Layout optimization of large-scale oil–gas gathering system based on combined optimization strategy

Layout optimization of large-scale oil–gas gathering system is a kind of NP-hard problem in the field of system optimization. It involves a large number of network nodes, coupled optimization variables, complex network structures and hydraulic constraints, which cause the great difficulty in constru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) Jg. 332; S. 159 - 183
Hauptverfasser: Liu, Yang, Chen, Shuangqing, Guan, Bing, Xu, Ping
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 07.03.2019
Schlagworte:
ISSN:0925-2312, 1872-8286
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Layout optimization of large-scale oil–gas gathering system is a kind of NP-hard problem in the field of system optimization. It involves a large number of network nodes, coupled optimization variables, complex network structures and hydraulic constraints, which cause the great difficulty in constructing optimization models and solution methods. In this paper, a high-dimensional mixed integer nonlinear layout optimization mathematical model involving the pipeline network structure parameters and pipeline design parameters is established, which can be applied to large-scale oil gathering system and gas gathering system universally. A modified particle swarm optimization (MPSO) algorithm with global search ability is proposed. The convergence theorem of the stochastic optimization algorithm is established based on the Poincare cycle theory. Global convergence of MPSO algorithm is proved, and the performance of MPSO algorithm is analyzed by numerical experiments. Based on dimension reduction planning and modularization thought, the grid dissection set partition method is proposed, and the theoretical foundation and complexity of the grid dissection method are discussed. In order to reduce the dimension of the layout optimization problem, the concept of the fuzzy set of adjacent position, and a novel approach for the well-station connection mode optimization are put forward. Based on the MPSO algorithm, grid dissection set partition method and solution method by fuzzy set of adjacent position, a combined optimization strategy for layout optimization model is proposed. The reliability and practicality of the proposed layout optimization model and combined optimization strategy are verified by the successful application of a real-world large-scale oil field with 661 wells.
AbstractList Layout optimization of large-scale oil–gas gathering system is a kind of NP-hard problem in the field of system optimization. It involves a large number of network nodes, coupled optimization variables, complex network structures and hydraulic constraints, which cause the great difficulty in constructing optimization models and solution methods. In this paper, a high-dimensional mixed integer nonlinear layout optimization mathematical model involving the pipeline network structure parameters and pipeline design parameters is established, which can be applied to large-scale oil gathering system and gas gathering system universally. A modified particle swarm optimization (MPSO) algorithm with global search ability is proposed. The convergence theorem of the stochastic optimization algorithm is established based on the Poincare cycle theory. Global convergence of MPSO algorithm is proved, and the performance of MPSO algorithm is analyzed by numerical experiments. Based on dimension reduction planning and modularization thought, the grid dissection set partition method is proposed, and the theoretical foundation and complexity of the grid dissection method are discussed. In order to reduce the dimension of the layout optimization problem, the concept of the fuzzy set of adjacent position, and a novel approach for the well-station connection mode optimization are put forward. Based on the MPSO algorithm, grid dissection set partition method and solution method by fuzzy set of adjacent position, a combined optimization strategy for layout optimization model is proposed. The reliability and practicality of the proposed layout optimization model and combined optimization strategy are verified by the successful application of a real-world large-scale oil field with 661 wells.
Author Chen, Shuangqing
Liu, Yang
Guan, Bing
Xu, Ping
Author_xml – sequence: 1
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
– sequence: 2
  givenname: Shuangqing
  orcidid: 0000-0002-4578-756X
  surname: Chen
  fullname: Chen, Shuangqing
  email: csqing2590@163.com
– sequence: 3
  givenname: Bing
  surname: Guan
  fullname: Guan, Bing
– sequence: 4
  givenname: Ping
  surname: Xu
  fullname: Xu, Ping
BookMark eNqFkEtOwzAQhi1UJErhBix8gQQ_mjhmgYQqXlIlNrC2HHsSXKVxZbtIYcUduCEnIaUsEAtYzWy-f_75jtGk9z0gdEZJTgktz1d5D1vj1zkjtMopywmjB2hKK8GyilXlBE2JZEXGOGVH6DjGFSFUUCanCJZ68NuE_Sa5tXvVyfke-wZ3OrSQRaM7wN51H2_vrY641ekZgutbHIeYYI1rHcHiERmv167f7T-DYgo6QTucoMNGdxFOv-cMPd1cPy7usuXD7f3iapkZTsqUMRCG26YQpRWFFaWuLCsoEZSXcypLLmtjaiOt0FwzwflcylqQShJCOBdQ8Rm62Oea4GMM0Cjj0leVsYjrFCVqJ0yt1F6Y2glTlKlR2AjPf8Gb4NY6DP9hl3sMxsdeHAQVjYPegHUBTFLWu78DPgFdl4ww
CitedBy_id crossref_primary_10_2118_205374_PA
crossref_primary_10_1002_rnc_4963
crossref_primary_10_1007_s12517_021_08390_8
crossref_primary_10_1007_s00500_023_09517_7
crossref_primary_10_1109_TNNLS_2020_3027252
crossref_primary_10_1109_TCYB_2020_3036364
crossref_primary_10_3390_math12182819
crossref_primary_10_1016_j_petsci_2021_09_045
crossref_primary_10_1016_j_petrol_2020_108141
crossref_primary_10_1016_j_neucom_2020_10_050
crossref_primary_10_7717_peerj_cs_1399
crossref_primary_10_1016_j_neucom_2019_03_003
crossref_primary_10_1155_2022_7414165
crossref_primary_10_3233_JIFS_200044
crossref_primary_10_1109_JAS_2021_1003919
crossref_primary_10_1016_j_applthermaleng_2023_120153
crossref_primary_10_2118_205345_PA
crossref_primary_10_1016_j_petrol_2020_108304
crossref_primary_10_1016_j_apenergy_2019_114453
crossref_primary_10_1155_2021_4254791
crossref_primary_10_1007_s12182_021_00558_x
crossref_primary_10_1061_JLEED9_EYENG_5886
crossref_primary_10_1016_j_oceaneng_2021_109072
crossref_primary_10_1038_s41598_024_83495_0
crossref_primary_10_1177_0144598720981532
crossref_primary_10_1002_ente_201901381
crossref_primary_10_1016_j_heliyon_2024_e41307
crossref_primary_10_1007_s13042_021_01440_3
crossref_primary_10_1016_j_neucom_2020_04_001
crossref_primary_10_3390_a17080340
crossref_primary_10_1016_j_ress_2023_109135
crossref_primary_10_2118_201192_PA
crossref_primary_10_1016_j_petrol_2020_108312
crossref_primary_10_1155_2020_8831111
crossref_primary_10_1177_0144598721998497
crossref_primary_10_1109_TCYB_2021_3057545
crossref_primary_10_2118_199902_PA
crossref_primary_10_3390_pr7120927
crossref_primary_10_1016_j_automatica_2021_109961
crossref_primary_10_1088_1742_6596_3000_1_012009
crossref_primary_10_1155_2022_3806576
crossref_primary_10_1016_j_eswa_2022_118881
crossref_primary_10_2139_ssrn_3745757
crossref_primary_10_1016_j_compstruc_2021_106653
crossref_primary_10_1155_2021_4595808
crossref_primary_10_1002_prs_12510
crossref_primary_10_1007_s12517_021_08048_5
crossref_primary_10_1007_s13369_021_05777_3
crossref_primary_10_1016_j_petrol_2020_107437
crossref_primary_10_1016_j_energy_2022_124745
crossref_primary_10_1016_j_asoc_2020_106960
crossref_primary_10_1109_TCYB_2020_3025251
crossref_primary_10_1155_2020_1873236
crossref_primary_10_3390_app11072911
crossref_primary_10_1155_2021_8309586
crossref_primary_10_1016_j_eswa_2025_126636
crossref_primary_10_1155_2021_5165115
crossref_primary_10_3390_sym14061219
crossref_primary_10_1080_00207721_2021_1914768
crossref_primary_10_1016_j_petlm_2020_05_003
crossref_primary_10_1016_j_petrol_2021_110066
crossref_primary_10_1007_s40747_021_00477_9
crossref_primary_10_1007_s12559_021_09894_x
crossref_primary_10_1109_TEVC_2021_3049131
crossref_primary_10_1155_2021_4921825
crossref_primary_10_1007_s11227_022_04959_6
crossref_primary_10_1007_s10489_021_02455_7
crossref_primary_10_1109_TNSE_2021_3076113
crossref_primary_10_1007_s40747_021_00575_8
crossref_primary_10_1007_s13369_021_05748_8
crossref_primary_10_1016_j_geoen_2024_213581
crossref_primary_10_1016_j_jpse_2025_100359
crossref_primary_10_1007_s12517_021_07034_1
crossref_primary_10_1016_j_petlm_2022_01_001
crossref_primary_10_1016_j_cjph_2022_07_001
crossref_primary_10_1007_s13369_021_05432_x
crossref_primary_10_1155_2021_9820550
crossref_primary_10_1109_TNNLS_2021_3055942
crossref_primary_10_1016_j_petrol_2020_107098
crossref_primary_10_3233_JIFS_212226
crossref_primary_10_1016_j_petsci_2024_12_011
crossref_primary_10_1007_s40747_021_00589_2
crossref_primary_10_1016_j_inffus_2021_06_006
crossref_primary_10_1109_TCYB_2020_2969377
crossref_primary_10_1016_j_engappai_2025_111517
crossref_primary_10_1016_j_petrol_2020_107934
crossref_primary_10_3233_JIFS_201694
crossref_primary_10_1109_TNNLS_2021_3106947
crossref_primary_10_1007_s12517_020_05293_y
crossref_primary_10_3390_en12224325
crossref_primary_10_1007_s12517_022_09575_5
crossref_primary_10_1016_j_petrol_2021_108620
crossref_primary_10_1002_rnc_5208
crossref_primary_10_1016_j_knosys_2024_112409
crossref_primary_10_1016_j_egyr_2020_04_034
crossref_primary_10_1002_rnc_4479
crossref_primary_10_1002_rnc_5328
crossref_primary_10_1155_2022_4643674
crossref_primary_10_1007_s13369_021_05634_3
crossref_primary_10_1016_j_neucom_2020_08_031
crossref_primary_10_1016_j_petlm_2023_11_001
crossref_primary_10_1109_TCYB_2020_3029748
crossref_primary_10_1016_j_cie_2020_106479
crossref_primary_10_1177_0144598721988993
crossref_primary_10_1007_s11081_023_09804_0
crossref_primary_10_1016_j_ins_2020_06_021
crossref_primary_10_1016_j_jpse_2023_100126
crossref_primary_10_1016_j_energy_2024_132377
crossref_primary_10_1016_j_knosys_2022_108874
crossref_primary_10_1002_rnc_4940
crossref_primary_10_1016_j_oceaneng_2023_116575
crossref_primary_10_1109_ACCESS_2024_3360193
crossref_primary_10_1109_TNNLS_2021_3070797
crossref_primary_10_1016_j_compchemeng_2023_108283
crossref_primary_10_1016_j_compchemeng_2019_106512
crossref_primary_10_1155_2022_5413473
crossref_primary_10_3390_math8112012
crossref_primary_10_1002_rnc_5368
crossref_primary_10_1016_j_inffus_2020_01_009
crossref_primary_10_1016_j_neucom_2020_04_058
crossref_primary_10_1007_s13042_020_01186_4
crossref_primary_10_1016_j_petrol_2020_107477
crossref_primary_10_1109_TSMC_2021_3049306
crossref_primary_10_1177_0144598720984226
crossref_primary_10_1007_s12517_021_06559_9
crossref_primary_10_1155_2022_2348084
crossref_primary_10_1155_2022_5901445
crossref_primary_10_1016_j_inffus_2020_01_012
crossref_primary_10_1016_j_cherd_2020_06_026
crossref_primary_10_1002_rnc_5193
crossref_primary_10_1016_j_petrol_2022_110203
crossref_primary_10_1007_s12517_021_06657_8
crossref_primary_10_1007_s12559_021_09922_w
crossref_primary_10_2118_200486_PA
crossref_primary_10_1109_TNSE_2021_3058220
crossref_primary_10_1007_s13369_021_05386_0
crossref_primary_10_1155_2021_5839391
crossref_primary_10_1016_j_ijhydene_2024_03_303
crossref_primary_10_1016_j_ngib_2025_03_009
Cites_doi 10.1016/S0045-7825(99)00389-8
10.1016/j.apor.2012.02.002
10.1021/ie400022g
10.3233/JIFS-169078
10.1016/j.apenergy.2014.06.042
10.1016/j.eswa.2015.05.035
10.1016/j.neucom.2015.05.115
10.1016/j.neucom.2017.01.090
10.1016/j.eswa.2015.07.043
10.1007/s12665-015-4341-7
10.1007/s10898-008-9332-8
10.1016/j.petrol.2016.07.002
10.1016/j.advengsoft.2014.06.003
10.1016/j.asoc.2018.04.008
10.1007/s12559-016-9396-6
10.1016/j.neucom.2018.09.001
10.1109/TEVC.2004.826074
10.1016/j.cherd.2012.05.012
10.1093/comjnl/32.3.281
10.1007/s10489-015-0711-9
10.1016/j.swevo.2014.06.001
10.1016/j.ijggc.2014.08.001
10.1080/01621459.1961.10482090
10.1371/journal.pone.0161558
10.1016/S0377-2217(98)00186-6
10.3846/transport.2018.145
10.1016/j.neucom.2013.09.026
10.2118/4007-PA
10.1016/j.neucom.2015.04.045
10.1016/j.swevo.2014.07.002
10.1287/opre.18.6.992
10.1016/j.amc.2005.11.086
10.1016/S0020-0255(99)00059-6
10.1016/j.ijepes.2015.05.017
10.1155/2018/6094685
10.1016/j.cherd.2013.04.005
10.1016/j.asoc.2016.07.041
10.1016/j.compchemeng.2006.05.016
10.1214/aoms/1177731944
10.1080/03052150500384759
10.1016/j.amc.2006.07.026
10.1016/j.jclepro.2016.12.084
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2018.12.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 183
ExternalDocumentID 10_1016_j_neucom_2018_12_021
S0925231218314759
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-2e7c3df576d75d76a8d25107136419639bccbc9d7a3a2733499b7089000337e83
ISICitedReferencesCount 157
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456410600016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 20:33:51 EST 2025
Sat Nov 29 03:02:59 EST 2025
Fri Feb 23 02:27:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Oil–gas gathering system
Convergence theorem
Global convergence
Layout optimization
Particle swarm optimization algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-2e7c3df576d75d76a8d25107136419639bccbc9d7a3a2733499b7089000337e83
ORCID 0000-0002-4578-756X
PageCount 25
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2018_12_021
crossref_primary_10_1016_j_neucom_2018_12_021
elsevier_sciencedirect_doi_10_1016_j_neucom_2018_12_021
PublicationCentury 2000
PublicationDate 2019-03-07
PublicationDateYYYYMMDD 2019-03-07
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-07
  day: 07
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shi, Eberhart (bib0024) 2001; 212
Kundu, Das, Mukherjee, Debchoudhury (bib0033) 2014; 129
Baeza, Ihle, Ortiz (bib0007) 2017; 144
Liu, Zhao (bib0003) 2001; 25
Ferguson (bib0042) 2002; 56
Beggs, Brill (bib0041) 1973; 25
Djokic, Miyakawa, Sekiguchi, Semba, Stojmenovic (bib0015) 1989; 32
Knoope, Raben, Ramírez, Spruijt, Faaij (bib0018) 2014; 29
Feng, Teng, Wang, Yao (bib0025) 2007; 2007
Dunn (bib0057) 1961; 56
Rodrigues, Prata, Bonates (bib0011) 2016; 145
Nasiri, Meybodi, Ebadzadeh (bib0026) 2016; 172
Zeng, Wang, Zhang, Alsaadi (bib0023) 2016; 8
Amoshahy, Shamsi, Sedaaghi (bib0027) 2016; 11
Yang (bib0050) 2009; 5792
Rothfarb, Frank, Rosenbaum, Steiglitz, Kleitman (bib0017) 1970; 18
Sanaye, Mahmoudimehr (bib0008) 2013; 91
Rashedi, Nezamabadi-Pour, Saryazdi (bib0049) 2012; 4
Liu (bib0004) 1994
Niu, Zhu, He, Wu (bib0054) 2007; 185
Tan, Zhu (bib0047) 2010; 21
Zeng, Zhang, Liu, Liang, Alsaadid (bib0022) 2017; 240
Sahoo, Banerjee, Bhunia, Chattopadhyay (bib0036) 2014; 19
Liu, Chen (bib0005) 1999; 120
Wang, Duan, Xu, Wang, Feng (bib0009) 2012; 36
Rodríguez, Oteiza, Brignole (bib0059) 2013; 52
Friedman (bib0056) 1940; 11
Lawlor, Conder (bib0040) 2013; 3
Mendes, Kennedy, Neves (bib0029) 2004; 8
Wang, Yang, Orchard (bib0030) 2016; 48
Bonyadi, Li, Michalewicz (bib0031) 2014; 18
Marcoulaki, Papazoglou, Pixopoulou (bib0006) 2012; 90
Eusuff, Lansey, Pasha (bib0048) 2006; 38
Li, Wang, Hsu (bib0032) 2015; 167
Zhao, Liu, Zhang, Wang (bib0045) 2015; 42
Ouyang, Gao, Li, Kong (bib0055) 2016; 52
Wei, Dong, Zhao, Zhou (bib0012) 2016; 31
Pandit, Chaudhary, Dubey, Panigrahi (bib0037) 2015; 73
Deb (bib0058) 2000; 186
Li, Wang, Liu (bib0053) 2006; 179
Zhu, Sun, Zeng, Chen (bib0014) 2018; 33
Zhang, Yuan, Liang, Liao (bib0051) 2018; 68
Li, Wang, Yan, Li (bib0035) 2015; 42
Lucena, Baioco, Lima, Albrecht, Jacob (bib0010) 2014; 76
Liu, Li, Wang, Wang, Dong (bib0001) 2015; 73
Chen, Liu, Wei, Guan (bib0038) 2018; 2018
Kennedy, Mendes (bib0028) 2002; 2
Campana, Fasano, Pinto (bib0039) 2006
Mendes, Kennedy, Neves (bib0052) 2003
Zeng, Qiu, Wang, Liu, Zhang, Li (bib0021) 2018; 320
Li, Liu, Long, Guo, Bie (bib0034) 2016; 44
Kennedy, Eberhart (bib0046) 2002; 4
Floudas, Gounaris (bib0019) 2009; 45
Owen, Daskin (bib0016) 1998; 111
Arnold (bib0044) 1989
Üster, Dilaveroğlu (bib0013) 2014; 133
Liu, Zhao, Zhou (bib0002) 2000; 21
Luo, Yuan, Liu (bib0020) 2007; 31
Li (10.1016/j.neucom.2018.12.021_bib0035) 2015; 42
Li (10.1016/j.neucom.2018.12.021_bib0032) 2015; 167
Baeza (10.1016/j.neucom.2018.12.021_bib0007) 2017; 144
Marcoulaki (10.1016/j.neucom.2018.12.021_bib0006) 2012; 90
Luo (10.1016/j.neucom.2018.12.021_bib0020) 2007; 31
Zeng (10.1016/j.neucom.2018.12.021_bib0021) 2018; 320
Rodrigues (10.1016/j.neucom.2018.12.021_bib0011) 2016; 145
Bonyadi (10.1016/j.neucom.2018.12.021_bib0031) 2014; 18
Pandit (10.1016/j.neucom.2018.12.021_bib0037) 2015; 73
Campana (10.1016/j.neucom.2018.12.021_bib0039) 2006
Lucena (10.1016/j.neucom.2018.12.021_bib0010) 2014; 76
Owen (10.1016/j.neucom.2018.12.021_bib0016) 1998; 111
Sanaye (10.1016/j.neucom.2018.12.021_bib0008) 2013; 91
Wang (10.1016/j.neucom.2018.12.021_bib0030) 2016; 48
Li (10.1016/j.neucom.2018.12.021_bib0034) 2016; 44
Kennedy (10.1016/j.neucom.2018.12.021_bib0046) 2002; 4
Rothfarb (10.1016/j.neucom.2018.12.021_bib0017) 1970; 18
Knoope (10.1016/j.neucom.2018.12.021_bib0018) 2014; 29
Zhu (10.1016/j.neucom.2018.12.021_bib0014) 2018; 33
Zeng (10.1016/j.neucom.2018.12.021_bib0023) 2016; 8
Shi (10.1016/j.neucom.2018.12.021_bib0024) 2001; 212
Chen (10.1016/j.neucom.2018.12.021_bib0038) 2018; 2018
Zhang (10.1016/j.neucom.2018.12.021_bib0051) 2018; 68
Mendes (10.1016/j.neucom.2018.12.021_bib0052) 2003
Tan (10.1016/j.neucom.2018.12.021_bib0047) 2010; 21
Kennedy (10.1016/j.neucom.2018.12.021_bib0028) 2002; 2
Dunn (10.1016/j.neucom.2018.12.021_bib0057) 1961; 56
Deb (10.1016/j.neucom.2018.12.021_bib0058) 2000; 186
Liu (10.1016/j.neucom.2018.12.021_bib0003) 2001; 25
Üster (10.1016/j.neucom.2018.12.021_bib0013) 2014; 133
Ouyang (10.1016/j.neucom.2018.12.021_bib0055) 2016; 52
Rodríguez (10.1016/j.neucom.2018.12.021_bib0059) 2013; 52
Zeng (10.1016/j.neucom.2018.12.021_bib0022) 2017; 240
Arnold (10.1016/j.neucom.2018.12.021_bib0044) 1989
Zhao (10.1016/j.neucom.2018.12.021_bib0045) 2015; 42
Kundu (10.1016/j.neucom.2018.12.021_bib0033) 2014; 129
Djokic (10.1016/j.neucom.2018.12.021_bib0015) 1989; 32
Eusuff (10.1016/j.neucom.2018.12.021_bib0048) 2006; 38
Feng (10.1016/j.neucom.2018.12.021_bib0025) 2007; 2007
Liu (10.1016/j.neucom.2018.12.021_bib0005) 1999; 120
Yang (10.1016/j.neucom.2018.12.021_bib0050) 2009; 5792
Li (10.1016/j.neucom.2018.12.021_bib0053) 2006; 179
Friedman (10.1016/j.neucom.2018.12.021_bib0056) 1940; 11
Wang (10.1016/j.neucom.2018.12.021_bib0009) 2012; 36
Amoshahy (10.1016/j.neucom.2018.12.021_bib0027) 2016; 11
Liu (10.1016/j.neucom.2018.12.021_bib0001) 2015; 73
Lawlor (10.1016/j.neucom.2018.12.021_bib0040) 2013; 3
Liu (10.1016/j.neucom.2018.12.021_bib0002) 2000; 21
Nasiri (10.1016/j.neucom.2018.12.021_bib0026) 2016; 172
Ferguson (10.1016/j.neucom.2018.12.021_bib0042) 2002; 56
Rashedi (10.1016/j.neucom.2018.12.021_bib0049) 2012; 4
Niu (10.1016/j.neucom.2018.12.021_bib0054) 2007; 185
Mendes (10.1016/j.neucom.2018.12.021_bib0029) 2004; 8
Beggs (10.1016/j.neucom.2018.12.021_bib0041) 1973; 25
Wei (10.1016/j.neucom.2018.12.021_bib0012) 2016; 31
Floudas (10.1016/j.neucom.2018.12.021_bib0019) 2009; 45
Liu (10.1016/j.neucom.2018.12.021_bib0004) 1994
Sahoo (10.1016/j.neucom.2018.12.021_bib0036) 2014; 19
References_xml – volume: 90
  start-page: 2209
  year: 2012
  end-page: 2222
  ident: bib0006
  article-title: Integrated framework for the design of pipeline systems using stochastic optimization and gis tools
  publication-title: Chem. Eng. Res. Des.
– volume: 21
  start-page: 88
  year: 2000
  end-page: 95
  ident: bib0002
  article-title: Study of optimization of overall planning for surface engineering of low osmose oil field
  publication-title: Acta Petrol. Sin.
– volume: 8
  start-page: 143
  year: 2016
  end-page: 152
  ident: bib0023
  article-title: A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay
  publication-title: Cogn. Comput.
– year: 2006
  ident: bib0039
  article-title: Dynamic system analysis and initial particles position in particle swarm optimization
  publication-title: Proceedings of IEEE Swarm Intelligence Symposium
– volume: 68
  start-page: 202
  year: 2018
  end-page: 218
  ident: bib0051
  article-title: A novel particle swarm optimization based on prey–predator relationship
  publication-title: Appl. Soft Comput.
– volume: 18
  start-page: 22
  year: 2014
  end-page: 37
  ident: bib0031
  article-title: A hybrid particle swarm with a time-adaptive topology for constrained optimization
  publication-title: Swarm Evol. Comput.
– year: 1994
  ident: bib0004
  article-title: Petroleum Engineering Optimization Design Theory and Method
– volume: 76
  start-page: 110
  year: 2014
  end-page: 124
  ident: bib0010
  article-title: Optimal design of submarine pipeline routes by genetic algorithm with different constraint handling techniques
  publication-title: Adv. Eng. Softw.
– volume: 4
  start-page: 390
  year: 2012
  end-page: 395
  ident: bib0049
  article-title: GSA: a gravitational search algorithm
  publication-title: Intell. Inf. Manag.
– volume: 186
  start-page: 311
  year: 2000
  end-page: 338
  ident: bib0058
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 129
  start-page: 315
  year: 2014
  end-page: 333
  ident: bib0033
  article-title: An improved particle swarm optimizer with difference mean based perturbation
  publication-title: Neurocomputing
– volume: 36
  start-page: 26
  year: 2012
  end-page: 35
  ident: bib0009
  article-title: A mathematical model for subsea wells partition in the layout of cluster manifolds
  publication-title: Appl. Ocean Res.
– volume: 29
  start-page: 104
  year: 2014
  end-page: 124
  ident: bib0018
  article-title: The influence of risk mitigation measures on the risks, costs and routing of CO
  publication-title: Int. J. Greenh. Gas Control
– volume: 320
  start-page: 195
  year: 2018
  end-page: 202
  ident: bib0021
  article-title: A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer's disease
  publication-title: Neurocomputing
– year: 1989
  ident: bib0044
  article-title: Mathematical Methods of Classical Mechanics
– volume: 52
  start-page: 987
  year: 2016
  end-page: 1008
  ident: bib0055
  article-title: Improved global-best-guided particle swarm optimization with learning operation for global optimization problems
  publication-title: Appl. Soft Comput.
– volume: 33
  start-page: 143
  year: 2018
  end-page: 150
  ident: bib0014
  article-title: Optimization of natural gas transport pipeline network layout: a new methodology based on dominance degree model
  publication-title: Transport
– volume: 56
  start-page: 112
  year: 2002
  end-page: 135
  ident: bib0042
  article-title: Gas flow in long pipelines
  publication-title: Chem. Eng.
– volume: 8
  start-page: 204
  year: 2004
  end-page: 210
  ident: bib0029
  article-title: The fully informed particle swarm: simpler, maybe better
  publication-title: IEEE Trans. Evol. Comput.
– volume: 21
  start-page: 355
  year: 2010
  end-page: 364
  ident: bib0047
  article-title: Fireworks algorithm for optimization
  publication-title: Proceedings of International Conference on Advances in Swarm Intelligence
– volume: 3
  start-page: 54
  year: 2013
  end-page: 58
  ident: bib0040
  article-title: Gathering and processing options for unconventional gas
  publication-title: Oil Gas J.
– volume: 167
  start-page: 488
  year: 2015
  end-page: 501
  ident: bib0032
  article-title: Hybrid particle swarm optimization incorporating fuzzy reasoning and weighted particle
  publication-title: Neurocomputing
– volume: 144
  start-page: 149
  year: 2017
  end-page: 160
  ident: bib0007
  article-title: A comparison between ACO and Dijkstra algorithms for optimal ore concentrate pipeline routing
  publication-title: J. Clean. Prod.
– volume: 145
  start-page: 734
  year: 2016
  end-page: 741
  ident: bib0011
  article-title: Integrated optimization model for location and sizing of offshore platforms and location of oil wells
  publication-title: J. Pet. Sci. Eng.
– volume: 172
  start-page: 356
  year: 2016
  end-page: 370
  ident: bib0026
  article-title: History-driven particle swarm optimization in dynamic and uncertain environments
  publication-title: Neurocomputing
– volume: 42
  start-page: 8881
  year: 2015
  end-page: 8895
  ident: bib0035
  article-title: PS-ABC: a hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems
  publication-title: Expert Syst. Appl.
– volume: 133
  start-page: 56
  year: 2014
  end-page: 69
  ident: bib0013
  article-title: Optimization for design and operation of natural gas transmission networks
  publication-title: Appl. Energy
– volume: 18
  start-page: 992
  year: 1970
  end-page: 1020
  ident: bib0017
  article-title: Optimal design of offshore natural-gas pipeline systems
  publication-title: Oper. Res.
– volume: 212
  start-page: 511
  year: 2001
  end-page: 512
  ident: bib0024
  article-title: Particle swarm optimization with fuzzy adaptive inertia weight
  publication-title: Nature
– volume: 45
  start-page: 3
  year: 2009
  ident: bib0019
  article-title: A review of recent advances in global optimization
  publication-title: J. Global Optim.
– volume: 25
  start-page: 92
  year: 2001
  end-page: 94
  ident: bib0003
  article-title: Integrated optimization of ground and underground development for oilfield development
  publication-title: J. Dqing Pet. Inst.
– volume: 73
  start-page: 259
  year: 2015
  end-page: 272
  ident: bib0037
  article-title: Multi-period wind integrated optimal dispatch using series PSO-DE with time-varying Gaussian membership function based fuzzy selection
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 25
  start-page: 607
  year: 1973
  end-page: 617
  ident: bib0041
  article-title: A study of two-phase flow in inclined pipes
  publication-title: J. Pet. Technol.
– volume: 2007
  start-page: 475
  year: 2007
  ident: bib0025
  article-title: Chaotic inertia weight in particle swarm optimization
  publication-title: Proceedings of IEEE International Conference on Innovative Computing, Information and Control
– start-page: 88
  year: 2003
  end-page: 94
  ident: bib0052
  article-title: Watch thy neighbor or how the swarm can learn from its environment
  publication-title: Proceedings of 2003 IEEE Swarm Intelligence Symposium, SIS '03
– volume: 240
  start-page: 175
  year: 2017
  end-page: 182
  ident: bib0022
  article-title: A switching delayed PSO optimized extreme learning machine for short-term load forecasting
  publication-title: Neurocomputing
– volume: 32
  start-page: 281
  year: 1989
  end-page: 282
  ident: bib0015
  article-title: A fast iterative algorithm for generating set partitions
  publication-title: Comput. J.
– volume: 42
  start-page: 7436
  year: 2015
  end-page: 7455
  ident: bib0045
  article-title: A self-adaptive harmony PSO search algorithm and its performance analysis
  publication-title: Expert Syst. Appl.
– volume: 91
  start-page: 2465
  year: 2013
  end-page: 2476
  ident: bib0008
  article-title: Optimal design of a natural gas transmission network layout
  publication-title: Chem. Eng. Res. Des.
– volume: 179
  start-page: 135
  year: 2006
  end-page: 146
  ident: bib0053
  article-title: An effective hybrid PSOSA strategy for optimization and its application to parameter estimation
  publication-title: Appl. Math. Comput.
– volume: 73
  start-page: 5891
  year: 2015
  end-page: 5904
  ident: bib0001
  article-title: The role of surface and subsurface integration in the development of a high-pressure and low-production gas field
  publication-title: Environ. Earth Sci.
– volume: 120
  start-page: 13
  year: 1999
  end-page: 21
  ident: bib0005
  article-title: Optimal parameters design of oilfield surface pipeline systems using fuzzy models
  publication-title: Inf. Sci.
– volume: 5792
  start-page: 169
  year: 2009
  end-page: 178
  ident: bib0050
  article-title: Firefly algorithms for multimodal optimization
  publication-title: Mathematics
– volume: 31
  start-page: 2375
  year: 2016
  end-page: 2382
  ident: bib0012
  article-title: Optimization model establishment and optimization software development of gas field gathering and transmission pipeline network system
  publication-title: J. Intell. Fuzzy Syst.
– volume: 2018
  year: 2018
  ident: bib0038
  article-title: PS-FW: a hybrid algorithm based on particle swarm and fireworks for global optimization
  publication-title: Comput. Intell. Neurosci.
– volume: 52
  start-page: 8579
  year: 2013
  end-page: 8588
  ident: bib0059
  article-title: Simulated annealing optimization for hydrocarbon pipeline networks
  publication-title: Ind. Eng. Chem. Res.
– volume: 44
  start-page: 1
  year: 2016
  end-page: 18
  ident: bib0034
  article-title: Modified particle swarm optimization for BMDS interceptor resource planning
  publication-title: Appl. Intell.
– volume: 19
  start-page: 43
  year: 2014
  end-page: 51
  ident: bib0036
  article-title: An efficient GA–PSO approach for solving mixed-integer nonlinear programming problem in reliability optimization
  publication-title: Swarm Evol. Comput.
– volume: 48
  start-page: 584
  year: 2016
  end-page: 596
  ident: bib0030
  article-title: Particle swarm optimization using dynamic tournament topology
  publication-title: Appl. Soft Comput.
– volume: 11
  start-page: 86
  year: 1940
  end-page: 92
  ident: bib0056
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann. Math. Stat.
– volume: 38
  start-page: 129
  year: 2006
  end-page: 154
  ident: bib0048
  article-title: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization
  publication-title: Eng. Optim.
– volume: 11
  year: 2016
  ident: bib0027
  article-title: A novel flexible inertia weight particle swarm optimization algorithm
  publication-title: PLoS One
– volume: 185
  start-page: 1050
  year: 2007
  end-page: 1062
  ident: bib0054
  article-title: MCPSO: a multi-swarm cooperative particle swarm optimizer
  publication-title: Appl. Math. Comput.
– volume: 4
  start-page: 1942
  year: 2002
  end-page: 1948
  ident: bib0046
  article-title: Particle swarm optimization
  publication-title: Proceedings of International Conference on Neural Networks, ICNN95
– volume: 2
  start-page: 1671
  year: 2002
  end-page: 1676
  ident: bib0028
  article-title: Population structure and particle swarm performance
  publication-title: Proceedings of the 2002 Congress on Evolutionary Computation, CEC '02
– volume: 56
  start-page: 52
  year: 1961
  end-page: 64
  ident: bib0057
  article-title: Multiple comparisons among means
  publication-title: J. Am. Stat. Assoc.
– volume: 111
  start-page: 423
  year: 1998
  end-page: 447
  ident: bib0016
  article-title: Strategic facility location: a review
  publication-title: Eur. J. Oper. Res.
– volume: 31
  start-page: 153
  year: 2007
  end-page: 162
  ident: bib0020
  article-title: An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints
  publication-title: Comput. Chem. Eng.
– volume: 186
  start-page: 311
  issue: 2
  year: 2000
  ident: 10.1016/j.neucom.2018.12.021_bib0058
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00389-8
– volume: 36
  start-page: 26
  issue: 3
  year: 2012
  ident: 10.1016/j.neucom.2018.12.021_bib0009
  article-title: A mathematical model for subsea wells partition in the layout of cluster manifolds
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2012.02.002
– volume: 4
  start-page: 1942
  year: 2002
  ident: 10.1016/j.neucom.2018.12.021_bib0046
  article-title: Particle swarm optimization
– volume: 52
  start-page: 8579
  issue: 25
  year: 2013
  ident: 10.1016/j.neucom.2018.12.021_bib0059
  article-title: Simulated annealing optimization for hydrocarbon pipeline networks
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie400022g
– volume: 56
  start-page: 112
  issue: 11
  year: 2002
  ident: 10.1016/j.neucom.2018.12.021_bib0042
  article-title: Gas flow in long pipelines
  publication-title: Chem. Eng.
– volume: 31
  start-page: 2375
  issue: 4
  year: 2016
  ident: 10.1016/j.neucom.2018.12.021_bib0012
  article-title: Optimization model establishment and optimization software development of gas field gathering and transmission pipeline network system
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-169078
– volume: 133
  start-page: 56
  issue: 133
  year: 2014
  ident: 10.1016/j.neucom.2018.12.021_bib0013
  article-title: Optimization for design and operation of natural gas transmission networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.06.042
– volume: 42
  start-page: 7436
  issue: 21
  year: 2015
  ident: 10.1016/j.neucom.2018.12.021_bib0045
  article-title: A self-adaptive harmony PSO search algorithm and its performance analysis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.05.035
– volume: 4
  start-page: 390
  issue: 6
  year: 2012
  ident: 10.1016/j.neucom.2018.12.021_bib0049
  article-title: GSA: a gravitational search algorithm
  publication-title: Intell. Inf. Manag.
– volume: 172
  start-page: 356
  issue: C
  year: 2016
  ident: 10.1016/j.neucom.2018.12.021_bib0026
  article-title: History-driven particle swarm optimization in dynamic and uncertain environments
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.115
– volume: 240
  start-page: 175
  year: 2017
  ident: 10.1016/j.neucom.2018.12.021_bib0022
  article-title: A switching delayed PSO optimized extreme learning machine for short-term load forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.090
– volume: 52
  start-page: 987
  issue: C
  year: 2016
  ident: 10.1016/j.neucom.2018.12.021_bib0055
  article-title: Improved global-best-guided particle swarm optimization with learning operation for global optimization problems
  publication-title: Appl. Soft Comput.
– volume: 42
  start-page: 8881
  issue: 22
  year: 2015
  ident: 10.1016/j.neucom.2018.12.021_bib0035
  article-title: PS-ABC: a hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.07.043
– volume: 73
  start-page: 5891
  issue: 10
  year: 2015
  ident: 10.1016/j.neucom.2018.12.021_bib0001
  article-title: The role of surface and subsurface integration in the development of a high-pressure and low-production gas field
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4341-7
– volume: 45
  start-page: 3
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2018.12.021_bib0019
  article-title: A review of recent advances in global optimization
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-008-9332-8
– volume: 145
  start-page: 734
  year: 2016
  ident: 10.1016/j.neucom.2018.12.021_bib0011
  article-title: Integrated optimization model for location and sizing of offshore platforms and location of oil wells
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2016.07.002
– year: 1989
  ident: 10.1016/j.neucom.2018.12.021_bib0044
– year: 1994
  ident: 10.1016/j.neucom.2018.12.021_bib0004
– volume: 76
  start-page: 110
  issue: 3
  year: 2014
  ident: 10.1016/j.neucom.2018.12.021_bib0010
  article-title: Optimal design of submarine pipeline routes by genetic algorithm with different constraint handling techniques
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2014.06.003
– volume: 68
  start-page: 202
  year: 2018
  ident: 10.1016/j.neucom.2018.12.021_bib0051
  article-title: A novel particle swarm optimization based on prey–predator relationship
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.04.008
– volume: 8
  start-page: 143
  year: 2016
  ident: 10.1016/j.neucom.2018.12.021_bib0023
  article-title: A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-016-9396-6
– volume: 320
  start-page: 195
  year: 2018
  ident: 10.1016/j.neucom.2018.12.021_bib0021
  article-title: A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer's disease
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.001
– volume: 25
  start-page: 92
  issue: 3
  year: 2001
  ident: 10.1016/j.neucom.2018.12.021_bib0003
  article-title: Integrated optimization of ground and underground development for oilfield development
  publication-title: J. Dqing Pet. Inst.
– volume: 8
  start-page: 204
  year: 2004
  ident: 10.1016/j.neucom.2018.12.021_bib0029
  article-title: The fully informed particle swarm: simpler, maybe better
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826074
– volume: 90
  start-page: 2209
  issue: 12
  year: 2012
  ident: 10.1016/j.neucom.2018.12.021_bib0006
  article-title: Integrated framework for the design of pipeline systems using stochastic optimization and gis tools
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2012.05.012
– volume: 21
  start-page: 88
  issue: 2
  year: 2000
  ident: 10.1016/j.neucom.2018.12.021_bib0002
  article-title: Study of optimization of overall planning for surface engineering of low osmose oil field
  publication-title: Acta Petrol. Sin.
– volume: 212
  start-page: 511
  issue: 5061
  year: 2001
  ident: 10.1016/j.neucom.2018.12.021_bib0024
  article-title: Particle swarm optimization with fuzzy adaptive inertia weight
  publication-title: Nature
– volume: 2007
  start-page: 475
  year: 2007
  ident: 10.1016/j.neucom.2018.12.021_bib0025
  article-title: Chaotic inertia weight in particle swarm optimization
– volume: 3
  start-page: 54
  issue: 4
  year: 2013
  ident: 10.1016/j.neucom.2018.12.021_bib0040
  article-title: Gathering and processing options for unconventional gas
  publication-title: Oil Gas J.
– volume: 32
  start-page: 281
  issue: 3
  year: 1989
  ident: 10.1016/j.neucom.2018.12.021_bib0015
  article-title: A fast iterative algorithm for generating set partitions
  publication-title: Comput. J.
  doi: 10.1093/comjnl/32.3.281
– volume: 44
  start-page: 1
  issue: 3
  year: 2016
  ident: 10.1016/j.neucom.2018.12.021_bib0034
  article-title: Modified particle swarm optimization for BMDS interceptor resource planning
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-015-0711-9
– volume: 18
  start-page: 22
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2018.12.021_bib0031
  article-title: A hybrid particle swarm with a time-adaptive topology for constrained optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2014.06.001
– volume: 29
  start-page: 104
  issue: 29
  year: 2014
  ident: 10.1016/j.neucom.2018.12.021_bib0018
  article-title: The influence of risk mitigation measures on the risks, costs and routing of CO2 pipelines
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2014.08.001
– volume: 56
  start-page: 52
  year: 1961
  ident: 10.1016/j.neucom.2018.12.021_bib0057
  article-title: Multiple comparisons among means
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1961.10482090
– volume: 11
  issue: 8
  year: 2016
  ident: 10.1016/j.neucom.2018.12.021_bib0027
  article-title: A novel flexible inertia weight particle swarm optimization algorithm
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0161558
– volume: 111
  start-page: 423
  issue: 3
  year: 1998
  ident: 10.1016/j.neucom.2018.12.021_bib0016
  article-title: Strategic facility location: a review
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(98)00186-6
– volume: 21
  start-page: 355
  year: 2010
  ident: 10.1016/j.neucom.2018.12.021_bib0047
  article-title: Fireworks algorithm for optimization
– volume: 33
  start-page: 143
  issue: 1
  year: 2018
  ident: 10.1016/j.neucom.2018.12.021_bib0014
  article-title: Optimization of natural gas transport pipeline network layout: a new methodology based on dominance degree model
  publication-title: Transport
  doi: 10.3846/transport.2018.145
– volume: 129
  start-page: 315
  issue: 129
  year: 2014
  ident: 10.1016/j.neucom.2018.12.021_bib0033
  article-title: An improved particle swarm optimizer with difference mean based perturbation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.026
– volume: 25
  start-page: 607
  issue: 5
  year: 1973
  ident: 10.1016/j.neucom.2018.12.021_bib0041
  article-title: A study of two-phase flow in inclined pipes
  publication-title: J. Pet. Technol.
  doi: 10.2118/4007-PA
– volume: 167
  start-page: 488
  year: 2015
  ident: 10.1016/j.neucom.2018.12.021_bib0032
  article-title: Hybrid particle swarm optimization incorporating fuzzy reasoning and weighted particle
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.045
– volume: 2
  start-page: 1671
  year: 2002
  ident: 10.1016/j.neucom.2018.12.021_bib0028
  article-title: Population structure and particle swarm performance
– start-page: 88
  year: 2003
  ident: 10.1016/j.neucom.2018.12.021_bib0052
  article-title: Watch thy neighbor or how the swarm can learn from its environment
– year: 2006
  ident: 10.1016/j.neucom.2018.12.021_bib0039
  article-title: Dynamic system analysis and initial particles position in particle swarm optimization
– volume: 19
  start-page: 43
  year: 2014
  ident: 10.1016/j.neucom.2018.12.021_bib0036
  article-title: An efficient GA–PSO approach for solving mixed-integer nonlinear programming problem in reliability optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2014.07.002
– volume: 18
  start-page: 992
  issue: 6
  year: 1970
  ident: 10.1016/j.neucom.2018.12.021_bib0017
  article-title: Optimal design of offshore natural-gas pipeline systems
  publication-title: Oper. Res.
  doi: 10.1287/opre.18.6.992
– volume: 179
  start-page: 135
  year: 2006
  ident: 10.1016/j.neucom.2018.12.021_bib0053
  article-title: An effective hybrid PSOSA strategy for optimization and its application to parameter estimation
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2005.11.086
– volume: 120
  start-page: 13
  issue: 1–4
  year: 1999
  ident: 10.1016/j.neucom.2018.12.021_bib0005
  article-title: Optimal parameters design of oilfield surface pipeline systems using fuzzy models
  publication-title: Inf. Sci.
  doi: 10.1016/S0020-0255(99)00059-6
– volume: 73
  start-page: 259
  year: 2015
  ident: 10.1016/j.neucom.2018.12.021_bib0037
  article-title: Multi-period wind integrated optimal dispatch using series PSO-DE with time-varying Gaussian membership function based fuzzy selection
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.05.017
– volume: 2018
  year: 2018
  ident: 10.1016/j.neucom.2018.12.021_bib0038
  article-title: PS-FW: a hybrid algorithm based on particle swarm and fireworks for global optimization
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2018/6094685
– volume: 91
  start-page: 2465
  issue: 12
  year: 2013
  ident: 10.1016/j.neucom.2018.12.021_bib0008
  article-title: Optimal design of a natural gas transmission network layout
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2013.04.005
– volume: 48
  start-page: 584
  year: 2016
  ident: 10.1016/j.neucom.2018.12.021_bib0030
  article-title: Particle swarm optimization using dynamic tournament topology
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.07.041
– volume: 31
  start-page: 153
  issue: 3
  year: 2007
  ident: 10.1016/j.neucom.2018.12.021_bib0020
  article-title: An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2006.05.016
– volume: 11
  start-page: 86
  issue: 1
  year: 1940
  ident: 10.1016/j.neucom.2018.12.021_bib0056
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731944
– volume: 38
  start-page: 129
  issue: 2
  year: 2006
  ident: 10.1016/j.neucom.2018.12.021_bib0048
  article-title: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization
  publication-title: Eng. Optim.
  doi: 10.1080/03052150500384759
– volume: 5792
  start-page: 169
  year: 2009
  ident: 10.1016/j.neucom.2018.12.021_bib0050
  article-title: Firefly algorithms for multimodal optimization
  publication-title: Mathematics
– volume: 185
  start-page: 1050
  year: 2007
  ident: 10.1016/j.neucom.2018.12.021_bib0054
  article-title: MCPSO: a multi-swarm cooperative particle swarm optimizer
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.07.026
– volume: 144
  start-page: 149
  year: 2017
  ident: 10.1016/j.neucom.2018.12.021_bib0007
  article-title: A comparison between ACO and Dijkstra algorithms for optimal ore concentrate pipeline routing
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.12.084
SSID ssj0017129
Score 2.595607
Snippet Layout optimization of large-scale oil–gas gathering system is a kind of NP-hard problem in the field of system optimization. It involves a large number of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 159
SubjectTerms Convergence theorem
Global convergence
Layout optimization
Oil–gas gathering system
Particle swarm optimization algorithm
Title Layout optimization of large-scale oil–gas gathering system based on combined optimization strategy
URI https://dx.doi.org/10.1016/j.neucom.2018.12.021
Volume 332
WOSCitedRecordID wos000456410600016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCy4ELb0R5yQdukVF3nY13jxEqAhRVlVpQbiuv7Q2p0k1pkqrc-A_c-Hn8EmY89nZLEC-JyyZyYsfyfPk8Hs-DsedKaaBGWwiVOSxhVmuRy0Em6jxR1mWFrP2N7vux2t_PJ5PioNf7GmNhzueqafKLi-L0v4oa2kDYGDr7F-JuB4UGeA9ChyeIHZ5_JPix_oS-xgvggpMQZIka4RxdvsUSROL6i9k8OjnIqV72pyEMcBoSO_dxb7N4jwAThKMzvu8Ot6SUtlduhH2WD-NrRATrw-gEkzBYRFxrbRjP1p70ddgwvWMBMd_hhzW0fpxdfgLwpWLynbaJ738QW4K9AkOkpKDCtmRE2wikIWtkmglQNYmYHXFxrlIf5d4laxmsoUS3ScgmTjt3QiVxNjYFsk8cv2jcGj2EYFK5NwFTaPYP6bYPcSo4ExgtwWSI19h2Ci_AmNujN3uTt-0dlUpSyuQYph4DM7334OZv_Vzx6SgzR7fZzXAK4SNCzx3Wc81dditW-OCB8O8xR2DiXenzRc07YOIApm-fvwCMeAsjTjDiHkYcukQYXR0owug-e_dq7-jlaxEKcwgDJ8yVSJ0y0tZwVLUqs2qocwtqMto7hgNk9KIypjKFVVpqUI8lnKortZtjfVoplcvlA7bVLBr3kHGTOFPXRSWHUg2qoq5yZYcYfalBcd3VcofJuGqlCVnrsXjKvIzuicclrXWJa10maQlrvcNE2-uUsrb85vsqCqQMmidplCVg6Jc9H_1zz8fsxuXf4wnbWp2t3VN23ZyvZsuzZwFs3wH4T6ue
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layout+optimization+of+large-scale+oil%E2%80%93gas+gathering+system+based+on+combined+optimization+strategy&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Liu%2C+Yang&rft.au=Chen%2C+Shuangqing&rft.au=Guan%2C+Bing&rft.au=Xu%2C+Ping&rft.date=2019-03-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=332&rft.spage=159&rft.epage=183&rft_id=info:doi/10.1016%2Fj.neucom.2018.12.021&rft.externalDocID=S0925231218314759
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon