Pre-intercalation δ-MnO2 Zinc-ion hybrid supercapacitor with high energy storage and Ultra-long cycle life
[Display omitted] •The designed zinc-ion hybrid supercapacitor (ZHSC) adopts battery and capacitor type hybrid energy storage mechanism.•ZHSC has a maximum energy density of 157.2 Wh kg−1 and ultrahigh power density of 16,000 W kg−1.•The capacity retention rate of the ZHSC after 30,000 cycles at 2 A...
Uložené v:
| Vydané v: | Applied surface science Ročník 577; s. 151904 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.03.2022
|
| Predmet: | |
| ISSN: | 0169-4332, 1873-5584 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | [Display omitted]
•The designed zinc-ion hybrid supercapacitor (ZHSC) adopts battery and capacitor type hybrid energy storage mechanism.•ZHSC has a maximum energy density of 157.2 Wh kg−1 and ultrahigh power density of 16,000 W kg−1.•The capacity retention rate of the ZHSC after 30,000 cycles at 2 A g−1 is 80.2%.
As an emerging research on multivalent zinc ion hybrid supercapacitors has been made huge leap, yet low cycle stability and low energy density are always the main bottlenecks of hybrid capacitors. The layered structure material Zn-doped δ-MnO2 to promote the insertion/extraction of zinc ions is used as the cathode and activated carbon is used as the anode exploiting battery and capacitor energy storage mechanism to increase energy density without sacrificing power density. Electrochemical measurements manifested that the assembled aqueous zinc ion hybrid capacitor has a high energy density of 157.2 Wh kg−1, a power density of 16 kW kg−1 (0.2 A g−1) and good cycling stability with 80.2% capacity retention over 30,000 charge/discharge cycles. The excellent electrochemical performance of the device is attributed to the stable layered structure of pre-zincified MnO2, which makes the insertion/extraction of Zn2+ greatly reversible. This study provides a novel strategy for new generation zinc ion hybrid capacitors. |
|---|---|
| AbstractList | [Display omitted]
•The designed zinc-ion hybrid supercapacitor (ZHSC) adopts battery and capacitor type hybrid energy storage mechanism.•ZHSC has a maximum energy density of 157.2 Wh kg−1 and ultrahigh power density of 16,000 W kg−1.•The capacity retention rate of the ZHSC after 30,000 cycles at 2 A g−1 is 80.2%.
As an emerging research on multivalent zinc ion hybrid supercapacitors has been made huge leap, yet low cycle stability and low energy density are always the main bottlenecks of hybrid capacitors. The layered structure material Zn-doped δ-MnO2 to promote the insertion/extraction of zinc ions is used as the cathode and activated carbon is used as the anode exploiting battery and capacitor energy storage mechanism to increase energy density without sacrificing power density. Electrochemical measurements manifested that the assembled aqueous zinc ion hybrid capacitor has a high energy density of 157.2 Wh kg−1, a power density of 16 kW kg−1 (0.2 A g−1) and good cycling stability with 80.2% capacity retention over 30,000 charge/discharge cycles. The excellent electrochemical performance of the device is attributed to the stable layered structure of pre-zincified MnO2, which makes the insertion/extraction of Zn2+ greatly reversible. This study provides a novel strategy for new generation zinc ion hybrid capacitors. |
| ArticleNumber | 151904 |
| Author | Guo, Ruibin Shuai, Chao Yue, Ruimei Liu, Nijuan Liu, Wentong Chen, Ying Mo, Zunli Liu, Guigui He, Simin Pei, Hebing |
| Author_xml | – sequence: 1 givenname: Simin surname: He fullname: He, Simin – sequence: 2 givenname: Zunli surname: Mo fullname: Mo, Zunli email: mozlnwnu@126.com – sequence: 3 givenname: Chao surname: Shuai fullname: Shuai, Chao – sequence: 4 givenname: Wentong surname: Liu fullname: Liu, Wentong – sequence: 5 givenname: Ruimei surname: Yue fullname: Yue, Ruimei – sequence: 6 givenname: Guigui surname: Liu fullname: Liu, Guigui – sequence: 7 givenname: Hebing surname: Pei fullname: Pei, Hebing – sequence: 8 givenname: Ying surname: Chen fullname: Chen, Ying – sequence: 9 givenname: Nijuan surname: Liu fullname: Liu, Nijuan – sequence: 10 givenname: Ruibin surname: Guo fullname: Guo, Ruibin |
| BookMark | eNqFUEtOwzAUtBBItIUbsPAFXPxL4rBAQhU_qags6IaN5dovqUtwKjsF9V6cgzORUlYsYPWkeTOjmRmiw9AGQOiM0TGjLD9fjc06bZIdc8rZmGWspPIADZgqBMkyJQ_RoKeVRArBj9EwpRWljPffAXp5jEB86CBa05jOtwF_fpCHMOP42QdLdsByu4je4bRZ71hrY33XRvzuuyVe-nqJIUCstzj1qKkBm-DwvOmiIU0bamy3tgHc-ApO0FFlmgSnP3eE5jfXT5M7Mp3d3k-upsQKmneEgysqIQtZWMeNk0JWqgRJWVFyoSqTKyGUUxlfgKqccDmXmWOFLBUtBdBCjNDF3tfGNqUIle4Tf3frQ_lGM6p3s-mV3s-md7Pp_Wy9WP4Sr6N_NXH7n-xyL4O-2JuHqJP1ECw4H8F22rX-b4MvY2qMyw |
| CitedBy_id | crossref_primary_10_1016_j_jcis_2024_05_044 crossref_primary_10_1002_bte2_20240035 crossref_primary_10_1016_j_indcrop_2024_118060 crossref_primary_10_1002_smll_202205101 crossref_primary_10_1016_j_jallcom_2022_167153 crossref_primary_10_1016_j_seppur_2024_128031 crossref_primary_10_3390_nano12162856 crossref_primary_10_1016_j_est_2023_110370 crossref_primary_10_1016_j_jelechem_2024_118125 crossref_primary_10_1016_j_est_2023_109583 crossref_primary_10_1016_j_mtener_2022_101188 crossref_primary_10_1016_j_apsusc_2025_164100 crossref_primary_10_1016_j_susmat_2022_e00536 crossref_primary_10_1016_j_mtchem_2025_102788 crossref_primary_10_1080_00194506_2025_2459127 crossref_primary_10_1016_j_jallcom_2025_182324 crossref_primary_10_1016_j_ensm_2025_104476 crossref_primary_10_1088_2515_7655_ad34fc crossref_primary_10_1039_D2EE03719J crossref_primary_10_1002_adma_202502422 crossref_primary_10_1016_j_colsurfa_2025_136163 crossref_primary_10_1039_D3EE04492K crossref_primary_10_1016_j_jpowsour_2024_234767 crossref_primary_10_1088_1402_4896_ad65c4 crossref_primary_10_1016_j_cej_2025_165411 crossref_primary_10_1016_j_ccr_2024_216018 crossref_primary_10_1016_j_jelechem_2022_116838 crossref_primary_10_1016_j_jpowsour_2025_236221 crossref_primary_10_1016_j_electacta_2023_142491 crossref_primary_10_1002_advs_202207329 crossref_primary_10_1007_s11771_025_5996_1 crossref_primary_10_1016_j_est_2024_114836 crossref_primary_10_1016_j_nanoen_2023_108290 crossref_primary_10_1016_j_jallcom_2023_169995 crossref_primary_10_1016_j_ccr_2022_214477 crossref_primary_10_1016_j_electacta_2023_143543 crossref_primary_10_1002_aenm_202403739 crossref_primary_10_1016_j_inoche_2022_110179 crossref_primary_10_1016_j_est_2025_115858 crossref_primary_10_1016_j_jallcom_2023_171488 crossref_primary_10_1039_D2NJ02334B crossref_primary_10_3390_chemosensors10060223 crossref_primary_10_1007_s11664_024_11562_3 crossref_primary_10_1016_j_ccr_2023_215537 crossref_primary_10_1016_j_est_2025_115382 crossref_primary_10_1002_cphc_202200567 crossref_primary_10_3390_catal13040732 crossref_primary_10_1016_j_est_2024_112946 crossref_primary_10_1016_j_est_2025_117568 crossref_primary_10_1016_j_est_2023_108062 crossref_primary_10_1016_j_est_2024_113550 crossref_primary_10_1039_D3SC05639B crossref_primary_10_1002_adfm_202418734 crossref_primary_10_1016_j_est_2023_109597 crossref_primary_10_1016_j_est_2024_115177 crossref_primary_10_1016_j_jallcom_2024_178269 |
| Cites_doi | 10.1039/C9TA02678A 10.1016/j.nanoen.2021.105942 10.1039/C6TA01398H 10.1016/j.enchem.2019.100022 10.1002/slct.201802954 10.1016/j.ensm.2021.03.019 10.1016/j.apsusc.2020.148715 10.1002/anie.201813223 10.1021/la048173f 10.1021/acsami.5b05400 10.1002/aenm.201300816 10.1016/j.nanoen.2020.104523 10.1016/j.jpowsour.2019.227596 10.1002/cey2.69 10.1007/s40820-019-0328-3 10.1016/j.scib.2020.07.009 10.1016/j.cej.2019.123881 10.1016/j.molliq.2020.113074 10.1016/j.pmatsci.2015.04.003 10.1016/j.colsurfa.2020.125637 10.1039/C4CS00266K 10.1016/j.jcis.2020.07.094 10.1002/adfm.202009412 10.1126/science.1249625 10.1002/smll.201702883 10.1021/cm504717p 10.1039/C5TA10582J 10.1016/j.rser.2018.10.026 10.1002/advs.201600539 10.1039/C8TA01031E 10.1039/b813846j 10.1016/j.apsusc.2010.10.051 10.1021/nn300920e 10.1002/adma.201800804 10.1038/nenergy.2016.39 10.1002/smll.201903817 10.1021/acsami.8b21803 10.1016/j.carbon.2019.12.004 10.1016/j.cclet.2020.06.037 10.1016/j.nanoen.2019.103942 10.1016/j.apsusc.2018.04.081 10.1016/j.electacta.2017.01.163 10.1016/j.mtener.2018.10.013 10.1002/aelm.201900537 10.1038/nmat2297 10.1039/C9TA01256G 10.1016/j.ensm.2018.10.020 10.1021/cr5000915 10.1016/j.nantod.2016.08.010 10.1021/acsami.7b05556 10.1021/acsaem.9b00075 10.1021/acsnano.9b04916 10.1016/j.nanoen.2020.104661 10.1016/j.nanoen.2017.02.028 10.1016/j.cej.2020.124028 10.1039/JM9940400875 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.apsusc.2021.151904 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-5584 |
| ExternalDocumentID | 10_1016_j_apsusc_2021_151904 S0169433221029469 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCB SDF SDG SDP SES SMS SPC SPCBC SPD SPG SSK SSM SSQ SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- SEW WUQ ~HD |
| ID | FETCH-LOGICAL-c306t-2ed7f34747cd2ad434f89e40179238fa68338d852be8fd3d6245d17498093e073 |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000736686500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0169-4332 |
| IngestDate | Tue Nov 18 22:42:28 EST 2025 Sat Nov 29 07:25:51 EST 2025 Fri Feb 23 02:41:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Layered manganese dioxide High cycle stability Multivalent ion energy storage Zinc ion hybrid capacitor |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-2ed7f34747cd2ad434f89e40179238fa68338d852be8fd3d6245d17498093e073 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_apsusc_2021_151904 crossref_primary_10_1016_j_apsusc_2021_151904 elsevier_sciencedirect_doi_10_1016_j_apsusc_2021_151904 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 2022-03-00 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied surface science |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhang, Cao, Zhang, Insin, Wang, Han, Zhao, Qin, Huang (b0280) 2021; 31 Aravindan, Gnanaraj, Lee, Madhavi (b0015) 2014; 114 Jiang, Xu, Wu, Dong, Li, Kang (b0270) 2017; 229 Yao, Ji, Chou, Cheng, Yang, Wu, Luo, Zhu, Tang, Wang, Liu (b0205) 2019; 2 Ma, Cheng, Dong, Liu, Mou, Zhao, Wang, Ren, Wu, Xu, Kang (b0145) 2019; 20 Zhang, Wu, Wang, Xu, Li, Yan (b0260) 2021; 32 Li, Li, Wu, Rui, Zeng (b0240) 2015; 7 Fan, Lin, Wang, Ma, Lu (b0065) 2018; 30 Zhang, Pei, Wang, Yuan, Wei, Pan, Mahmood, Shao, Chen (b0135) 2019; 15 Wang, Ye, Yang, Zhong, Hu (b0100) 2021; 85 Xu, Zhu, Feng, Wang, Wu, Ma, Zhang, Wang, Yan (b0050) 2021; 38 Alfaruqi, Mathew, Gim, Kim, Song, Baboo, Choi, Kim (b0250) 2015; 27 Zuo, Li, Zhou, Li, Xia, Liu (b0045) 2017; 4 Hu, Wang, Shang, Xu, Yang, Huang, Liu (b0165) 2021; 581 Wang, Wang, Guo, Ruan, Wei, Ma, Li, Wang, Li, Zeng (b0185) 2019; 5 Li, Hu, Nie, Shang, Jiang, Xu, Yang, Liu (b0190) 2021; 542 Li, Zhang, He, Xu, Sun (b0125) 2020; 449 Yan, Wang, Wei, Fan (b0020) 2014; 4 Dou, Wang, Wang (b0080) 2020; 65 Parija, Prendergast, Banerjee (b0105) 2017; 9 Simon, Gogotsi (b0005) 2008; 7 Simon, Gogotsi, Dunn (b0040) 2014; 343 Han, Zhang, Weng, Kong, Tao, Ding, Ruan, Yang (b0085) 2019; 11 Biesinger, Payne, Grosvenor, Lau, Gerson, Smart (b0220) 2011; 257 Dubal, Ayyad, Ruiz, Gómez-Romero (b0010) 2015; 44 Wang, Wang, Liang, Li, Liu, Tang, Liang, Zhi (b0180) 2019; 13 Dahal, Mukhiya, Ojha (b0195) 2020; 387 Li, Hu, Nie, Shang, Jiang, Xu, Yang, Liu (b0160) 2021; 542 Lv, Yao, Li, Chen (b0035) 2016; 11 Wang, Kang, Wei (b0175) 2015; 74 Jia, Wang, Tawiah, Wang, Chan, Fei, Pan (b0130) 2020; 70 Zhang, Xu, Du, Wu, Li, Zhao, Kaiser, Lei (b0095) 2020; 72 Zhao, Han, Zhang, Huang, Xiao, Chen, Ivey, Deng, Wei (b0275) 2018; 6 Dong, Xu, Li, Huang, Kang, Yang, Zhao (b0030) 2016; 4 Naveed, Yang, Yang, Nuli, Wang (b0285) 2019; 58 Zhu, Shi, Deng, Duan (b0235) 2021; 609 Dong, Yang, Yang, Li, Wu, Wang (b0075) 2019; 7 Zhu, El-Khodary, Li, Zou, Kang, Li, Ng, Liu, Qiu, Zhao, Huang, Lian, Li (b0225) 2020; 385 Nakayama, Konishi, Tagashira, Ogura (b0215) 2005; 21 Goff, Baffier, Bach, Pereira-Ramos (b0210) 1994; 4 Muzaffar, Ahamed, Deshmukh, Thirumalai (b0070) 2019; 101 Chen, Augustyn, Jia, Xiao, Dunn, Lu (b0090) 2012; 6 Xie, Shang, Yang, Hu, Nie, Jiang, Liu (b0170) 2020; 158 Dong, Yang, Yang, Wang, Li, Xu, Wan, He, Kang, Wang (b0245) 2019; 11 Liu, Zhang, Xie, Liu, Lu (b0115) 2020; 2 Radhamani, Krishna Surendra, Rao (b0200) 2018; 450 Liu, Yan, Wang, Zhang, Dang, Wu, Lin, An, Han (b0060) 2019; 11 Zhang, Zhao (b0025) 2009; 38 Zhou, Liu, Wu, Liu, Zhang, Song, Zhang, Gao, Yang, Chen (b0140) 2019; 7 Wang, Liu, Wang, Yuan, Wu, Zhu, Fu, Wu (b0110) 2016; 4 He, Chen, Yan, Xu, Zhou, Mai, Nan (b0120) 2019; 1 Ren, Zhou, Wang, Zhang, Peng, Chen (b0230) 2020; 309 Liu, Zhao, Liu, Yang, Chen, Yang, Cui, Huang, Zhao, Song, Wang, Ding, Song, Qian, Chen, Pan (b0155) 2019; 64 Zhao, Dong, Liu, Xu (b0255) 2018; 3 Wei, Zhang, Wu, Tang, Li, Shen, Wang, Zhou, Lan (b0055) 2017; 34 Pan, Shao, Yan, Cheng, Han, Nie, Wang, Yang, Li, Bhattacharya, Mueller, Liu (b0265) 2016; 1 Zhang, Zhang, Miao, Zhang, Chou (b0150) 2018; 14 Aravindan (10.1016/j.apsusc.2021.151904_b0015) 2014; 114 Xu (10.1016/j.apsusc.2021.151904_b0050) 2021; 38 Li (10.1016/j.apsusc.2021.151904_b0240) 2015; 7 Jia (10.1016/j.apsusc.2021.151904_b0130) 2020; 70 Hu (10.1016/j.apsusc.2021.151904_b0165) 2021; 581 Nakayama (10.1016/j.apsusc.2021.151904_b0215) 2005; 21 Dong (10.1016/j.apsusc.2021.151904_b0075) 2019; 7 Han (10.1016/j.apsusc.2021.151904_b0085) 2019; 11 Zhang (10.1016/j.apsusc.2021.151904_b0135) 2019; 15 Chen (10.1016/j.apsusc.2021.151904_b0090) 2012; 6 Liu (10.1016/j.apsusc.2021.151904_b0155) 2019; 64 Wang (10.1016/j.apsusc.2021.151904_b0110) 2016; 4 Zhou (10.1016/j.apsusc.2021.151904_b0140) 2019; 7 He (10.1016/j.apsusc.2021.151904_b0120) 2019; 1 Wang (10.1016/j.apsusc.2021.151904_b0180) 2019; 13 Naveed (10.1016/j.apsusc.2021.151904_b0285) 2019; 58 Dubal (10.1016/j.apsusc.2021.151904_b0010) 2015; 44 Li (10.1016/j.apsusc.2021.151904_b0160) 2021; 542 Fan (10.1016/j.apsusc.2021.151904_b0065) 2018; 30 Zhu (10.1016/j.apsusc.2021.151904_b0225) 2020; 385 Lv (10.1016/j.apsusc.2021.151904_b0035) 2016; 11 Liu (10.1016/j.apsusc.2021.151904_b0115) 2020; 2 Li (10.1016/j.apsusc.2021.151904_b0190) 2021; 542 Zhao (10.1016/j.apsusc.2021.151904_b0255) 2018; 3 Yao (10.1016/j.apsusc.2021.151904_b0205) 2019; 2 Zuo (10.1016/j.apsusc.2021.151904_b0045) 2017; 4 Dou (10.1016/j.apsusc.2021.151904_b0080) 2020; 65 Dahal (10.1016/j.apsusc.2021.151904_b0195) 2020; 387 Biesinger (10.1016/j.apsusc.2021.151904_b0220) 2011; 257 Yan (10.1016/j.apsusc.2021.151904_b0020) 2014; 4 Zhang (10.1016/j.apsusc.2021.151904_b0095) 2020; 72 Alfaruqi (10.1016/j.apsusc.2021.151904_b0250) 2015; 27 Pan (10.1016/j.apsusc.2021.151904_b0265) 2016; 1 Parija (10.1016/j.apsusc.2021.151904_b0105) 2017; 9 Zhu (10.1016/j.apsusc.2021.151904_b0235) 2021; 609 Zhang (10.1016/j.apsusc.2021.151904_b0025) 2009; 38 Dong (10.1016/j.apsusc.2021.151904_b0030) 2016; 4 Zhang (10.1016/j.apsusc.2021.151904_b0150) 2018; 14 Goff (10.1016/j.apsusc.2021.151904_b0210) 1994; 4 Zhang (10.1016/j.apsusc.2021.151904_b0260) 2021; 32 Wei (10.1016/j.apsusc.2021.151904_b0055) 2017; 34 Zhao (10.1016/j.apsusc.2021.151904_b0275) 2018; 6 Ren (10.1016/j.apsusc.2021.151904_b0230) 2020; 309 Radhamani (10.1016/j.apsusc.2021.151904_b0200) 2018; 450 Liu (10.1016/j.apsusc.2021.151904_b0060) 2019; 11 Li (10.1016/j.apsusc.2021.151904_b0125) 2020; 449 Jiang (10.1016/j.apsusc.2021.151904_b0270) 2017; 229 Wang (10.1016/j.apsusc.2021.151904_b0185) 2019; 5 Xie (10.1016/j.apsusc.2021.151904_b0170) 2020; 158 Dong (10.1016/j.apsusc.2021.151904_b0245) 2019; 11 Wang (10.1016/j.apsusc.2021.151904_b0100) 2021; 85 Ma (10.1016/j.apsusc.2021.151904_b0145) 2019; 20 Simon (10.1016/j.apsusc.2021.151904_b0040) 2014; 343 Zhang (10.1016/j.apsusc.2021.151904_b0280) 2021; 31 Wang (10.1016/j.apsusc.2021.151904_b0175) 2015; 74 Simon (10.1016/j.apsusc.2021.151904_b0005) 2008; 7 Muzaffar (10.1016/j.apsusc.2021.151904_b0070) 2019; 101 |
| References_xml | – volume: 64 start-page: 103942 year: 2019 ident: b0155 article-title: Tuning phase evolution of β-MnO publication-title: Nano Energy – volume: 1 start-page: 100022 year: 2019 ident: b0120 article-title: Building better zinc-ion batteries: A materials perspective publication-title: EnergyChem – volume: 4 start-page: 5115 year: 2016 end-page: 5123 ident: b0110 article-title: A conductive polymer coated MoO publication-title: J. Mater. Chem. A – volume: 2 start-page: 521 year: 2020 end-page: 539 ident: b0115 article-title: Recent progress and challenges of carbon materials for Zn-ion hybrid supercapacitors publication-title: Carbon Energy – volume: 30 start-page: 1800804 year: 2018 ident: b0065 article-title: A nonaqueous potassium-based battery–supercapacitor hybrid device publication-title: Adv. Mater. – volume: 450 start-page: 209 year: 2018 end-page: 218 ident: b0200 article-title: Zn doped δ-MnO publication-title: Appl. Surf. Sci. – volume: 7 start-page: 19316 year: 2015 end-page: 19323 ident: b0240 article-title: Two-dimensional, porous nickel–cobalt sulfide for high-performance asymmetric supercapacitors publication-title: ACS Appl. Mater. Interfaces – volume: 70 start-page: 104523 year: 2020 ident: b0130 article-title: Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries publication-title: Nano Energy – volume: 38 start-page: 299 year: 2021 end-page: 308 ident: b0050 article-title: A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na publication-title: Energy Storage Mater. – volume: 7 start-page: 9708 year: 2019 end-page: 9715 ident: b0140 article-title: Boosting the electrochemical performance through proton transfer for the Zn-ion hybrid supercapacitor with both ionic liquid and organic electrolytes publication-title: J. Mater. Chem. A – volume: 449 start-page: 227596 year: 2020 ident: b0125 article-title: Cathode materials for rechargeable zinc-ion batteries: From synthesis to mechanism and applications publication-title: J. Power Sources – volume: 7 start-page: 13810 year: 2019 end-page: 13832 ident: b0075 article-title: Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors publication-title: J. Mater. Chem. A – volume: 65 start-page: 1812 year: 2020 end-page: 1822 ident: b0080 article-title: “Water in salt/ionic liquid” electrolyte for 2.8 V aqueous lithium-ion capacitor publication-title: Science Bulletin – volume: 32 start-page: 926 year: 2021 end-page: 931 ident: b0260 article-title: An aqueous zinc-ion hybrid super-capacitor for achieving ultrahigh-volumetric energy density publication-title: Chin. Chem. Lett. – volume: 11 start-page: 644 year: 2016 end-page: 660 ident: b0035 article-title: Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes publication-title: Nano Today – volume: 114 start-page: 11619 year: 2014 end-page: 11635 ident: b0015 article-title: Insertion-type electrodes for nonaqueous Li-ion capacitors publication-title: Chem. Rev. – volume: 387 year: 2020 ident: b0195 article-title: A multicore-shell architecture with a phase-selective (α+ δ) MnO publication-title: Chem. Eng. J. – volume: 4 start-page: 875 year: 1994 end-page: 881 ident: b0210 article-title: Structural and electrochemical properties of layered manganese dioxides in relation to their synthesis: classical and sol–gel routes publication-title: J. Mater. Chem. – volume: 20 start-page: 335 year: 2019 end-page: 342 ident: b0145 article-title: Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors publication-title: Energy Storage Mater. – volume: 11 start-page: 30 year: 2019 end-page: 45 ident: b0085 article-title: Two-dimensional materials for lithium/sodium-ion capacitors publication-title: Mater. Today Energy – volume: 343 start-page: 1210 year: 2014 end-page: 1211 ident: b0040 article-title: Where do batteries end and supercapacitors begin? publication-title: Science – volume: 38 start-page: 2520 year: 2009 end-page: 2531 ident: b0025 article-title: Carbon-based materials as supercapacitor electrodes publication-title: Chem. Soc. Rev. – volume: 1 year: 2016 ident: b0265 article-title: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions publication-title: Nat. Energy – volume: 609 start-page: 125637 year: 2021 ident: b0235 article-title: Efficient degradation of sulfadiazine using magnetically recoverable MnFe publication-title: Colloids Surf., A – volume: 6 start-page: 5733 year: 2018 end-page: 5739 ident: b0275 article-title: Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO publication-title: J. Mater. Chem. A – volume: 158 start-page: 184 year: 2020 end-page: 192 ident: b0170 article-title: 3D interconnected boron-and nitrogen-codoped carbon nanosheets decorated with manganese oxides for high-performance capacitive deionization publication-title: Carbon – volume: 34 start-page: 205 year: 2017 end-page: 214 ident: b0055 article-title: POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage publication-title: Nano Energy – volume: 14 start-page: 1702883 year: 2018 ident: b0150 article-title: Research progress in MnO publication-title: Small – volume: 21 start-page: 354 year: 2005 end-page: 359 ident: b0215 article-title: Electrochemical synthesis of layered manganese oxides intercalated with tetraalkylammonium ions publication-title: Langmuir – volume: 2 start-page: 2743 year: 2019 end-page: 2750 ident: b0205 article-title: Simple and cost-effective approach to dramatically enhance the durability and capability of a layered δ-MnO publication-title: ACS Appl. Energy Mater. – volume: 72 start-page: 104661 year: 2020 ident: b0095 article-title: Oxygen-functionalized soft carbon nanofibers as high-performance cathode of K-ion hybrid capacitor publication-title: Nano Energy – volume: 27 start-page: 3609 year: 2015 end-page: 3620 ident: b0250 article-title: Electrochemically induced structural transformation in a γ-MnO publication-title: Chem. Mater. – volume: 85 start-page: 105942 year: 2021 ident: b0100 article-title: Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives publication-title: Nano Energy – volume: 4 start-page: 1600539 year: 2017 ident: b0045 article-title: Battery-supercapacitor hybrid devices: recent progress and future prospects publication-title: Adv. Sci. – volume: 44 start-page: 1777 year: 2015 end-page: 1790 ident: b0010 article-title: Hybrid energy storage: the merging of battery and supercapacitor chemistries publication-title: Chem. Soc. Rev. – volume: 15 start-page: 1903817 year: 2019 ident: b0135 article-title: Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics publication-title: Small – volume: 31 start-page: 2009412 year: 2021 ident: b0280 article-title: Inhibition of Manganese Dissolution in Mn publication-title: Adv. Funct. Mater. – volume: 542 start-page: 148715 year: 2021 ident: b0190 article-title: Fe-regulated δ-MnO publication-title: Appl. Surf. Sci. – volume: 58 start-page: 2760 year: 2019 end-page: 2764 ident: b0285 article-title: Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 9984 year: 2019 end-page: 9993 ident: b0060 article-title: Achieving ultrahigh capacity with self-assembled Ni(OH) publication-title: ACS Appl. Mater. Interfaces – volume: 74 start-page: 51 year: 2015 end-page: 124 ident: b0175 article-title: Engineering of MnO publication-title: Prog. Mater Sci. – volume: 6 start-page: 4319 year: 2012 end-page: 4327 ident: b0090 article-title: High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites publication-title: ACS Nano – volume: 3 start-page: 12661 year: 2018 end-page: 12665 ident: b0255 article-title: Binary and Ternary Manganese Dioxide Composites Cathode for Aqueous Zinc-ion Battery publication-title: ChemistrySelect – volume: 4 start-page: 4659 year: 2016 end-page: 4685 ident: b0030 article-title: Flexible electrodes and supercapacitors for wearable energy storage: a review by category publication-title: J. Mater. Chem. A – volume: 309 start-page: 113074 year: 2020 ident: b0230 article-title: Biomaterial-based flower-like MnO publication-title: J. Mol. Liq. – volume: 257 start-page: 2717 year: 2011 end-page: 2730 ident: b0220 article-title: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe Co and Ni publication-title: Appl. Surf. Sci. – volume: 4 start-page: 1300816 year: 2014 ident: b0020 article-title: Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities publication-title: Adv. Energy Mater. – volume: 13 start-page: 10643 year: 2019 end-page: 10652 ident: b0180 article-title: A superior δ-MnO publication-title: ACS Nano – volume: 5 start-page: 1900537 year: 2019 ident: b0185 article-title: Mxene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life publication-title: Adv. Electron. Mater. – volume: 11 year: 2019 ident: b0245 article-title: High-power and ultralong-life aqueous zinc-ion hybrid capacitors based on pseudocapacitive charge storage publication-title: Nano-Micro Letters – volume: 542 start-page: 148715 year: 2021 ident: b0160 article-title: Fe-regulated δ-MnO publication-title: Appl. Surf. Sci. – volume: 229 start-page: 422 year: 2017 end-page: 428 ident: b0270 article-title: Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life publication-title: Electrochim. Acta – volume: 9 start-page: 23756 year: 2017 end-page: 23765 ident: b0105 article-title: Evaluation of multivalent cation insertion in single-and double-layered polymorphs of V publication-title: ACS Appl. Mater. Interfaces – volume: 101 start-page: 123 year: 2019 end-page: 145 ident: b0070 article-title: A review on recent advances in hybrid supercapacitors: Design, fabrication and applications publication-title: Renew. Sustain. Energy Rev. – volume: 581 start-page: 66 year: 2021 end-page: 75 ident: b0165 article-title: Structure-tunable Mn publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 845 year: 2008 end-page: 854 ident: b0005 article-title: Materials for electrochemical capacitors publication-title: Nat. Mater. – volume: 385 start-page: 123881 year: 2020 ident: b0225 article-title: Roselle-like Zn publication-title: Chem. Eng. J. – volume: 7 start-page: 13810 issue: 23 year: 2019 ident: 10.1016/j.apsusc.2021.151904_b0075 article-title: Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02678A – volume: 85 start-page: 105942 year: 2021 ident: 10.1016/j.apsusc.2021.151904_b0100 article-title: Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105942 – volume: 4 start-page: 5115 issue: 14 year: 2016 ident: 10.1016/j.apsusc.2021.151904_b0110 article-title: A conductive polymer coated MoO3 anode enables an Al-ion capacitor with high performance publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01398H – volume: 1 start-page: 100022 issue: 3 year: 2019 ident: 10.1016/j.apsusc.2021.151904_b0120 article-title: Building better zinc-ion batteries: A materials perspective publication-title: EnergyChem doi: 10.1016/j.enchem.2019.100022 – volume: 3 start-page: 12661 issue: 44 year: 2018 ident: 10.1016/j.apsusc.2021.151904_b0255 article-title: Binary and Ternary Manganese Dioxide Composites Cathode for Aqueous Zinc-ion Battery publication-title: ChemistrySelect doi: 10.1002/slct.201802954 – volume: 38 start-page: 299 year: 2021 ident: 10.1016/j.apsusc.2021.151904_b0050 article-title: A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na2SO4 electrolyte additive[J] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.03.019 – volume: 542 start-page: 148715 year: 2021 ident: 10.1016/j.apsusc.2021.151904_b0190 article-title: Fe-regulated δ-MnO2 nanosheet assembly on carbon nanofiber under acidic condition for high performance supercapacitor and capacitive deionization publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.148715 – volume: 58 start-page: 2760 issue: 9 year: 2019 ident: 10.1016/j.apsusc.2021.151904_b0285 article-title: Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201813223 – volume: 21 start-page: 354 issue: 1 year: 2005 ident: 10.1016/j.apsusc.2021.151904_b0215 article-title: Electrochemical synthesis of layered manganese oxides intercalated with tetraalkylammonium ions publication-title: Langmuir doi: 10.1021/la048173f – volume: 7 start-page: 19316 issue: 34 year: 2015 ident: 10.1016/j.apsusc.2021.151904_b0240 article-title: Two-dimensional, porous nickel–cobalt sulfide for high-performance asymmetric supercapacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05400 – volume: 4 start-page: 1300816 issue: 4 year: 2014 ident: 10.1016/j.apsusc.2021.151904_b0020 article-title: Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300816 – volume: 70 start-page: 104523 year: 2020 ident: 10.1016/j.apsusc.2021.151904_b0130 article-title: Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104523 – volume: 449 start-page: 227596 year: 2020 ident: 10.1016/j.apsusc.2021.151904_b0125 article-title: Cathode materials for rechargeable zinc-ion batteries: From synthesis to mechanism and applications publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227596 – volume: 2 start-page: 521 issue: 4 year: 2020 ident: 10.1016/j.apsusc.2021.151904_b0115 article-title: Recent progress and challenges of carbon materials for Zn-ion hybrid supercapacitors publication-title: Carbon Energy doi: 10.1002/cey2.69 – volume: 11 issue: 1 year: 2019 ident: 10.1016/j.apsusc.2021.151904_b0245 article-title: High-power and ultralong-life aqueous zinc-ion hybrid capacitors based on pseudocapacitive charge storage publication-title: Nano-Micro Letters doi: 10.1007/s40820-019-0328-3 – volume: 65 start-page: 1812 issue: 21 year: 2020 ident: 10.1016/j.apsusc.2021.151904_b0080 article-title: “Water in salt/ionic liquid” electrolyte for 2.8 V aqueous lithium-ion capacitor publication-title: Science Bulletin doi: 10.1016/j.scib.2020.07.009 – volume: 385 start-page: 123881 year: 2020 ident: 10.1016/j.apsusc.2021.151904_b0225 article-title: Roselle-like Zn2Ti3O8/rGO nanocomposite as anode for lithium ion capacitor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123881 – volume: 309 start-page: 113074 year: 2020 ident: 10.1016/j.apsusc.2021.151904_b0230 article-title: Biomaterial-based flower-like MnO2@ carbon microspheres for rapid adsorption of amoxicillin from wastewater publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.113074 – volume: 74 start-page: 51 year: 2015 ident: 10.1016/j.apsusc.2021.151904_b0175 article-title: Engineering of MnO2-based nanocomposites for high-performance supercapacitors publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2015.04.003 – volume: 609 start-page: 125637 year: 2021 ident: 10.1016/j.apsusc.2021.151904_b0235 article-title: Efficient degradation of sulfadiazine using magnetically recoverable MnFe2O4/δ-MnO2 hybrid as a heterogeneous catalyst of peroxymonosulfate publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2020.125637 – volume: 44 start-page: 1777 issue: 7 year: 2015 ident: 10.1016/j.apsusc.2021.151904_b0010 article-title: Hybrid energy storage: the merging of battery and supercapacitor chemistries publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00266K – volume: 581 start-page: 66 year: 2021 ident: 10.1016/j.apsusc.2021.151904_b0165 article-title: Structure-tunable Mn3O4-Fe3O4@ C hybrids for high-performance supercapacitor[J] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.07.094 – volume: 31 start-page: 2009412 issue: 14 year: 2021 ident: 10.1016/j.apsusc.2021.151904_b0280 article-title: Inhibition of Manganese Dissolution in Mn2O3 Cathode with Controllable Ni2+ Incorporation for High-Performance Zinc Ion Battery publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009412 – volume: 343 start-page: 1210 issue: 6176 year: 2014 ident: 10.1016/j.apsusc.2021.151904_b0040 article-title: Where do batteries end and supercapacitors begin? publication-title: Science doi: 10.1126/science.1249625 – volume: 14 start-page: 1702883 issue: 24 year: 2018 ident: 10.1016/j.apsusc.2021.151904_b0150 article-title: Research progress in MnO2–carbon based supercapacitor electrode materials[J] publication-title: Small doi: 10.1002/smll.201702883 – volume: 27 start-page: 3609 issue: 10 year: 2015 ident: 10.1016/j.apsusc.2021.151904_b0250 article-title: Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system publication-title: Chem. Mater. doi: 10.1021/cm504717p – volume: 4 start-page: 4659 issue: 13 year: 2016 ident: 10.1016/j.apsusc.2021.151904_b0030 article-title: Flexible electrodes and supercapacitors for wearable energy storage: a review by category publication-title: J. Mater. Chem. A doi: 10.1039/C5TA10582J – volume: 542 start-page: 148715 year: 2021 ident: 10.1016/j.apsusc.2021.151904_b0160 article-title: Fe-regulated δ-MnO2 nanosheet assembly on carbon nanofiber under acidic condition for high performance supercapacitor and capacitive deionization[J] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.148715 – volume: 101 start-page: 123 year: 2019 ident: 10.1016/j.apsusc.2021.151904_b0070 article-title: A review on recent advances in hybrid supercapacitors: Design, fabrication and applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.10.026 – volume: 4 start-page: 1600539 issue: 7 year: 2017 ident: 10.1016/j.apsusc.2021.151904_b0045 article-title: Battery-supercapacitor hybrid devices: recent progress and future prospects publication-title: Adv. Sci. doi: 10.1002/advs.201600539 – volume: 6 start-page: 5733 issue: 14 year: 2018 ident: 10.1016/j.apsusc.2021.151904_b0275 article-title: Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO2 rechargeable batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01031E – volume: 38 start-page: 2520 issue: 9 year: 2009 ident: 10.1016/j.apsusc.2021.151904_b0025 article-title: Carbon-based materials as supercapacitor electrodes publication-title: Chem. Soc. Rev. doi: 10.1039/b813846j – volume: 257 start-page: 2717 issue: 7 year: 2011 ident: 10.1016/j.apsusc.2021.151904_b0220 article-title: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe Co and Ni publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.10.051 – volume: 6 start-page: 4319 issue: 5 year: 2012 ident: 10.1016/j.apsusc.2021.151904_b0090 article-title: High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites publication-title: ACS Nano doi: 10.1021/nn300920e – volume: 30 start-page: 1800804 issue: 20 year: 2018 ident: 10.1016/j.apsusc.2021.151904_b0065 article-title: A nonaqueous potassium-based battery–supercapacitor hybrid device publication-title: Adv. Mater. doi: 10.1002/adma.201800804 – volume: 1 issue: 5 year: 2016 ident: 10.1016/j.apsusc.2021.151904_b0265 article-title: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions publication-title: Nat. Energy doi: 10.1038/nenergy.2016.39 – volume: 15 start-page: 1903817 issue: 47 year: 2019 ident: 10.1016/j.apsusc.2021.151904_b0135 article-title: Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics publication-title: Small doi: 10.1002/smll.201903817 – volume: 11 start-page: 9984 issue: 10 year: 2019 ident: 10.1016/j.apsusc.2021.151904_b0060 article-title: Achieving ultrahigh capacity with self-assembled Ni(OH)2 nanosheet-decorated hierarchical flower-like MnCo2O4.5 nanoneedles as advanced electrodes of battery–supercapacitor hybrid devices publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b21803 – volume: 158 start-page: 184 year: 2020 ident: 10.1016/j.apsusc.2021.151904_b0170 article-title: 3D interconnected boron-and nitrogen-codoped carbon nanosheets decorated with manganese oxides for high-performance capacitive deionization publication-title: Carbon doi: 10.1016/j.carbon.2019.12.004 – volume: 32 start-page: 926 issue: 2 year: 2021 ident: 10.1016/j.apsusc.2021.151904_b0260 article-title: An aqueous zinc-ion hybrid super-capacitor for achieving ultrahigh-volumetric energy density publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.06.037 – volume: 64 start-page: 103942 year: 2019 ident: 10.1016/j.apsusc.2021.151904_b0155 article-title: Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103942 – volume: 450 start-page: 209 year: 2018 ident: 10.1016/j.apsusc.2021.151904_b0200 article-title: Zn doped δ-MnO2 nano flakes: an efficient electrode material for aqueous and solid state asymmetric supercapacitors publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.04.081 – volume: 229 start-page: 422 year: 2017 ident: 10.1016/j.apsusc.2021.151904_b0270 article-title: Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.01.163 – volume: 11 start-page: 30 year: 2019 ident: 10.1016/j.apsusc.2021.151904_b0085 article-title: Two-dimensional materials for lithium/sodium-ion capacitors publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2018.10.013 – volume: 5 start-page: 1900537 issue: 12 year: 2019 ident: 10.1016/j.apsusc.2021.151904_b0185 article-title: Mxene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201900537 – volume: 7 start-page: 845 issue: 11 year: 2008 ident: 10.1016/j.apsusc.2021.151904_b0005 article-title: Materials for electrochemical capacitors publication-title: Nat. Mater. doi: 10.1038/nmat2297 – volume: 7 start-page: 9708 issue: 16 year: 2019 ident: 10.1016/j.apsusc.2021.151904_b0140 article-title: Boosting the electrochemical performance through proton transfer for the Zn-ion hybrid supercapacitor with both ionic liquid and organic electrolytes publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01256G – volume: 20 start-page: 335 year: 2019 ident: 10.1016/j.apsusc.2021.151904_b0145 article-title: Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.10.020 – volume: 114 start-page: 11619 issue: 23 year: 2014 ident: 10.1016/j.apsusc.2021.151904_b0015 article-title: Insertion-type electrodes for nonaqueous Li-ion capacitors publication-title: Chem. Rev. doi: 10.1021/cr5000915 – volume: 11 start-page: 644 issue: 5 year: 2016 ident: 10.1016/j.apsusc.2021.151904_b0035 article-title: Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes publication-title: Nano Today doi: 10.1016/j.nantod.2016.08.010 – volume: 9 start-page: 23756 issue: 28 year: 2017 ident: 10.1016/j.apsusc.2021.151904_b0105 article-title: Evaluation of multivalent cation insertion in single-and double-layered polymorphs of V2O5 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05556 – volume: 2 start-page: 2743 issue: 4 year: 2019 ident: 10.1016/j.apsusc.2021.151904_b0205 article-title: Simple and cost-effective approach to dramatically enhance the durability and capability of a layered δ-MnO2 based electrode for pseudocapacitors: a practical electrochemical test and mechanistic revealing publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00075 – volume: 13 start-page: 10643 issue: 9 year: 2019 ident: 10.1016/j.apsusc.2021.151904_b0180 article-title: A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery publication-title: ACS Nano doi: 10.1021/acsnano.9b04916 – volume: 72 start-page: 104661 year: 2020 ident: 10.1016/j.apsusc.2021.151904_b0095 article-title: Oxygen-functionalized soft carbon nanofibers as high-performance cathode of K-ion hybrid capacitor publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104661 – volume: 34 start-page: 205 year: 2017 ident: 10.1016/j.apsusc.2021.151904_b0055 article-title: POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.02.028 – volume: 387 year: 2020 ident: 10.1016/j.apsusc.2021.151904_b0195 article-title: A multicore-shell architecture with a phase-selective (α+ δ) MnO2 shell for an aqueous-KOH-based supercapacitor with high operating potential publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124028 – volume: 4 start-page: 875 issue: 6 year: 1994 ident: 10.1016/j.apsusc.2021.151904_b0210 article-title: Structural and electrochemical properties of layered manganese dioxides in relation to their synthesis: classical and sol–gel routes publication-title: J. Mater. Chem. doi: 10.1039/JM9940400875 |
| SSID | ssj0012873 |
| Score | 2.5964549 |
| Snippet | [Display omitted]
•The designed zinc-ion hybrid supercapacitor (ZHSC) adopts battery and capacitor type hybrid energy storage mechanism.•ZHSC has a maximum... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 151904 |
| SubjectTerms | High cycle stability Layered manganese dioxide Multivalent ion energy storage Zinc ion hybrid capacitor |
| Title | Pre-intercalation δ-MnO2 Zinc-ion hybrid supercapacitor with high energy storage and Ultra-long cycle life |
| URI | https://dx.doi.org/10.1016/j.apsusc.2021.151904 |
| Volume | 577 |
| WOSCitedRecordID | wos000736686500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5584 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012873 issn: 0169-4332 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOiE8xvuQDnCpPbewk9nFURYDG2GFD1S6Rl9g0I8qqtJm2M_8Sfwd_E-_FcdpSNNiBS1RZjhPl9_Pze6_vg5DXQ7DWdKY0i4faMGGtZjoUATPqVFqsD5c1sTlf9uODAzmZqMNe77vPhbko4rKUl5dq9l-hhjEAG1NnbwB3tygMwG8AHa4AO1z_CfjDyjAsAlHB12_RHY3fvBXsU_k56J_kZcpwcHqFuVr9eT3DmWA5w9aunFsWSxj3jUsKxOBJDOtB__pxsag0K7A7UXoFT-0XuV2LJPIq7byurMbatU5wLP2tja8V-4h1ODee2pO6LPLO1zOtXYvs0VSf-8H9vG6iAQ22PP666qoAK7eL1fLey0hhitaa-A3bNi5OgIIColw_4g3Z7twMZ7t6NscWcPCA4e5y-nop7d-OuC7w0Me0nSVulQRXSdwqt8h2EIcKROP23ofx5GP3ZxQYldyViHdv7zMwmzDBzbf5s4azorUc3Sf3WnOD7jmaPCA9Uz4kd1eKUD4i3zYIQ3_-aMhCPVmoIwtdJwtFslAkC3VkoS1ZKJCFLslCG7JQJMtjcvxufDR6z9oWHCwFW3LBApPFlguwOdMM9rTgwkplBIpx0PWsjiTnMpNhcGqkzXgWBSLMwMhVcqC4gePjCdkqz0vzlNBQD7iSKoUDQQsbKRmpSA9sGsRgcYOSuEO4_2xJ2tanxzYpRXIdaDuEdXfNXH2Wv8yPPSJJuwmc7pgAza6989kNn_Sc3FnugRdka1HV5iW5nV4s8nn1quXYLxQRn6I |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pre-intercalation+%CE%B4-MnO2+Zinc-ion+hybrid+supercapacitor+with+high+energy+storage+and+Ultra-long+cycle+life&rft.jtitle=Applied+surface+science&rft.au=He%2C+Simin&rft.au=Mo%2C+Zunli&rft.au=Shuai%2C+Chao&rft.au=Liu%2C+Wentong&rft.date=2022-03-01&rft.issn=0169-4332&rft.volume=577&rft.spage=151904&rft_id=info:doi/10.1016%2Fj.apsusc.2021.151904&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apsusc_2021_151904 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon |