Layout optimization of large-scale oil–gas gathering system based on combined optimization strategy
Layout optimization of large-scale oil–gas gathering system is a kind of NP-hard problem in the field of system optimization. It involves a large number of network nodes, coupled optimization variables, complex network structures and hydraulic constraints, which cause the great difficulty in constru...
Saved in:
| Published in: | Neurocomputing (Amsterdam) Vol. 332; pp. 159 - 183 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
07.03.2019
|
| Subjects: | |
| ISSN: | 0925-2312, 1872-8286 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Layout optimization of large-scale oil–gas gathering system is a kind of NP-hard problem in the field of system optimization. It involves a large number of network nodes, coupled optimization variables, complex network structures and hydraulic constraints, which cause the great difficulty in constructing optimization models and solution methods. In this paper, a high-dimensional mixed integer nonlinear layout optimization mathematical model involving the pipeline network structure parameters and pipeline design parameters is established, which can be applied to large-scale oil gathering system and gas gathering system universally. A modified particle swarm optimization (MPSO) algorithm with global search ability is proposed. The convergence theorem of the stochastic optimization algorithm is established based on the Poincare cycle theory. Global convergence of MPSO algorithm is proved, and the performance of MPSO algorithm is analyzed by numerical experiments. Based on dimension reduction planning and modularization thought, the grid dissection set partition method is proposed, and the theoretical foundation and complexity of the grid dissection method are discussed. In order to reduce the dimension of the layout optimization problem, the concept of the fuzzy set of adjacent position, and a novel approach for the well-station connection mode optimization are put forward. Based on the MPSO algorithm, grid dissection set partition method and solution method by fuzzy set of adjacent position, a combined optimization strategy for layout optimization model is proposed. The reliability and practicality of the proposed layout optimization model and combined optimization strategy are verified by the successful application of a real-world large-scale oil field with 661 wells. |
|---|---|
| AbstractList | Layout optimization of large-scale oil–gas gathering system is a kind of NP-hard problem in the field of system optimization. It involves a large number of network nodes, coupled optimization variables, complex network structures and hydraulic constraints, which cause the great difficulty in constructing optimization models and solution methods. In this paper, a high-dimensional mixed integer nonlinear layout optimization mathematical model involving the pipeline network structure parameters and pipeline design parameters is established, which can be applied to large-scale oil gathering system and gas gathering system universally. A modified particle swarm optimization (MPSO) algorithm with global search ability is proposed. The convergence theorem of the stochastic optimization algorithm is established based on the Poincare cycle theory. Global convergence of MPSO algorithm is proved, and the performance of MPSO algorithm is analyzed by numerical experiments. Based on dimension reduction planning and modularization thought, the grid dissection set partition method is proposed, and the theoretical foundation and complexity of the grid dissection method are discussed. In order to reduce the dimension of the layout optimization problem, the concept of the fuzzy set of adjacent position, and a novel approach for the well-station connection mode optimization are put forward. Based on the MPSO algorithm, grid dissection set partition method and solution method by fuzzy set of adjacent position, a combined optimization strategy for layout optimization model is proposed. The reliability and practicality of the proposed layout optimization model and combined optimization strategy are verified by the successful application of a real-world large-scale oil field with 661 wells. |
| Author | Chen, Shuangqing Liu, Yang Guan, Bing Xu, Ping |
| Author_xml | – sequence: 1 givenname: Yang surname: Liu fullname: Liu, Yang – sequence: 2 givenname: Shuangqing orcidid: 0000-0002-4578-756X surname: Chen fullname: Chen, Shuangqing email: csqing2590@163.com – sequence: 3 givenname: Bing surname: Guan fullname: Guan, Bing – sequence: 4 givenname: Ping surname: Xu fullname: Xu, Ping |
| BookMark | eNqFkEtOwzAQhi1UJErhBix8gQQ_mjhmgYQqXlIlNrC2HHsSXKVxZbtIYcUduCEnIaUsEAtYzWy-f_75jtGk9z0gdEZJTgktz1d5D1vj1zkjtMopywmjB2hKK8GyilXlBE2JZEXGOGVH6DjGFSFUUCanCJZ68NuE_Sa5tXvVyfke-wZ3OrSQRaM7wN51H2_vrY641ekZgutbHIeYYI1rHcHiERmv167f7T-DYgo6QTucoMNGdxFOv-cMPd1cPy7usuXD7f3iapkZTsqUMRCG26YQpRWFFaWuLCsoEZSXcypLLmtjaiOt0FwzwflcylqQShJCOBdQ8Rm62Oea4GMM0Cjj0leVsYjrFCVqJ0yt1F6Y2glTlKlR2AjPf8Gb4NY6DP9hl3sMxsdeHAQVjYPegHUBTFLWu78DPgFdl4ww |
| CitedBy_id | crossref_primary_10_2118_205374_PA crossref_primary_10_1002_rnc_4963 crossref_primary_10_1007_s12517_021_08390_8 crossref_primary_10_1007_s00500_023_09517_7 crossref_primary_10_1109_TNNLS_2020_3027252 crossref_primary_10_1109_TCYB_2020_3036364 crossref_primary_10_3390_math12182819 crossref_primary_10_1016_j_petsci_2021_09_045 crossref_primary_10_1016_j_petrol_2020_108141 crossref_primary_10_1016_j_neucom_2020_10_050 crossref_primary_10_7717_peerj_cs_1399 crossref_primary_10_1016_j_neucom_2019_03_003 crossref_primary_10_1155_2022_7414165 crossref_primary_10_3233_JIFS_200044 crossref_primary_10_1109_JAS_2021_1003919 crossref_primary_10_1016_j_applthermaleng_2023_120153 crossref_primary_10_2118_205345_PA crossref_primary_10_1016_j_petrol_2020_108304 crossref_primary_10_1016_j_apenergy_2019_114453 crossref_primary_10_1155_2021_4254791 crossref_primary_10_1007_s12182_021_00558_x crossref_primary_10_1061_JLEED9_EYENG_5886 crossref_primary_10_1016_j_oceaneng_2021_109072 crossref_primary_10_1038_s41598_024_83495_0 crossref_primary_10_1177_0144598720981532 crossref_primary_10_1002_ente_201901381 crossref_primary_10_1016_j_heliyon_2024_e41307 crossref_primary_10_1007_s13042_021_01440_3 crossref_primary_10_1016_j_neucom_2020_04_001 crossref_primary_10_3390_a17080340 crossref_primary_10_1016_j_ress_2023_109135 crossref_primary_10_2118_201192_PA crossref_primary_10_1016_j_petrol_2020_108312 crossref_primary_10_1155_2020_8831111 crossref_primary_10_1177_0144598721998497 crossref_primary_10_1109_TCYB_2021_3057545 crossref_primary_10_2118_199902_PA crossref_primary_10_3390_pr7120927 crossref_primary_10_1016_j_automatica_2021_109961 crossref_primary_10_1088_1742_6596_3000_1_012009 crossref_primary_10_1155_2022_3806576 crossref_primary_10_1016_j_eswa_2022_118881 crossref_primary_10_2139_ssrn_3745757 crossref_primary_10_1016_j_compstruc_2021_106653 crossref_primary_10_1155_2021_4595808 crossref_primary_10_1002_prs_12510 crossref_primary_10_1007_s12517_021_08048_5 crossref_primary_10_1007_s13369_021_05777_3 crossref_primary_10_1016_j_petrol_2020_107437 crossref_primary_10_1016_j_energy_2022_124745 crossref_primary_10_1016_j_asoc_2020_106960 crossref_primary_10_1109_TCYB_2020_3025251 crossref_primary_10_1155_2020_1873236 crossref_primary_10_3390_app11072911 crossref_primary_10_1155_2021_8309586 crossref_primary_10_1016_j_eswa_2025_126636 crossref_primary_10_1155_2021_5165115 crossref_primary_10_3390_sym14061219 crossref_primary_10_1080_00207721_2021_1914768 crossref_primary_10_1016_j_petlm_2020_05_003 crossref_primary_10_1016_j_petrol_2021_110066 crossref_primary_10_1007_s40747_021_00477_9 crossref_primary_10_1007_s12559_021_09894_x crossref_primary_10_1109_TEVC_2021_3049131 crossref_primary_10_1155_2021_4921825 crossref_primary_10_1007_s11227_022_04959_6 crossref_primary_10_1007_s10489_021_02455_7 crossref_primary_10_1109_TNSE_2021_3076113 crossref_primary_10_1007_s40747_021_00575_8 crossref_primary_10_1007_s13369_021_05748_8 crossref_primary_10_1016_j_geoen_2024_213581 crossref_primary_10_1016_j_jpse_2025_100359 crossref_primary_10_1007_s12517_021_07034_1 crossref_primary_10_1016_j_petlm_2022_01_001 crossref_primary_10_1016_j_cjph_2022_07_001 crossref_primary_10_1007_s13369_021_05432_x crossref_primary_10_1155_2021_9820550 crossref_primary_10_1109_TNNLS_2021_3055942 crossref_primary_10_1016_j_petrol_2020_107098 crossref_primary_10_3233_JIFS_212226 crossref_primary_10_1016_j_petsci_2024_12_011 crossref_primary_10_1007_s40747_021_00589_2 crossref_primary_10_1016_j_inffus_2021_06_006 crossref_primary_10_1109_TCYB_2020_2969377 crossref_primary_10_1016_j_engappai_2025_111517 crossref_primary_10_1016_j_petrol_2020_107934 crossref_primary_10_3233_JIFS_201694 crossref_primary_10_1109_TNNLS_2021_3106947 crossref_primary_10_1007_s12517_020_05293_y crossref_primary_10_3390_en12224325 crossref_primary_10_1007_s12517_022_09575_5 crossref_primary_10_1016_j_petrol_2021_108620 crossref_primary_10_1002_rnc_5208 crossref_primary_10_1016_j_knosys_2024_112409 crossref_primary_10_1016_j_egyr_2020_04_034 crossref_primary_10_1002_rnc_4479 crossref_primary_10_1002_rnc_5328 crossref_primary_10_1155_2022_4643674 crossref_primary_10_1007_s13369_021_05634_3 crossref_primary_10_1016_j_neucom_2020_08_031 crossref_primary_10_1016_j_petlm_2023_11_001 crossref_primary_10_1109_TCYB_2020_3029748 crossref_primary_10_1016_j_cie_2020_106479 crossref_primary_10_1177_0144598721988993 crossref_primary_10_1007_s11081_023_09804_0 crossref_primary_10_1016_j_ins_2020_06_021 crossref_primary_10_1016_j_jpse_2023_100126 crossref_primary_10_1016_j_energy_2024_132377 crossref_primary_10_1016_j_knosys_2022_108874 crossref_primary_10_1002_rnc_4940 crossref_primary_10_1016_j_oceaneng_2023_116575 crossref_primary_10_1109_ACCESS_2024_3360193 crossref_primary_10_1109_TNNLS_2021_3070797 crossref_primary_10_1016_j_compchemeng_2023_108283 crossref_primary_10_1016_j_compchemeng_2019_106512 crossref_primary_10_1155_2022_5413473 crossref_primary_10_3390_math8112012 crossref_primary_10_1002_rnc_5368 crossref_primary_10_1016_j_inffus_2020_01_009 crossref_primary_10_1016_j_neucom_2020_04_058 crossref_primary_10_1007_s13042_020_01186_4 crossref_primary_10_1016_j_petrol_2020_107477 crossref_primary_10_1109_TSMC_2021_3049306 crossref_primary_10_1177_0144598720984226 crossref_primary_10_1007_s12517_021_06559_9 crossref_primary_10_1155_2022_2348084 crossref_primary_10_1155_2022_5901445 crossref_primary_10_1016_j_inffus_2020_01_012 crossref_primary_10_1016_j_cherd_2020_06_026 crossref_primary_10_1002_rnc_5193 crossref_primary_10_1016_j_petrol_2022_110203 crossref_primary_10_1007_s12517_021_06657_8 crossref_primary_10_1007_s12559_021_09922_w crossref_primary_10_2118_200486_PA crossref_primary_10_1109_TNSE_2021_3058220 crossref_primary_10_1007_s13369_021_05386_0 crossref_primary_10_1155_2021_5839391 crossref_primary_10_1016_j_ijhydene_2024_03_303 crossref_primary_10_1016_j_ngib_2025_03_009 |
| Cites_doi | 10.1016/S0045-7825(99)00389-8 10.1016/j.apor.2012.02.002 10.1021/ie400022g 10.3233/JIFS-169078 10.1016/j.apenergy.2014.06.042 10.1016/j.eswa.2015.05.035 10.1016/j.neucom.2015.05.115 10.1016/j.neucom.2017.01.090 10.1016/j.eswa.2015.07.043 10.1007/s12665-015-4341-7 10.1007/s10898-008-9332-8 10.1016/j.petrol.2016.07.002 10.1016/j.advengsoft.2014.06.003 10.1016/j.asoc.2018.04.008 10.1007/s12559-016-9396-6 10.1016/j.neucom.2018.09.001 10.1109/TEVC.2004.826074 10.1016/j.cherd.2012.05.012 10.1093/comjnl/32.3.281 10.1007/s10489-015-0711-9 10.1016/j.swevo.2014.06.001 10.1016/j.ijggc.2014.08.001 10.1080/01621459.1961.10482090 10.1371/journal.pone.0161558 10.1016/S0377-2217(98)00186-6 10.3846/transport.2018.145 10.1016/j.neucom.2013.09.026 10.2118/4007-PA 10.1016/j.neucom.2015.04.045 10.1016/j.swevo.2014.07.002 10.1287/opre.18.6.992 10.1016/j.amc.2005.11.086 10.1016/S0020-0255(99)00059-6 10.1016/j.ijepes.2015.05.017 10.1155/2018/6094685 10.1016/j.cherd.2013.04.005 10.1016/j.asoc.2016.07.041 10.1016/j.compchemeng.2006.05.016 10.1214/aoms/1177731944 10.1080/03052150500384759 10.1016/j.amc.2006.07.026 10.1016/j.jclepro.2016.12.084 |
| ContentType | Journal Article |
| Copyright | 2018 |
| Copyright_xml | – notice: 2018 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2018.12.021 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 183 |
| ExternalDocumentID | 10_1016_j_neucom_2018_12_021 S0925231218314759 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-2e7c3df576d75d76a8d25107136419639bccbc9d7a3a2733499b7089000337e83 |
| ISICitedReferencesCount | 157 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456410600016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Tue Nov 18 20:33:51 EST 2025 Sat Nov 29 03:02:59 EST 2025 Fri Feb 23 02:27:02 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Oil–gas gathering system Convergence theorem Global convergence Layout optimization Particle swarm optimization algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-2e7c3df576d75d76a8d25107136419639bccbc9d7a3a2733499b7089000337e83 |
| ORCID | 0000-0002-4578-756X |
| PageCount | 25 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2018_12_021 crossref_primary_10_1016_j_neucom_2018_12_021 elsevier_sciencedirect_doi_10_1016_j_neucom_2018_12_021 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-07 |
| PublicationDateYYYYMMDD | 2019-03-07 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-07 day: 07 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Shi, Eberhart (bib0024) 2001; 212 Kundu, Das, Mukherjee, Debchoudhury (bib0033) 2014; 129 Baeza, Ihle, Ortiz (bib0007) 2017; 144 Liu, Zhao (bib0003) 2001; 25 Ferguson (bib0042) 2002; 56 Beggs, Brill (bib0041) 1973; 25 Djokic, Miyakawa, Sekiguchi, Semba, Stojmenovic (bib0015) 1989; 32 Knoope, Raben, Ramírez, Spruijt, Faaij (bib0018) 2014; 29 Feng, Teng, Wang, Yao (bib0025) 2007; 2007 Dunn (bib0057) 1961; 56 Rodrigues, Prata, Bonates (bib0011) 2016; 145 Nasiri, Meybodi, Ebadzadeh (bib0026) 2016; 172 Zeng, Wang, Zhang, Alsaadi (bib0023) 2016; 8 Amoshahy, Shamsi, Sedaaghi (bib0027) 2016; 11 Yang (bib0050) 2009; 5792 Rothfarb, Frank, Rosenbaum, Steiglitz, Kleitman (bib0017) 1970; 18 Sanaye, Mahmoudimehr (bib0008) 2013; 91 Rashedi, Nezamabadi-Pour, Saryazdi (bib0049) 2012; 4 Liu (bib0004) 1994 Niu, Zhu, He, Wu (bib0054) 2007; 185 Tan, Zhu (bib0047) 2010; 21 Zeng, Zhang, Liu, Liang, Alsaadid (bib0022) 2017; 240 Sahoo, Banerjee, Bhunia, Chattopadhyay (bib0036) 2014; 19 Liu, Chen (bib0005) 1999; 120 Wang, Duan, Xu, Wang, Feng (bib0009) 2012; 36 Rodríguez, Oteiza, Brignole (bib0059) 2013; 52 Friedman (bib0056) 1940; 11 Lawlor, Conder (bib0040) 2013; 3 Mendes, Kennedy, Neves (bib0029) 2004; 8 Wang, Yang, Orchard (bib0030) 2016; 48 Bonyadi, Li, Michalewicz (bib0031) 2014; 18 Marcoulaki, Papazoglou, Pixopoulou (bib0006) 2012; 90 Eusuff, Lansey, Pasha (bib0048) 2006; 38 Li, Wang, Hsu (bib0032) 2015; 167 Zhao, Liu, Zhang, Wang (bib0045) 2015; 42 Ouyang, Gao, Li, Kong (bib0055) 2016; 52 Wei, Dong, Zhao, Zhou (bib0012) 2016; 31 Pandit, Chaudhary, Dubey, Panigrahi (bib0037) 2015; 73 Deb (bib0058) 2000; 186 Li, Wang, Liu (bib0053) 2006; 179 Zhu, Sun, Zeng, Chen (bib0014) 2018; 33 Zhang, Yuan, Liang, Liao (bib0051) 2018; 68 Li, Wang, Yan, Li (bib0035) 2015; 42 Lucena, Baioco, Lima, Albrecht, Jacob (bib0010) 2014; 76 Liu, Li, Wang, Wang, Dong (bib0001) 2015; 73 Chen, Liu, Wei, Guan (bib0038) 2018; 2018 Kennedy, Mendes (bib0028) 2002; 2 Campana, Fasano, Pinto (bib0039) 2006 Mendes, Kennedy, Neves (bib0052) 2003 Zeng, Qiu, Wang, Liu, Zhang, Li (bib0021) 2018; 320 Li, Liu, Long, Guo, Bie (bib0034) 2016; 44 Kennedy, Eberhart (bib0046) 2002; 4 Floudas, Gounaris (bib0019) 2009; 45 Owen, Daskin (bib0016) 1998; 111 Arnold (bib0044) 1989 Üster, Dilaveroğlu (bib0013) 2014; 133 Liu, Zhao, Zhou (bib0002) 2000; 21 Luo, Yuan, Liu (bib0020) 2007; 31 Li (10.1016/j.neucom.2018.12.021_bib0035) 2015; 42 Li (10.1016/j.neucom.2018.12.021_bib0032) 2015; 167 Baeza (10.1016/j.neucom.2018.12.021_bib0007) 2017; 144 Marcoulaki (10.1016/j.neucom.2018.12.021_bib0006) 2012; 90 Luo (10.1016/j.neucom.2018.12.021_bib0020) 2007; 31 Zeng (10.1016/j.neucom.2018.12.021_bib0021) 2018; 320 Rodrigues (10.1016/j.neucom.2018.12.021_bib0011) 2016; 145 Bonyadi (10.1016/j.neucom.2018.12.021_bib0031) 2014; 18 Pandit (10.1016/j.neucom.2018.12.021_bib0037) 2015; 73 Campana (10.1016/j.neucom.2018.12.021_bib0039) 2006 Lucena (10.1016/j.neucom.2018.12.021_bib0010) 2014; 76 Owen (10.1016/j.neucom.2018.12.021_bib0016) 1998; 111 Sanaye (10.1016/j.neucom.2018.12.021_bib0008) 2013; 91 Wang (10.1016/j.neucom.2018.12.021_bib0030) 2016; 48 Li (10.1016/j.neucom.2018.12.021_bib0034) 2016; 44 Kennedy (10.1016/j.neucom.2018.12.021_bib0046) 2002; 4 Rothfarb (10.1016/j.neucom.2018.12.021_bib0017) 1970; 18 Knoope (10.1016/j.neucom.2018.12.021_bib0018) 2014; 29 Zhu (10.1016/j.neucom.2018.12.021_bib0014) 2018; 33 Zeng (10.1016/j.neucom.2018.12.021_bib0023) 2016; 8 Shi (10.1016/j.neucom.2018.12.021_bib0024) 2001; 212 Chen (10.1016/j.neucom.2018.12.021_bib0038) 2018; 2018 Zhang (10.1016/j.neucom.2018.12.021_bib0051) 2018; 68 Mendes (10.1016/j.neucom.2018.12.021_bib0052) 2003 Tan (10.1016/j.neucom.2018.12.021_bib0047) 2010; 21 Kennedy (10.1016/j.neucom.2018.12.021_bib0028) 2002; 2 Dunn (10.1016/j.neucom.2018.12.021_bib0057) 1961; 56 Deb (10.1016/j.neucom.2018.12.021_bib0058) 2000; 186 Liu (10.1016/j.neucom.2018.12.021_bib0003) 2001; 25 Üster (10.1016/j.neucom.2018.12.021_bib0013) 2014; 133 Ouyang (10.1016/j.neucom.2018.12.021_bib0055) 2016; 52 Rodríguez (10.1016/j.neucom.2018.12.021_bib0059) 2013; 52 Zeng (10.1016/j.neucom.2018.12.021_bib0022) 2017; 240 Arnold (10.1016/j.neucom.2018.12.021_bib0044) 1989 Zhao (10.1016/j.neucom.2018.12.021_bib0045) 2015; 42 Kundu (10.1016/j.neucom.2018.12.021_bib0033) 2014; 129 Djokic (10.1016/j.neucom.2018.12.021_bib0015) 1989; 32 Eusuff (10.1016/j.neucom.2018.12.021_bib0048) 2006; 38 Feng (10.1016/j.neucom.2018.12.021_bib0025) 2007; 2007 Liu (10.1016/j.neucom.2018.12.021_bib0005) 1999; 120 Yang (10.1016/j.neucom.2018.12.021_bib0050) 2009; 5792 Li (10.1016/j.neucom.2018.12.021_bib0053) 2006; 179 Friedman (10.1016/j.neucom.2018.12.021_bib0056) 1940; 11 Wang (10.1016/j.neucom.2018.12.021_bib0009) 2012; 36 Amoshahy (10.1016/j.neucom.2018.12.021_bib0027) 2016; 11 Liu (10.1016/j.neucom.2018.12.021_bib0001) 2015; 73 Lawlor (10.1016/j.neucom.2018.12.021_bib0040) 2013; 3 Liu (10.1016/j.neucom.2018.12.021_bib0002) 2000; 21 Nasiri (10.1016/j.neucom.2018.12.021_bib0026) 2016; 172 Ferguson (10.1016/j.neucom.2018.12.021_bib0042) 2002; 56 Rashedi (10.1016/j.neucom.2018.12.021_bib0049) 2012; 4 Niu (10.1016/j.neucom.2018.12.021_bib0054) 2007; 185 Mendes (10.1016/j.neucom.2018.12.021_bib0029) 2004; 8 Beggs (10.1016/j.neucom.2018.12.021_bib0041) 1973; 25 Wei (10.1016/j.neucom.2018.12.021_bib0012) 2016; 31 Floudas (10.1016/j.neucom.2018.12.021_bib0019) 2009; 45 Liu (10.1016/j.neucom.2018.12.021_bib0004) 1994 Sahoo (10.1016/j.neucom.2018.12.021_bib0036) 2014; 19 |
| References_xml | – volume: 90 start-page: 2209 year: 2012 end-page: 2222 ident: bib0006 article-title: Integrated framework for the design of pipeline systems using stochastic optimization and gis tools publication-title: Chem. Eng. Res. Des. – volume: 21 start-page: 88 year: 2000 end-page: 95 ident: bib0002 article-title: Study of optimization of overall planning for surface engineering of low osmose oil field publication-title: Acta Petrol. Sin. – volume: 8 start-page: 143 year: 2016 end-page: 152 ident: bib0023 article-title: A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay publication-title: Cogn. Comput. – year: 2006 ident: bib0039 article-title: Dynamic system analysis and initial particles position in particle swarm optimization publication-title: Proceedings of IEEE Swarm Intelligence Symposium – volume: 68 start-page: 202 year: 2018 end-page: 218 ident: bib0051 article-title: A novel particle swarm optimization based on prey–predator relationship publication-title: Appl. Soft Comput. – volume: 18 start-page: 22 year: 2014 end-page: 37 ident: bib0031 article-title: A hybrid particle swarm with a time-adaptive topology for constrained optimization publication-title: Swarm Evol. Comput. – year: 1994 ident: bib0004 article-title: Petroleum Engineering Optimization Design Theory and Method – volume: 76 start-page: 110 year: 2014 end-page: 124 ident: bib0010 article-title: Optimal design of submarine pipeline routes by genetic algorithm with different constraint handling techniques publication-title: Adv. Eng. Softw. – volume: 4 start-page: 390 year: 2012 end-page: 395 ident: bib0049 article-title: GSA: a gravitational search algorithm publication-title: Intell. Inf. Manag. – volume: 186 start-page: 311 year: 2000 end-page: 338 ident: bib0058 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput. Methods Appl. Mech. Eng. – volume: 129 start-page: 315 year: 2014 end-page: 333 ident: bib0033 article-title: An improved particle swarm optimizer with difference mean based perturbation publication-title: Neurocomputing – volume: 36 start-page: 26 year: 2012 end-page: 35 ident: bib0009 article-title: A mathematical model for subsea wells partition in the layout of cluster manifolds publication-title: Appl. Ocean Res. – volume: 29 start-page: 104 year: 2014 end-page: 124 ident: bib0018 article-title: The influence of risk mitigation measures on the risks, costs and routing of CO publication-title: Int. J. Greenh. Gas Control – volume: 320 start-page: 195 year: 2018 end-page: 202 ident: bib0021 article-title: A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer's disease publication-title: Neurocomputing – year: 1989 ident: bib0044 article-title: Mathematical Methods of Classical Mechanics – volume: 52 start-page: 987 year: 2016 end-page: 1008 ident: bib0055 article-title: Improved global-best-guided particle swarm optimization with learning operation for global optimization problems publication-title: Appl. Soft Comput. – volume: 33 start-page: 143 year: 2018 end-page: 150 ident: bib0014 article-title: Optimization of natural gas transport pipeline network layout: a new methodology based on dominance degree model publication-title: Transport – volume: 56 start-page: 112 year: 2002 end-page: 135 ident: bib0042 article-title: Gas flow in long pipelines publication-title: Chem. Eng. – volume: 8 start-page: 204 year: 2004 end-page: 210 ident: bib0029 article-title: The fully informed particle swarm: simpler, maybe better publication-title: IEEE Trans. Evol. Comput. – volume: 21 start-page: 355 year: 2010 end-page: 364 ident: bib0047 article-title: Fireworks algorithm for optimization publication-title: Proceedings of International Conference on Advances in Swarm Intelligence – volume: 3 start-page: 54 year: 2013 end-page: 58 ident: bib0040 article-title: Gathering and processing options for unconventional gas publication-title: Oil Gas J. – volume: 167 start-page: 488 year: 2015 end-page: 501 ident: bib0032 article-title: Hybrid particle swarm optimization incorporating fuzzy reasoning and weighted particle publication-title: Neurocomputing – volume: 144 start-page: 149 year: 2017 end-page: 160 ident: bib0007 article-title: A comparison between ACO and Dijkstra algorithms for optimal ore concentrate pipeline routing publication-title: J. Clean. Prod. – volume: 145 start-page: 734 year: 2016 end-page: 741 ident: bib0011 article-title: Integrated optimization model for location and sizing of offshore platforms and location of oil wells publication-title: J. Pet. Sci. Eng. – volume: 172 start-page: 356 year: 2016 end-page: 370 ident: bib0026 article-title: History-driven particle swarm optimization in dynamic and uncertain environments publication-title: Neurocomputing – volume: 42 start-page: 8881 year: 2015 end-page: 8895 ident: bib0035 article-title: PS-ABC: a hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems publication-title: Expert Syst. Appl. – volume: 133 start-page: 56 year: 2014 end-page: 69 ident: bib0013 article-title: Optimization for design and operation of natural gas transmission networks publication-title: Appl. Energy – volume: 18 start-page: 992 year: 1970 end-page: 1020 ident: bib0017 article-title: Optimal design of offshore natural-gas pipeline systems publication-title: Oper. Res. – volume: 212 start-page: 511 year: 2001 end-page: 512 ident: bib0024 article-title: Particle swarm optimization with fuzzy adaptive inertia weight publication-title: Nature – volume: 45 start-page: 3 year: 2009 ident: bib0019 article-title: A review of recent advances in global optimization publication-title: J. Global Optim. – volume: 25 start-page: 92 year: 2001 end-page: 94 ident: bib0003 article-title: Integrated optimization of ground and underground development for oilfield development publication-title: J. Dqing Pet. Inst. – volume: 73 start-page: 259 year: 2015 end-page: 272 ident: bib0037 article-title: Multi-period wind integrated optimal dispatch using series PSO-DE with time-varying Gaussian membership function based fuzzy selection publication-title: Int. J. Electr. Power Energy Syst. – volume: 25 start-page: 607 year: 1973 end-page: 617 ident: bib0041 article-title: A study of two-phase flow in inclined pipes publication-title: J. Pet. Technol. – volume: 2007 start-page: 475 year: 2007 ident: bib0025 article-title: Chaotic inertia weight in particle swarm optimization publication-title: Proceedings of IEEE International Conference on Innovative Computing, Information and Control – start-page: 88 year: 2003 end-page: 94 ident: bib0052 article-title: Watch thy neighbor or how the swarm can learn from its environment publication-title: Proceedings of 2003 IEEE Swarm Intelligence Symposium, SIS '03 – volume: 240 start-page: 175 year: 2017 end-page: 182 ident: bib0022 article-title: A switching delayed PSO optimized extreme learning machine for short-term load forecasting publication-title: Neurocomputing – volume: 32 start-page: 281 year: 1989 end-page: 282 ident: bib0015 article-title: A fast iterative algorithm for generating set partitions publication-title: Comput. J. – volume: 42 start-page: 7436 year: 2015 end-page: 7455 ident: bib0045 article-title: A self-adaptive harmony PSO search algorithm and its performance analysis publication-title: Expert Syst. Appl. – volume: 91 start-page: 2465 year: 2013 end-page: 2476 ident: bib0008 article-title: Optimal design of a natural gas transmission network layout publication-title: Chem. Eng. Res. Des. – volume: 179 start-page: 135 year: 2006 end-page: 146 ident: bib0053 article-title: An effective hybrid PSOSA strategy for optimization and its application to parameter estimation publication-title: Appl. Math. Comput. – volume: 73 start-page: 5891 year: 2015 end-page: 5904 ident: bib0001 article-title: The role of surface and subsurface integration in the development of a high-pressure and low-production gas field publication-title: Environ. Earth Sci. – volume: 120 start-page: 13 year: 1999 end-page: 21 ident: bib0005 article-title: Optimal parameters design of oilfield surface pipeline systems using fuzzy models publication-title: Inf. Sci. – volume: 5792 start-page: 169 year: 2009 end-page: 178 ident: bib0050 article-title: Firefly algorithms for multimodal optimization publication-title: Mathematics – volume: 31 start-page: 2375 year: 2016 end-page: 2382 ident: bib0012 article-title: Optimization model establishment and optimization software development of gas field gathering and transmission pipeline network system publication-title: J. Intell. Fuzzy Syst. – volume: 2018 year: 2018 ident: bib0038 article-title: PS-FW: a hybrid algorithm based on particle swarm and fireworks for global optimization publication-title: Comput. Intell. Neurosci. – volume: 52 start-page: 8579 year: 2013 end-page: 8588 ident: bib0059 article-title: Simulated annealing optimization for hydrocarbon pipeline networks publication-title: Ind. Eng. Chem. Res. – volume: 44 start-page: 1 year: 2016 end-page: 18 ident: bib0034 article-title: Modified particle swarm optimization for BMDS interceptor resource planning publication-title: Appl. Intell. – volume: 19 start-page: 43 year: 2014 end-page: 51 ident: bib0036 article-title: An efficient GA–PSO approach for solving mixed-integer nonlinear programming problem in reliability optimization publication-title: Swarm Evol. Comput. – volume: 48 start-page: 584 year: 2016 end-page: 596 ident: bib0030 article-title: Particle swarm optimization using dynamic tournament topology publication-title: Appl. Soft Comput. – volume: 11 start-page: 86 year: 1940 end-page: 92 ident: bib0056 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: Ann. Math. Stat. – volume: 38 start-page: 129 year: 2006 end-page: 154 ident: bib0048 article-title: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization publication-title: Eng. Optim. – volume: 11 year: 2016 ident: bib0027 article-title: A novel flexible inertia weight particle swarm optimization algorithm publication-title: PLoS One – volume: 185 start-page: 1050 year: 2007 end-page: 1062 ident: bib0054 article-title: MCPSO: a multi-swarm cooperative particle swarm optimizer publication-title: Appl. Math. Comput. – volume: 4 start-page: 1942 year: 2002 end-page: 1948 ident: bib0046 article-title: Particle swarm optimization publication-title: Proceedings of International Conference on Neural Networks, ICNN95 – volume: 2 start-page: 1671 year: 2002 end-page: 1676 ident: bib0028 article-title: Population structure and particle swarm performance publication-title: Proceedings of the 2002 Congress on Evolutionary Computation, CEC '02 – volume: 56 start-page: 52 year: 1961 end-page: 64 ident: bib0057 article-title: Multiple comparisons among means publication-title: J. Am. Stat. Assoc. – volume: 111 start-page: 423 year: 1998 end-page: 447 ident: bib0016 article-title: Strategic facility location: a review publication-title: Eur. J. Oper. Res. – volume: 31 start-page: 153 year: 2007 end-page: 162 ident: bib0020 article-title: An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints publication-title: Comput. Chem. Eng. – volume: 186 start-page: 311 issue: 2 year: 2000 ident: 10.1016/j.neucom.2018.12.021_bib0058 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(99)00389-8 – volume: 36 start-page: 26 issue: 3 year: 2012 ident: 10.1016/j.neucom.2018.12.021_bib0009 article-title: A mathematical model for subsea wells partition in the layout of cluster manifolds publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2012.02.002 – volume: 4 start-page: 1942 year: 2002 ident: 10.1016/j.neucom.2018.12.021_bib0046 article-title: Particle swarm optimization – volume: 52 start-page: 8579 issue: 25 year: 2013 ident: 10.1016/j.neucom.2018.12.021_bib0059 article-title: Simulated annealing optimization for hydrocarbon pipeline networks publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie400022g – volume: 56 start-page: 112 issue: 11 year: 2002 ident: 10.1016/j.neucom.2018.12.021_bib0042 article-title: Gas flow in long pipelines publication-title: Chem. Eng. – volume: 31 start-page: 2375 issue: 4 year: 2016 ident: 10.1016/j.neucom.2018.12.021_bib0012 article-title: Optimization model establishment and optimization software development of gas field gathering and transmission pipeline network system publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-169078 – volume: 133 start-page: 56 issue: 133 year: 2014 ident: 10.1016/j.neucom.2018.12.021_bib0013 article-title: Optimization for design and operation of natural gas transmission networks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.06.042 – volume: 42 start-page: 7436 issue: 21 year: 2015 ident: 10.1016/j.neucom.2018.12.021_bib0045 article-title: A self-adaptive harmony PSO search algorithm and its performance analysis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.05.035 – volume: 4 start-page: 390 issue: 6 year: 2012 ident: 10.1016/j.neucom.2018.12.021_bib0049 article-title: GSA: a gravitational search algorithm publication-title: Intell. Inf. Manag. – volume: 172 start-page: 356 issue: C year: 2016 ident: 10.1016/j.neucom.2018.12.021_bib0026 article-title: History-driven particle swarm optimization in dynamic and uncertain environments publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.05.115 – volume: 240 start-page: 175 year: 2017 ident: 10.1016/j.neucom.2018.12.021_bib0022 article-title: A switching delayed PSO optimized extreme learning machine for short-term load forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.090 – volume: 52 start-page: 987 issue: C year: 2016 ident: 10.1016/j.neucom.2018.12.021_bib0055 article-title: Improved global-best-guided particle swarm optimization with learning operation for global optimization problems publication-title: Appl. Soft Comput. – volume: 42 start-page: 8881 issue: 22 year: 2015 ident: 10.1016/j.neucom.2018.12.021_bib0035 article-title: PS-ABC: a hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.07.043 – volume: 73 start-page: 5891 issue: 10 year: 2015 ident: 10.1016/j.neucom.2018.12.021_bib0001 article-title: The role of surface and subsurface integration in the development of a high-pressure and low-production gas field publication-title: Environ. Earth Sci. doi: 10.1007/s12665-015-4341-7 – volume: 45 start-page: 3 issue: 1 year: 2009 ident: 10.1016/j.neucom.2018.12.021_bib0019 article-title: A review of recent advances in global optimization publication-title: J. Global Optim. doi: 10.1007/s10898-008-9332-8 – volume: 145 start-page: 734 year: 2016 ident: 10.1016/j.neucom.2018.12.021_bib0011 article-title: Integrated optimization model for location and sizing of offshore platforms and location of oil wells publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2016.07.002 – year: 1989 ident: 10.1016/j.neucom.2018.12.021_bib0044 – year: 1994 ident: 10.1016/j.neucom.2018.12.021_bib0004 – volume: 76 start-page: 110 issue: 3 year: 2014 ident: 10.1016/j.neucom.2018.12.021_bib0010 article-title: Optimal design of submarine pipeline routes by genetic algorithm with different constraint handling techniques publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2014.06.003 – volume: 68 start-page: 202 year: 2018 ident: 10.1016/j.neucom.2018.12.021_bib0051 article-title: A novel particle swarm optimization based on prey–predator relationship publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.04.008 – volume: 8 start-page: 143 year: 2016 ident: 10.1016/j.neucom.2018.12.021_bib0023 article-title: A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay publication-title: Cogn. Comput. doi: 10.1007/s12559-016-9396-6 – volume: 320 start-page: 195 year: 2018 ident: 10.1016/j.neucom.2018.12.021_bib0021 article-title: A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer's disease publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.001 – volume: 25 start-page: 92 issue: 3 year: 2001 ident: 10.1016/j.neucom.2018.12.021_bib0003 article-title: Integrated optimization of ground and underground development for oilfield development publication-title: J. Dqing Pet. Inst. – volume: 8 start-page: 204 year: 2004 ident: 10.1016/j.neucom.2018.12.021_bib0029 article-title: The fully informed particle swarm: simpler, maybe better publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826074 – volume: 90 start-page: 2209 issue: 12 year: 2012 ident: 10.1016/j.neucom.2018.12.021_bib0006 article-title: Integrated framework for the design of pipeline systems using stochastic optimization and gis tools publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2012.05.012 – volume: 21 start-page: 88 issue: 2 year: 2000 ident: 10.1016/j.neucom.2018.12.021_bib0002 article-title: Study of optimization of overall planning for surface engineering of low osmose oil field publication-title: Acta Petrol. Sin. – volume: 212 start-page: 511 issue: 5061 year: 2001 ident: 10.1016/j.neucom.2018.12.021_bib0024 article-title: Particle swarm optimization with fuzzy adaptive inertia weight publication-title: Nature – volume: 2007 start-page: 475 year: 2007 ident: 10.1016/j.neucom.2018.12.021_bib0025 article-title: Chaotic inertia weight in particle swarm optimization – volume: 3 start-page: 54 issue: 4 year: 2013 ident: 10.1016/j.neucom.2018.12.021_bib0040 article-title: Gathering and processing options for unconventional gas publication-title: Oil Gas J. – volume: 32 start-page: 281 issue: 3 year: 1989 ident: 10.1016/j.neucom.2018.12.021_bib0015 article-title: A fast iterative algorithm for generating set partitions publication-title: Comput. J. doi: 10.1093/comjnl/32.3.281 – volume: 44 start-page: 1 issue: 3 year: 2016 ident: 10.1016/j.neucom.2018.12.021_bib0034 article-title: Modified particle swarm optimization for BMDS interceptor resource planning publication-title: Appl. Intell. doi: 10.1007/s10489-015-0711-9 – volume: 18 start-page: 22 issue: 1 year: 2014 ident: 10.1016/j.neucom.2018.12.021_bib0031 article-title: A hybrid particle swarm with a time-adaptive topology for constrained optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2014.06.001 – volume: 29 start-page: 104 issue: 29 year: 2014 ident: 10.1016/j.neucom.2018.12.021_bib0018 article-title: The influence of risk mitigation measures on the risks, costs and routing of CO2 pipelines publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2014.08.001 – volume: 56 start-page: 52 year: 1961 ident: 10.1016/j.neucom.2018.12.021_bib0057 article-title: Multiple comparisons among means publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1961.10482090 – volume: 11 issue: 8 year: 2016 ident: 10.1016/j.neucom.2018.12.021_bib0027 article-title: A novel flexible inertia weight particle swarm optimization algorithm publication-title: PLoS One doi: 10.1371/journal.pone.0161558 – volume: 111 start-page: 423 issue: 3 year: 1998 ident: 10.1016/j.neucom.2018.12.021_bib0016 article-title: Strategic facility location: a review publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(98)00186-6 – volume: 21 start-page: 355 year: 2010 ident: 10.1016/j.neucom.2018.12.021_bib0047 article-title: Fireworks algorithm for optimization – volume: 33 start-page: 143 issue: 1 year: 2018 ident: 10.1016/j.neucom.2018.12.021_bib0014 article-title: Optimization of natural gas transport pipeline network layout: a new methodology based on dominance degree model publication-title: Transport doi: 10.3846/transport.2018.145 – volume: 129 start-page: 315 issue: 129 year: 2014 ident: 10.1016/j.neucom.2018.12.021_bib0033 article-title: An improved particle swarm optimizer with difference mean based perturbation publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.09.026 – volume: 25 start-page: 607 issue: 5 year: 1973 ident: 10.1016/j.neucom.2018.12.021_bib0041 article-title: A study of two-phase flow in inclined pipes publication-title: J. Pet. Technol. doi: 10.2118/4007-PA – volume: 167 start-page: 488 year: 2015 ident: 10.1016/j.neucom.2018.12.021_bib0032 article-title: Hybrid particle swarm optimization incorporating fuzzy reasoning and weighted particle publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.04.045 – volume: 2 start-page: 1671 year: 2002 ident: 10.1016/j.neucom.2018.12.021_bib0028 article-title: Population structure and particle swarm performance – start-page: 88 year: 2003 ident: 10.1016/j.neucom.2018.12.021_bib0052 article-title: Watch thy neighbor or how the swarm can learn from its environment – year: 2006 ident: 10.1016/j.neucom.2018.12.021_bib0039 article-title: Dynamic system analysis and initial particles position in particle swarm optimization – volume: 19 start-page: 43 year: 2014 ident: 10.1016/j.neucom.2018.12.021_bib0036 article-title: An efficient GA–PSO approach for solving mixed-integer nonlinear programming problem in reliability optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2014.07.002 – volume: 18 start-page: 992 issue: 6 year: 1970 ident: 10.1016/j.neucom.2018.12.021_bib0017 article-title: Optimal design of offshore natural-gas pipeline systems publication-title: Oper. Res. doi: 10.1287/opre.18.6.992 – volume: 179 start-page: 135 year: 2006 ident: 10.1016/j.neucom.2018.12.021_bib0053 article-title: An effective hybrid PSOSA strategy for optimization and its application to parameter estimation publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2005.11.086 – volume: 120 start-page: 13 issue: 1–4 year: 1999 ident: 10.1016/j.neucom.2018.12.021_bib0005 article-title: Optimal parameters design of oilfield surface pipeline systems using fuzzy models publication-title: Inf. Sci. doi: 10.1016/S0020-0255(99)00059-6 – volume: 73 start-page: 259 year: 2015 ident: 10.1016/j.neucom.2018.12.021_bib0037 article-title: Multi-period wind integrated optimal dispatch using series PSO-DE with time-varying Gaussian membership function based fuzzy selection publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.05.017 – volume: 2018 year: 2018 ident: 10.1016/j.neucom.2018.12.021_bib0038 article-title: PS-FW: a hybrid algorithm based on particle swarm and fireworks for global optimization publication-title: Comput. Intell. Neurosci. doi: 10.1155/2018/6094685 – volume: 91 start-page: 2465 issue: 12 year: 2013 ident: 10.1016/j.neucom.2018.12.021_bib0008 article-title: Optimal design of a natural gas transmission network layout publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2013.04.005 – volume: 48 start-page: 584 year: 2016 ident: 10.1016/j.neucom.2018.12.021_bib0030 article-title: Particle swarm optimization using dynamic tournament topology publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.07.041 – volume: 31 start-page: 153 issue: 3 year: 2007 ident: 10.1016/j.neucom.2018.12.021_bib0020 article-title: An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2006.05.016 – volume: 11 start-page: 86 issue: 1 year: 1940 ident: 10.1016/j.neucom.2018.12.021_bib0056 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177731944 – volume: 38 start-page: 129 issue: 2 year: 2006 ident: 10.1016/j.neucom.2018.12.021_bib0048 article-title: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization publication-title: Eng. Optim. doi: 10.1080/03052150500384759 – volume: 5792 start-page: 169 year: 2009 ident: 10.1016/j.neucom.2018.12.021_bib0050 article-title: Firefly algorithms for multimodal optimization publication-title: Mathematics – volume: 185 start-page: 1050 year: 2007 ident: 10.1016/j.neucom.2018.12.021_bib0054 article-title: MCPSO: a multi-swarm cooperative particle swarm optimizer publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.07.026 – volume: 144 start-page: 149 year: 2017 ident: 10.1016/j.neucom.2018.12.021_bib0007 article-title: A comparison between ACO and Dijkstra algorithms for optimal ore concentrate pipeline routing publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.12.084 |
| SSID | ssj0017129 |
| Score | 2.595607 |
| Snippet | Layout optimization of large-scale oil–gas gathering system is a kind of NP-hard problem in the field of system optimization. It involves a large number of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 159 |
| SubjectTerms | Convergence theorem Global convergence Layout optimization Oil–gas gathering system Particle swarm optimization algorithm |
| Title | Layout optimization of large-scale oil–gas gathering system based on combined optimization strategy |
| URI | https://dx.doi.org/10.1016/j.neucom.2018.12.021 |
| Volume | 332 |
| WOSCitedRecordID | wos000456410600016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF5F0EMvBfpQaQvaQ2_RVrHX9trHCIFoFSGkUik3y95dp0HBoSRB4db_kH_IL-nMPoxTKh6HXixrnV07mS8zs-OZbwj5XGWxCiNeMvCWS4YIYWWvKljGq6CMYi3DynQtGYiTk3Q4zE47nZWvhbmeiLpOl8vs8r-KGsZA2Fg6-wxxN4vCAJyD0OEIYofjkwQ_KG4w13gKuuDCFVmiRzjBlG82A5Ho7nQ88UkOfFTMuiNXBjhyxM5dtG0K3yPAA8LWGc_by80spe3aG2HD8iFNjwgXfehfIAmDQsQ10YbBeGGUfuEMpkkssJrv-88FjP4a310B-Npm8q2xoZl_6kdcvAJLpDizjW194DGMGXiVazqYuyCn1aKBIwm3BjmwnW7u6Xobdjj_UusFJv7AvVIT2bUV1-vU2n-ZvCYR0ee4ned2lRxXyYMw7yE5wWYo4gxU5Wb_6-HwW_NySgShpXB0X8RXZJq0wftP82-Pp-XFnG2TV277QfsWNjuko-vXZMu39qBO078h2qKItsVOpxVtoYgCim5_rwA_tMEPtfihBj8Upnj8rC_k8fOW_Dg6PDs4Zq4jB5OwtZyzUAvJVQV7VCViJZIiVeAfY6AjiVCVZ6WUpcyUKHgBfjGH7XQpeik2puVc6JS_Ixv1tNbvCUVLUSnNI53wKJLgB8cKaUQiML5JypNdwv2vlktHV49dUyb5QzLbJayZdWnpWh75vPACyZ3LaV3JHFD24MwPz7zTR_Ly7t_wiWzMrxZ6j7yQ1_Px7GrfQewPCEmmHw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layout+optimization+of+large-scale+oil%E2%80%93gas+gathering+system+based+on+combined+optimization+strategy&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Liu%2C+Yang&rft.au=Chen%2C+Shuangqing&rft.au=Guan%2C+Bing&rft.au=Xu%2C+Ping&rft.date=2019-03-07&rft.issn=0925-2312&rft.volume=332&rft.spage=159&rft.epage=183&rft_id=info:doi/10.1016%2Fj.neucom.2018.12.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2018_12_021 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |