Ind. Eng.
– volume: 59
  start-page: 5404
  year: 2021
  end-page: 5421
  ident: b40
  article-title: A shuffled frog-leaping algorithm with memeplex quality for bi-objective distributed scheduling in hybrid flow shop
  publication-title: Int. J. Prod. Res.
– year: 2022
  ident: b61
  article-title: A Graph Neural Networks-based Deep Q-Learning Approach for Job Shop Scheduling Problems in Traffic Management
  publication-title: Inf. Sci.
– volume: 6
  start-page: 115
  year: 2021
  end-page: 142
  ident: b50
  article-title: A new algorithm for solving the parallel machine scheduling problem to maximize benefit and the number of jobs processed
  publication-title: J. Qual. Eng. Prod. Optim.
– year: 2022
  ident: b57
  article-title: A hyperheuristic with Q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem
  publication-title: IEEE Trans. Cybern.
– volume: 92
  start-page: 132
  year: 2018
  end-page: 141
  ident: b3
  article-title: Minimizing makespan for the distributed hybrid flowshop scheduling problem with multiprocessor tasks
  publication-title: Expert Syst. Appl.
– volume: 185
  year: 2021
  ident: b11
  article-title: Automated design of search algorithms: Learning on algorithmic components
  publication-title: Expert Syst. Appl.
– volume: 153
  year: 2021
  ident: b9
  article-title: A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem
  publication-title: Comput. Ind. Eng.
– year: 2020
  ident: b1
  article-title: A list-based heuristic algorithm for static task scheduling in heterogeneous distributed computing systems
  publication-title: 2020 6th International Conference on Web Research
– volume: 194
  year: 2020
  ident: b23
  article-title: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem
  publication-title: Knowl.-Based Syst.
– volume: 136
  year: 2021
  ident: b33
  article-title: Effective constructive heuristics for distributed no-wait flexible flow shop scheduling problem
  publication-title: Comput. Oper. Res.
– volume: 145
  year: 2020
  ident: b22
  article-title: Hybrid enhanced discrete fruit fly optimization algorithm for scheduling blocking flow-shop in distributed environment
  publication-title: Expert Syst. Appl.
– volume: 8
  start-page: 323
  year: 2005
  end-page: 351
  ident: b4
  article-title: A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks
  publication-title: J. Sched.
– year: 2021
  ident: b53
  article-title: Multi-resource list scheduling of moldable parallel jobs under precedence constraints
  publication-title: 50th International Conference on Parallel Processing
– volume: 125
  year: 2022
  ident: b24
  article-title: Multi-local search-based general variable neighborhood search for distributed flow shop scheduling in heterogeneous multi-factories
  publication-title: Appl. Soft Comput.
– year: 2018
  ident: b52
  article-title: Scheduling parallel tasks under multiple resources: List scheduling vs. pack scheduling
  publication-title: 2018 IEEE International Parallel and Distributed Processing Symposium
– year: 2022
  ident: b27
  article-title: A Population-Based Iterated Greedy Algorithm for Distributed Assembly No-Wait Flow-Shop Scheduling Problem
  publication-title: IEEE Trans. Ind. Inform.
– year: 2020
  ident: b46
  article-title: Confstream: Automated algorithm selection and configuration of stream clustering algorithms
  publication-title: International Conference on Learning and Intelligent Optimization
– volume: 8
  start-page: 377
  year: 2016
  end-page: 391
  ident: b19
  article-title: Multistage multiprocessor task scheduling in hybrid flow shop problems using discrete firefly algorithm
  publication-title: Int. J. Adv. Intell. Paradigms
– volume: 71
  start-page: 157
  year: 2017
  end-page: 170
  ident: b2
  article-title: Spatio-temporal thermal-aware scheduling for homogeneous high-performance computing datacenters
  publication-title: Future Gener. Comput. Syst.
– volume: 53
  start-page: 761
  year: 2011
  end-page: 776
  ident: b16
  article-title: A simulated annealing for hybrid flow shop scheduling with multiprocessor tasks to minimize makespan
  publication-title: Int. J. Adv. Manuf. Technol.
– year: 2021
  ident: b6
  article-title: A cooperative memetic algorithm with learning-based agent for energy-aware distributed hybrid flow-shop scheduling
  publication-title: IEEE Trans. Evol. Comput.
– volume: 183
  year: 2021
  ident: b36
  article-title: Multi-objective evolutionary algorithm based on multiple neighborhoods local search for multi-objective distributed hybrid flow shop scheduling problem
  publication-title: Expert Syst. Appl.
– volume: 52
  start-page: 1461
  year: 2020
  end-page: 1474
  ident: b38
  article-title: Solving distributed two-stage hybrid flowshop scheduling using a shuffled frog-leaping algorithm with memeplex grouping
  publication-title: Eng. Optim.
– year: 1995
  ident: b56
  article-title: The anl/ibm sp scheduling system
  publication-title: Workshop on Job Scheduling Strategies for Parallel Processing
– volume: 168
  year: 2022
  ident: b30
  article-title: A cooperative memetic algorithm with feedback for the energy-aware distributed flow-shops with flexible assembly scheduling
  publication-title: Comput. Ind. Eng.
– year: 2011
  ident: b44
  article-title: Markov chain hyper-heuristic (MCHH) an online selective hyper-heuristic for multi-objective continuous problems
  publication-title: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation
– volume: 51
  start-page: 1430
  year: 2019
  end-page: 1442
  ident: b51
  article-title: A self-adaptive differential evolution algorithm for scheduling a single batch-processing machine with arbitrary job sizes and release times
  publication-title: IEEE Trans. Cybern.
– volume: 10
  start-page: 210
  year: 2022
  ident: b7
  article-title: Deep reinforcement learning for distributed flow shop scheduling with flexible maintenance
  publication-title: Machines
– start-page: 1
  year: 2022
  end-page: 19
  ident: b10
  article-title: A reinforcement learning-driven brain storm optimisation algorithm for multi-objective energy-efficient distributed assembly no-wait flow shop scheduling problem
  publication-title: Int. J. Prod. Res.
– volume: 59
  start-page: 3880
  year: 2021
  end-page: 3899
  ident: b32
  article-title: A discrete artificial bee colony algorithm for distributed hybrid flowshop scheduling problem with sequence-dependent setup times
  publication-title: Int. J. Prod. Res.
– year: 2011
  ident: b48
  article-title: Fair and efficient online adaptive scheduling for multiple sets of parallel applications
  publication-title: 2011 IEEE 17th International Conference on Parallel and Distributed Systems
– volume: 153
  year: 2021
  ident: 10.1016/j.knosys.2023.110309_b9
  article-title: A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.107082
– volume: 194
  year: 2020
  ident: 10.1016/j.knosys.2023.110309_b23
  article-title: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105527
– volume: 183
  year: 2021
  ident: 10.1016/j.knosys.2023.110309_b36
  article-title: Multi-objective evolutionary algorithm based on multiple neighborhoods local search for multi-objective distributed hybrid flow shop scheduling problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115453
– year: 2022
  ident: 10.1016/j.knosys.2023.110309_b27
  article-title: A Population-Based Iterated Greedy Algorithm for Distributed Assembly No-Wait Flow-Shop Scheduling Problem
  publication-title: IEEE Trans. Ind. Inform.
– start-page: 51
  year: 2019
  ident: 10.1016/j.knosys.2023.110309_b58
  article-title: Temporal difference learning, SARSA, and Q-learning
– volume: 59
  start-page: 5404
  issue: 18
  year: 2021
  ident: 10.1016/j.knosys.2023.110309_b40
  article-title: A shuffled frog-leaping algorithm with memeplex quality for bi-objective distributed scheduling in hybrid flow shop
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2020.1780333
– volume: 6
  start-page: 115
  issue: 2
  year: 2021
  ident: 10.1016/j.knosys.2023.110309_b50
  article-title: A new algorithm for solving the parallel machine scheduling problem to maximize benefit and the number of jobs processed
  publication-title: J. Qual. Eng. Prod. Optim.
– volume: 59
  start-page: 3880
  issue: 13
  year: 2021
  ident: 10.1016/j.knosys.2023.110309_b32
  article-title: A discrete artificial bee colony algorithm for distributed hybrid flowshop scheduling problem with sequence-dependent setup times
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2020.1753897
– volume: 168
  year: 2022
  ident: 10.1016/j.knosys.2023.110309_b30
  article-title: A cooperative memetic algorithm with feedback for the energy-aware distributed flow-shops with flexible assembly scheduling
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2022.108126
– volume: 51
  start-page: 1430
  issue: 3
  year: 2019
  ident: 10.1016/j.knosys.2023.110309_b51
  article-title: A self-adaptive differential evolution algorithm for scheduling a single batch-processing machine with arbitrary job sizes and release times
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2939219
– year: 2020
  ident: 10.1016/j.knosys.2023.110309_b1
  article-title: A list-based heuristic algorithm for static task scheduling in heterogeneous distributed computing systems
– volume: 185
  year: 2021
  ident: 10.1016/j.knosys.2023.110309_b11
  article-title: Automated design of search algorithms: Learning on algorithmic components
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115493
– volume: 10
  start-page: 1293
  issue: 4
  year: 2010
  ident: 10.1016/j.knosys.2023.110309_b15
  article-title: Multiprocessor task scheduling in multistage hybrid flow-shops: A parallel greedy algorithm approach
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.03.008
– volume: 71
  start-page: 157
  year: 2017
  ident: 10.1016/j.knosys.2023.110309_b2
  article-title: Spatio-temporal thermal-aware scheduling for homogeneous high-performance computing datacenters
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.02.005
– volume: 243
  year: 2022
  ident: 10.1016/j.knosys.2023.110309_b29
  article-title: An effective water wave optimization algorithm with problem-specific knowledge for the distributed assembly blocking flow-shop scheduling problem
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108471
– volume: 152
  start-page: 115
  issue: 1
  year: 2004
  ident: 10.1016/j.knosys.2023.110309_b12
  article-title: Hybrid flow-shop scheduling problems with multiprocessor task systems
  publication-title: European J. Oper. Res.
  doi: 10.1016/S0377-2217(02)00644-6
– volume: 142
  year: 2022
  ident: 10.1016/j.knosys.2023.110309_b28
  article-title: An evolution strategy approach for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2022.105733
– volume: 194
  year: 2020
  ident: 10.1016/j.knosys.2023.110309_b25
  article-title: A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105536
– volume: 92
  start-page: 132
  year: 2018
  ident: 10.1016/j.knosys.2023.110309_b3
  article-title: Minimizing makespan for the distributed hybrid flowshop scheduling problem with multiprocessor tasks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.032
– volume: 10
  start-page: 210
  issue: 3
  year: 2022
  ident: 10.1016/j.knosys.2023.110309_b7
  article-title: Deep reinforcement learning for distributed flow shop scheduling with flexible maintenance
  publication-title: Machines
  doi: 10.3390/machines10030210
– volume: 8
  start-page: 377
  issue: 4
  year: 2016
  ident: 10.1016/j.knosys.2023.110309_b19
  article-title: Multistage multiprocessor task scheduling in hybrid flow shop problems using discrete firefly algorithm
  publication-title: Int. J. Adv. Intell. Paradigms
– year: 2011
  ident: 10.1016/j.knosys.2023.110309_b44
  article-title: Markov chain hyper-heuristic (MCHH) an online selective hyper-heuristic for multi-objective continuous problems
– volume: 260
  start-page: 494
  issue: 2
  year: 2017
  ident: 10.1016/j.knosys.2023.110309_b43
  article-title: Markov chain methods for the bipartite boolean quadratic programming problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2017.01.001
– volume: 34
  issue: 22
  year: 2022
  ident: 10.1016/j.knosys.2023.110309_b54
  article-title: A cooperative multi-agent offline learning algorithm to scheduling IoT workflows in the cloud computing environment
  publication-title: Concurr. Comput.: Pract. Exper.
  doi: 10.1002/cpe.7148
– volume: 145
  year: 2020
  ident: 10.1016/j.knosys.2023.110309_b22
  article-title: Hybrid enhanced discrete fruit fly optimization algorithm for scheduling blocking flow-shop in distributed environment
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.113147
– volume: 18
  start-page: 73
  issue: 1
  year: 2005
  ident: 10.1016/j.knosys.2023.110309_b60
  article-title: Application of reinforcement learning for agent-based production scheduling
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2004.08.018
– year: 1995
  ident: 10.1016/j.knosys.2023.110309_b56
  article-title: The anl/ibm sp scheduling system
– year: 2018
  ident: 10.1016/j.knosys.2023.110309_b59
– year: 2011
  ident: 10.1016/j.knosys.2023.110309_b48
  article-title: Fair and efficient online adaptive scheduling for multiple sets of parallel applications
– volume: 8
  start-page: 323
  issue: 4
  year: 2005
  ident: 10.1016/j.knosys.2023.110309_b4
  article-title: A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks
  publication-title: J. Sched.
  doi: 10.1007/s10951-005-1640-y
– year: 2021
  ident: 10.1016/j.knosys.2023.110309_b5
  article-title: A Self-Adaptive Load Balancing Approach for Software-Defined Networks in IoT
– year: 2020
  ident: 10.1016/j.knosys.2023.110309_b46
  article-title: Confstream: Automated algorithm selection and configuration of stream clustering algorithms
– volume: 74
  start-page: 2180
  issue: 3
  year: 2014
  ident: 10.1016/j.knosys.2023.110309_b49
  article-title: Competitive online adaptive scheduling for sets of parallel jobs with fairness and efficiency
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2013.12.003
– volume: 59
  start-page: 7266
  issue: 23
  year: 2021
  ident: 10.1016/j.knosys.2023.110309_b34
  article-title: Effective heuristics and metaheuristics to minimise total tardiness for the distributed permutation flowshop scheduling problem
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2020.1837982
– volume: 46
  start-page: 4655
  issue: 17
  year: 2008
  ident: 10.1016/j.knosys.2023.110309_b13
  article-title: A particle swarm optimization algorithm for hybrid flow-shop scheduling with multiprocessor tasks
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207540701294627
– year: 2018
  ident: 10.1016/j.knosys.2023.110309_b52
  article-title: Scheduling parallel tasks under multiple resources: List scheduling vs. pack scheduling
– year: 2019
  ident: 10.1016/j.knosys.2023.110309_b55
  article-title: Speculative scheduling for stochastic HPC applications
– start-page: 123
  year: 2018
  ident: 10.1016/j.knosys.2023.110309_b47
  article-title: Conditional Markov chain search for the simple plant location problem improves upper bounds on twelve Körkel–Ghosh instances
– volume: 125
  year: 2022
  ident: 10.1016/j.knosys.2023.110309_b24
  article-title: Multi-local search-based general variable neighborhood search for distributed flow shop scheduling in heterogeneous multi-factories
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109138
– volume: 207
  year: 2022
  ident: 10.1016/j.knosys.2023.110309_b42
  article-title: A distributed flexible job shop scheduling problem considering worker arrangement using an improved memetic algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117984
– volume: 53
  start-page: 761
  issue: 5
  year: 2011
  ident: 10.1016/j.knosys.2023.110309_b16
  article-title: A simulated annealing for hybrid flow shop scheduling with multiprocessor tasks to minimize makespan
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-010-2868-z
– volume: 104
  year: 2021
  ident: 10.1016/j.knosys.2023.110309_b26
  article-title: A population-based iterated greedy algorithm to minimize total flowtime for the distributed blocking flowshop scheduling problem
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104375
– year: 2021
  ident: 10.1016/j.knosys.2023.110309_b6
  article-title: A cooperative memetic algorithm with learning-based agent for energy-aware distributed hybrid flow-shop scheduling
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2022
  ident: 10.1016/j.knosys.2023.110309_b10
  article-title: A reinforcement learning-driven brain storm optimisation algorithm for multi-objective energy-efficient distributed assembly no-wait flow shop scheduling problem
  publication-title: Int. J. Prod. Res.
– volume: 136
  year: 2021
  ident: 10.1016/j.knosys.2023.110309_b33
  article-title: Effective constructive heuristics for distributed no-wait flexible flow shop scheduling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105482
– volume: 52
  start-page: 1461
  issue: 9
  year: 2020
  ident: 10.1016/j.knosys.2023.110309_b38
  article-title: Solving distributed two-stage hybrid flowshop scheduling using a shuffled frog-leaping algorithm with memeplex grouping
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2019.1674295
– volume: 3
  start-page: 43
  year: 2016
  ident: 10.1016/j.knosys.2023.110309_b45
  article-title: The irace package: Iterated racing for automatic algorithm configuration
  publication-title: Oper. Res. Perspect.
– volume: 100
  year: 2021
  ident: 10.1016/j.knosys.2023.110309_b39
  article-title: A discrete artificial bee colony algorithm for the distributed heterogeneous no-wait flowshop scheduling problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106946
– volume: 60
  start-page: 810
  issue: 6
  year: 2009
  ident: 10.1016/j.knosys.2023.110309_b14
  article-title: An iterated greedy heuristic for multistage hybrid flowshop scheduling problems with multiprocessor tasks
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2602625
– volume: 44
  start-page: 987
  year: 2019
  ident: 10.1016/j.knosys.2023.110309_b20
  article-title: Ant colony system with a novel non-DaemonActions procedure for multiprocessor task scheduling in multistage hybrid flow shop
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.10.012
– year: 2022
  ident: 10.1016/j.knosys.2023.110309_b57
  article-title: A hyperheuristic with Q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3086181
– volume: 7
  start-page: 127
  issue: 1
  year: 2020
  ident: 10.1016/j.knosys.2023.110309_b21
  article-title: A memetic algorithm for multistage hybrid flow shop scheduling problem with multiprocessor tasks to minimize makespan
  publication-title: Int. J. Ind. Eng. Manag. Sci.
– volume: 2
  start-page: 113
  issue: 2
  year: 2022
  ident: 10.1016/j.knosys.2023.110309_b8
  article-title: Q-learning-based teaching-learning optimization for distributed two-stage hybrid flow shop scheduling with fuzzy processing time
  publication-title: Complex Syst. Model. Simul.
  doi: 10.23919/CSMS.2022.0002
– year: 2021
  ident: 10.1016/j.knosys.2023.110309_b53
  article-title: Multi-resource list scheduling of moldable parallel jobs under precedence constraints
– year: 2022
  ident: 10.1016/j.knosys.2023.110309_b61
  article-title: A Graph Neural Networks-based Deep Q-Learning Approach for Job Shop Scheduling Problems in Traffic Management
  publication-title: Inf. Sci.
– volume: 6
  start-page: 199
  issue: 2
  year: 2012
  ident: 10.1016/j.knosys.2023.110309_b17
  article-title: Minimising makespan for multistage hybrid flowshop scheduling problems with multiprocessor tasks by a hybrid immune algorithm
  publication-title: Eur. J. Ind. Eng.
  doi: 10.1504/EJIE.2012.045605
– volume: 221
  year: 2021
  ident: 10.1016/j.knosys.2023.110309_b31
  article-title: Effective constructive heuristic and iterated greedy algorithm for distributed mixed blocking permutation flow-shop scheduling problem
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106959
– volume: 67
  start-page: 121
  issue: 1
  year: 2013
  ident: 10.1016/j.knosys.2023.110309_b18
  article-title: An effective immune algorithm based on novel dispatching rules for the flexible flow-shop scheduling problem with multiprocessor tasks
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-013-4759-6
– volume: 7
  start-page: 66879
  year: 2019
  ident: 10.1016/j.knosys.2023.110309_b37
  article-title: Solving distributed hybrid flowshop scheduling problems by a hybrid brain storm optimization algorithm
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2917273
– volume: 90
  year: 2020
  ident: 10.1016/j.knosys.2023.110309_b35
  article-title: Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with multiprocessor tasks
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103540
– volume: 6
  start-page: 58883
  year: 2018
  ident: 10.1016/j.knosys.2023.110309_b41
  article-title: A hybrid Pareto-based Tabu search for the distributed flexible job shop scheduling problem with E/T criteria
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2873401
SSID ssj0002218
Score 2.51461
Snippet Due to the large volume of requests and the need to speed up the provision of services, production companies are migrating from a single service center to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110309
SubjectTerms Automated algorithm design
Conditional markov chain search
Distributed hybrid flow shop scheduling
Multiprocessor tasks
Q-learning algorithm
Title Toward automated algorithm configuration for distributed hybrid flow shop scheduling with multiprocessor tasks
URI https://dx.doi.org/10.1016/j.knosys.2023.110309
Volume 264
WOSCitedRecordID wos000968641400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdg48CFb8T4kg_cKldp7MTOcUKDAdLEYUi9RSZ22m5dUjUpbP8978WO08I02IFLVKWJY_X9-t7vvbwPQt5Z0IDwlWUq5ZaJidBM8ahkYNyMNBk4FNINm5AnJ2o6zb766pKmGycgq0pdXmar_ypqOAfCxtLZW4g7LAon4DMIHY4gdjj-m-C7RNiR3rQ1sFHgk3o5q9eLdn6BKeblYrZZDwmGBvvm4sgruG5-hdVbo3JZ_xw183o1AscXDNEyhGtd8qGrLMDkRN2cN9vk9ksfn2NoG43vEh1I-0d0oy_clGxtFsPrqE7xHdfV7Ep7O-rDEDHHPCxXiBniiRGTke8e61VrnIot5TjBkWbZtXrbhRDOxudVDXsb4wPGw-W7bbJ_M18hqbDPVzvL3So5rpK7Ve6S_VgmGai9_cNPR9PPwVjHcRcCDrvvqyu7FMA_d3M9e9liJKePyAPvStBDB4HH5I6tnpCH_ZgO6rX2U1I5RNCACBoQQXcQQQERdAsR1CGCIiIoIoIOiKCICLqLCNoh4hn59uHo9P0x82M2WAH-YsuAxKgiUpKniS0417EpgQgbm4hMcKNKHqksSmyibfrdlMCXRaKNTi0weQFOj-bPyV5VV_YFoSmYh8joGPvICZlZZbg1qTXFhEulE3FAeP_z5YXvQY-jUJb5TcI7ICzctXI9WP5yvewlk3se6fhhDnC78c6Xt3zSK3J_-C-8JnvtemPfkHvFj3bRrN96rP0CiaecNw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+automated+algorithm+configuration+for+distributed+hybrid+flow+shop+scheduling+with+multiprocessor+tasks&rft.jtitle=Knowledge-based+systems&rft.au=Gholami%2C+Hadi&rft.au=Sun%2C+Hongyang&rft.date=2023-03-15&rft.issn=0950-7051&rft.volume=264&rft.spage=110309&rft_id=info:doi/10.1016%2Fj.knosys.2023.110309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2023_110309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon