Investigation of mechanical properties of high-performance concrete via multi-method of regression tree approach

Concrete's workability and durability are influenced by its mechanical properties, including Tensile and Compressive strength. High-performance concrete exhibits non-linear relationships between its compressive and tensile strength characteristics and the proportions of its constituent material...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Materials today communications Ročník 40; s. 109922
Hlavní autoři: Qi, Rui, Wu, Haiyan, Qi, Yongjun, Tang, HaiLin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.08.2024
Témata:
ISSN:2352-4928, 2352-4928
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Concrete's workability and durability are influenced by its mechanical properties, including Tensile and Compressive strength. High-performance concrete exhibits non-linear relationships between its compressive and tensile strength characteristics and the proportions of its constituent materials, such as water, aggregate, cement, and admixtures. The investigation of the relations between the constituents of concrete and its mechanical properties has posed a challenging issue. This paper seeks to develop a range of single, hybrid, and ensemble models to resolve the problem of accurately estimating the mechanical properties of concrete according to its constituent components as input variables. In this regard, various frameworks incorporating a machine learning technique called decision tree and four metaheuristic optimization algorithms were utilized in model development to emulate the values of tensile and compressive strength. The findings indicated that the decision tree-dynamic arithmetic optimization algorithm hybrid model produced results with an correlation of determination of 0.9919 in compressive strength and 0.9933 in tensile strength, which were on average 1–3 % higher than that of the decision tree-dandelion optimizer algorithm, decision tree-arithmetic optimization algorithm, and decision tree-coot optimization algorithm, indicating superior optimization performance of dynamic arithmetic optimization algorithm. Additionally, the powerful prediction capability of the decision tree + dynamic arithmetic optimization algorithm + dandelion optimizer algorithm + coot optimization algorithm + arithmetic optimization algorithm ensemble model was noticeable with R2 of 0.9882 and 0.9936 in compressive and tensile strength estimation reliable to be used for various data produced in the future. In general, the utilization of coupling techniques to generate hybrid and ensemble models can enhance the accuracy of predictions while reducing the time and costs associated with experimental procedures. [Display omitted]
AbstractList Concrete's workability and durability are influenced by its mechanical properties, including Tensile and Compressive strength. High-performance concrete exhibits non-linear relationships between its compressive and tensile strength characteristics and the proportions of its constituent materials, such as water, aggregate, cement, and admixtures. The investigation of the relations between the constituents of concrete and its mechanical properties has posed a challenging issue. This paper seeks to develop a range of single, hybrid, and ensemble models to resolve the problem of accurately estimating the mechanical properties of concrete according to its constituent components as input variables. In this regard, various frameworks incorporating a machine learning technique called decision tree and four metaheuristic optimization algorithms were utilized in model development to emulate the values of tensile and compressive strength. The findings indicated that the decision tree-dynamic arithmetic optimization algorithm hybrid model produced results with an correlation of determination of 0.9919 in compressive strength and 0.9933 in tensile strength, which were on average 1–3 % higher than that of the decision tree-dandelion optimizer algorithm, decision tree-arithmetic optimization algorithm, and decision tree-coot optimization algorithm, indicating superior optimization performance of dynamic arithmetic optimization algorithm. Additionally, the powerful prediction capability of the decision tree + dynamic arithmetic optimization algorithm + dandelion optimizer algorithm + coot optimization algorithm + arithmetic optimization algorithm ensemble model was noticeable with R2 of 0.9882 and 0.9936 in compressive and tensile strength estimation reliable to be used for various data produced in the future. In general, the utilization of coupling techniques to generate hybrid and ensemble models can enhance the accuracy of predictions while reducing the time and costs associated with experimental procedures. [Display omitted]
ArticleNumber 109922
Author Tang, HaiLin
Qi, Rui
Wu, Haiyan
Qi, Yongjun
Author_xml – sequence: 1
  givenname: Rui
  surname: Qi
  fullname: Qi, Rui
  organization: School of Architectural Engineering, Guangzhou Institute of Science and Technology, Guangzhou, Guangdong 510540, China
– sequence: 2
  givenname: Haiyan
  surname: Wu
  fullname: Wu, Haiyan
  email: why103392283@126.com
  organization: School of Management, South China Business College Guangdong University of Foreign Studies, Guangzhou, Guangdong 510545, China
– sequence: 3
  givenname: Yongjun
  surname: Qi
  fullname: Qi, Yongjun
  email: qyj200702022@baiyunu.edu.cn
  organization: Faculty of Megadata and Computing, Guangdong Baiyun University, Guangzhou, Guangdong 510450, China
– sequence: 4
  givenname: HaiLin
  surname: Tang
  fullname: Tang, HaiLin
  organization: Faculty of Megadata and Computing, Guangdong Baiyun University, Guangzhou, Guangdong 510450, China
BookMark eNqFkMtKxDAYhYOM4DjOG7joC3RM0naauBBk8DIw4EbXIU3-TjM0TUliwbe3tS7Eha7-6zlwvku06FwHCF0TvCGYbG9OGxuVs3ZDMc3HFeeUnqElzQqa5pyyxY_-Aq1DOGGMCStwzvMl6vfdACGao4zGdYmrEwuqkZ1Rsk1673rw0UCYDo05Nuk4185b2SlIlOuUhwjJYGRi39toUguxcXr69nD0EMJkGj1AIvvRTarmCp3Xsg2w_q4r9Pb48Lp7Tg8vT_vd_SFVGd7GlGpgULGS8qIoNON5lZWc1nVJpBqbkiiZMclJlTPYVkpTTQvATJdMM0Izkq3Q7eyrvAvBQy2UiV8ho5emFQSLCZ84iRmfmPCJGd8ozn-Je2-s9B__ye5mGYzBBgNeBGVgRKWNBxWFduZvg08BsJCJ
CitedBy_id crossref_primary_10_3390_buildings15010027
crossref_primary_10_13168_cs_2025_0027
crossref_primary_10_1007_s11831_025_10385_7
crossref_primary_10_3390_biomimetics10080515
Cites_doi 10.1016/j.istruc.2021.11.048
10.1016/j.advengsoft.2017.07.002
10.1016/j.conbuildmat.2020.120950
10.1016/j.jclepro.2021.126032
10.1002/suco.202100213
10.2166/ws.2020.241
10.1016/j.jmrt.2020.06.008
10.1007/s11356-021-13918-2
10.1016/j.conbuildmat.2017.02.118
10.3390/cryst12050569
10.1016/j.engappai.2024.108388
10.1016/j.cemconres.2018.09.006
10.1016/j.cma.2020.113609
10.1109/ACCESS.2022.3146374
10.1016/S0030-3992(99)00004-3
10.1007/s11356-022-22048-2
10.3390/su12030830
10.1016/j.conbuildmat.2013.08.078
10.3390/ma13051023
10.1016/j.eswa.2021.115352
10.3390/ma16114200
10.1186/s44147-023-00274-w
10.1080/14680629.2019.1702583
10.1002/suco.202100250
10.3390/ma14040794
10.1016/j.conbuildmat.2020.120198
10.3390/ma15155194
10.1007/s00366-020-01003-0
10.1016/j.conbuildmat.2018.05.201
10.1080/19648189.2022.2068657
10.1016/S0008-8846(98)00251-8
10.1016/j.engappai.2022.105075
10.1016/j.conbuildmat.2012.12.066
10.1016/j.compstruc.2013.10.006
10.1007/s10064-021-02458-1
10.1109/ACCESS.2017.2738069
10.1016/j.conbuildmat.2008.01.014
10.1071/WR07179
10.1061/(ASCE)MT.1943-5533.0003741
10.1007/s00521-020-05525-y
10.12989/cac.2013.12.3.285
10.3390/ma14227034
10.1016/j.compstruc.2010.07.003
10.1016/j.aei.2023.102004
10.1177/1369433220986637
10.1016/j.conbuildmat.2020.118152
10.1016/j.engappai.2013.03.014
10.1007/s11676-011-0164-x
10.1016/j.conbuildmat.2022.126694
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mtcomm.2024.109922
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2352-4928
ExternalDocumentID 10_1016_j_mtcomm_2024_109922
S2352492824019032
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AABXZ
AACTN
AAEDT
AAEDW
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
ID FETCH-LOGICAL-c306t-2de8eb8729555d894b3792ff71ac79271ca38a91b48e6bcd2d25e08d78d812313
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001293571700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-4928
IngestDate Sat Nov 29 03:28:13 EST 2025
Tue Nov 18 22:40:45 EST 2025
Sat Sep 14 18:13:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords B
W/B
High-performance concrete
Decision tree
DTCA
DT
DAOA
AOA
SF
COA
SI
DOA
W
Ensemble learning
SP
MK
DTAO
R2
SHAP
Meta-heuristic algorithms
RMSE
DTDA
Compressive and tensile strength
CS
MAE
NMSE
HPC
FA
DTDO
DTDDAC
Ca
TS
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-2de8eb8729555d894b3792ff71ac79271ca38a91b48e6bcd2d25e08d78d812313
ParticipantIDs crossref_citationtrail_10_1016_j_mtcomm_2024_109922
crossref_primary_10_1016_j_mtcomm_2024_109922
elsevier_sciencedirect_doi_10_1016_j_mtcomm_2024_109922
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Materials today communications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Liu, Ma (bib54) 2011; vol. 22
Awoyera, Kirgiz, Viloria, Ovallos-Gazabon (bib27) 2020; vol. 9
Habib, Cherri (bib58) 1998; vol. 30
Liu (bib36) 2022; vol. 2022
Karbassi, Mohebi, Rezaee, Lestuzzi (bib45) 2014; vol. 130
Hu, Zheng, Abualigah, Hussien (bib52) 2023; vol. 57
Sadaghat, Ebrahimi, Souri, Yahyavi Niar, Akbarzadeh (bib9) 2024; vol. 133
Sedaghat, Tejani, Kumar (bib10) 2023; vol. 002
Khajeh, Ebrahimi, MolaAbasi, Jamshidi Chenari, Payan (bib4) 2021; vol. 80
Słoński (bib29) 2010; vol. 88
Shah, Rehman, Javed, Iftikhar (bib25) 2022; vol. 23
Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (bib49) 2021; vol. 376
Zhao, Zhang, Ma, Chen (bib51) 2022; vol. 114
Duan, Asteris, Nguyen, Bui, Moayedi (bib22) 2021; vol. 37
Farooq, Ahmed, Akbar, Aslam, Alyousef (bib34) 2021; vol. 292
Varo, Amat (bib55) 2008; vol. 35
Gupta, Sachdeva (bib16) 2021; vol. 22
Tavana Amlashi, Mohammadi Golafshani, Ebrahimi, Behnood (bib12) 2023; vol. 27
Masoumi, Najjar-Ghabel, Safarzadeh, Sadaghat (bib6) 2020; vol. 20
Van Dao (bib30) 2020; vol. 12
Zhang, Afzal (bib8) 2022; vol. 23
Chou, Truong (bib23) 2021; vol. 389
Ahmad (bib46) 2021; vol. 14
Young, Hall, Pilon, Gupta, Sant (bib20) 2019; vol. 115
Erdal (bib47) 2013; vol. 26
Mazloom, Yoosefi (bib13) 2013; vol. 12
Nguyen, Vu, Vo, Thai (bib38) 2021; vol. 266
Lin, Wu, Lin, Wen, Li (bib59) 2017; vol. 5
Naruei, Keynia (bib56) 2021; vol. 183
Ziyad Sami (bib24) 2023; vol. 18
Gong, Zhang (bib15) 2023; vol. 70
Xu (bib33) 2021; vol. 14
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (bib57) 2017; vol. 114
Rezaiee-Pajand, Abad, Karimipour, Rezaiee-Pajand (bib26) 2021; vol. 40
G. Muthumari and K.N. Sekaran, “Strength and Durability Properties of Metakaolin Amalgamated High Performance Concrete”.
Kaloop, Kumar, Samui, Hu, Kim (bib31) 2020; vol. 264
Chou, Pham (bib21) 2013; vol. 49
Aköz, Türker, Koral, Yüzer (bib3) 1999; vol. 29
Al-Shamiri, Yuan, Kim (bib32) 2020; vol. 13
El-Din, Eisa, Aziz, Ibrahim (bib40) 2017; vol. 140
Zhu, Ahmad, Ahmad, Vatin, Mohamed, Fathi (bib7) 2022; vol. 12
Zheng, Luo, Wang (bib11) 2013; vol. 41
Thota, Sinha (bib48) 2022; vol. 44
Ren, Ding, Dai, Jiang, De Schutter (bib14) 2021; vol. 33
Singh, Gupta (bib41) 2023; vol. 05
Prasad, Eskandari, Reddy (bib1) 2009; vol. 23
Li, Song (bib39) 2022; vol. 324
Bui, Nguyen, Chou, Nguyen-Xuan, Ngo (bib28) 2018; vol. 180
Rad, Ohadi, Jafari-Asl, Vatani, Ahmadabadi, Correia (bib17) 2022; vol. 35
Kumar, Shafiq, Kumar, Jhatial (bib42) 2021; vol. 28
Behnood, Golafshani (bib61) 2020; vol. 243
A. Kumar and H. Gaur, “EXPERIMENTAL STUDY ON HIGH PERFORMANCE CONCRETE BY PARTIAL REPLACEMENT OF CEMENT WITH METAKAOLIN,” 2020.
Lee, Nguyen, Karamanli, Lee, Vo (bib35) 2022
Andrushia, A, Lubloy (bib19) 2021; vol. 24
Khodadadi, Snasel, Mirjalili (bib50) 2022; vol. 10
Mohammed, Burhan, Ghafor, Sarwar, Mahmood (bib18) 2021; vol. 33
Wu, Zhou (bib37) 2022; vol. 29
Elhammoudy (bib53) 2023
Botchkarev (bib60) 2018
Zheng (bib2) 2022; vol. 15
Akbarzadeh, Ghafourian, Anvari, Pourhanasa, Nehdi (bib5) 2023; vol. 16
Habib (10.1016/j.mtcomm.2024.109922_bib58) 1998; vol. 30
Słoński (10.1016/j.mtcomm.2024.109922_bib29) 2010; vol. 88
Abualigah (10.1016/j.mtcomm.2024.109922_bib49) 2021; vol. 376
Rezaiee-Pajand (10.1016/j.mtcomm.2024.109922_bib26) 2021; vol. 40
El-Din (10.1016/j.mtcomm.2024.109922_bib40) 2017; vol. 140
Li (10.1016/j.mtcomm.2024.109922_bib39) 2022; vol. 324
Gupta (10.1016/j.mtcomm.2024.109922_bib16) 2021; vol. 22
Shah (10.1016/j.mtcomm.2024.109922_bib25) 2022; vol. 23
Liu (10.1016/j.mtcomm.2024.109922_bib36) 2022; vol. 2022
Varo (10.1016/j.mtcomm.2024.109922_bib55) 2008; vol. 35
Al-Shamiri (10.1016/j.mtcomm.2024.109922_bib32) 2020; vol. 13
Lee (10.1016/j.mtcomm.2024.109922_bib35) 2022
Karbassi (10.1016/j.mtcomm.2024.109922_bib45) 2014; vol. 130
Naruei (10.1016/j.mtcomm.2024.109922_bib56) 2021; vol. 183
Awoyera (10.1016/j.mtcomm.2024.109922_bib27) 2020; vol. 9
Zheng (10.1016/j.mtcomm.2024.109922_bib11) 2013; vol. 41
Chou (10.1016/j.mtcomm.2024.109922_bib21) 2013; vol. 49
Kumar (10.1016/j.mtcomm.2024.109922_bib42) 2021; vol. 28
Zhang (10.1016/j.mtcomm.2024.109922_bib8) 2022; vol. 23
Ziyad Sami (10.1016/j.mtcomm.2024.109922_bib24) 2023; vol. 18
Zhao (10.1016/j.mtcomm.2024.109922_bib51) 2022; vol. 114
Akbarzadeh (10.1016/j.mtcomm.2024.109922_bib5) 2023; vol. 16
Masoumi (10.1016/j.mtcomm.2024.109922_bib6) 2020; vol. 20
Young (10.1016/j.mtcomm.2024.109922_bib20) 2019; vol. 115
Prasad (10.1016/j.mtcomm.2024.109922_bib1) 2009; vol. 23
10.1016/j.mtcomm.2024.109922_bib44
Elhammoudy (10.1016/j.mtcomm.2024.109922_bib53) 2023
10.1016/j.mtcomm.2024.109922_bib43
Mirjalili (10.1016/j.mtcomm.2024.109922_bib57) 2017; vol. 114
Sedaghat (10.1016/j.mtcomm.2024.109922_bib10) 2023; vol. 002
Mazloom (10.1016/j.mtcomm.2024.109922_bib13) 2013; vol. 12
Rad (10.1016/j.mtcomm.2024.109922_bib17) 2022; vol. 35
Khodadadi (10.1016/j.mtcomm.2024.109922_bib50) 2022; vol. 10
Aköz (10.1016/j.mtcomm.2024.109922_bib3) 1999; vol. 29
Zhu (10.1016/j.mtcomm.2024.109922_bib7) 2022; vol. 12
Nguyen (10.1016/j.mtcomm.2024.109922_bib38) 2021; vol. 266
Khajeh (10.1016/j.mtcomm.2024.109922_bib4) 2021; vol. 80
Behnood (10.1016/j.mtcomm.2024.109922_bib61) 2020; vol. 243
Sadaghat (10.1016/j.mtcomm.2024.109922_bib9) 2024; vol. 133
Zhang (10.1016/j.mtcomm.2024.109922_bib54) 2011; vol. 22
Tavana Amlashi (10.1016/j.mtcomm.2024.109922_bib12) 2023; vol. 27
Thota (10.1016/j.mtcomm.2024.109922_bib48) 2022; vol. 44
Andrushia (10.1016/j.mtcomm.2024.109922_bib19) 2021; vol. 24
Ahmad (10.1016/j.mtcomm.2024.109922_bib46) 2021; vol. 14
Duan (10.1016/j.mtcomm.2024.109922_bib22) 2021; vol. 37
Gong (10.1016/j.mtcomm.2024.109922_bib15) 2023; vol. 70
Mohammed (10.1016/j.mtcomm.2024.109922_bib18) 2021; vol. 33
Hu (10.1016/j.mtcomm.2024.109922_bib52) 2023; vol. 57
Wu (10.1016/j.mtcomm.2024.109922_bib37) 2022; vol. 29
Lin (10.1016/j.mtcomm.2024.109922_bib59) 2017; vol. 5
Botchkarev (10.1016/j.mtcomm.2024.109922_bib60) 2018; 03006
Ren (10.1016/j.mtcomm.2024.109922_bib14) 2021; vol. 33
Van Dao (10.1016/j.mtcomm.2024.109922_bib30) 2020; vol. 12
Bui (10.1016/j.mtcomm.2024.109922_bib28) 2018; vol. 180
Kaloop (10.1016/j.mtcomm.2024.109922_bib31) 2020; vol. 264
Farooq (10.1016/j.mtcomm.2024.109922_bib34) 2021; vol. 292
Zheng (10.1016/j.mtcomm.2024.109922_bib2) 2022; vol. 15
Singh (10.1016/j.mtcomm.2024.109922_bib41) 2023; vol. 05
Erdal (10.1016/j.mtcomm.2024.109922_bib47) 2013; vol. 26
Chou (10.1016/j.mtcomm.2024.109922_bib23) 2021; vol. 389
Xu (10.1016/j.mtcomm.2024.109922_bib33) 2021; vol. 14
References_xml – year: 2023
  ident: bib53
  article-title: Dandelion optimizer algorithm-based method for accurate photovoltaic model parameter identification
  publication-title: Energy Convers. Manag. X
– volume: vol. 22
  start-page: 1521
  year: 2021
  end-page: 1542
  ident: bib16
  article-title: Prediction of compressive and flexural strengths of jarosite mixed cement concrete pavements using artificial neural networks
  publication-title: Road. Mater. Pavement Des.
– volume: vol. 40
  year: 2021
  ident: bib26
  article-title: Propose new implement models to determine the compressive, tensile and flexural strengths of recycled coarse aggregate concrete via imperialist competitive algorithm
  publication-title: J. Build. Eng.
– volume: vol. 27
  start-page: 961
  year: 2023
  end-page: 983
  ident: bib12
  article-title: Estimation of the compressive strength of green concretes containing rice husk ash: a comparison of different machine learning approaches
  publication-title: Eur. J. Environ. Civ. Eng.
– volume: vol. 14
  start-page: 7034
  year: 2021
  ident: bib33
  article-title: Computation of high-performance concrete compressive strength using standalone and ensembled machine learning techniques
  publication-title: Mater. (Basel)
– volume: vol. 37
  start-page: 3329
  year: 2021
  end-page: 3346
  ident: bib22
  article-title: A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model
  publication-title: Eng. Comput.
– volume: vol. 115
  start-page: 379
  year: 2019
  end-page: 388
  ident: bib20
  article-title: Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods
  publication-title: Cem. Concr. Res.
– reference: A. Kumar and H. Gaur, “EXPERIMENTAL STUDY ON HIGH PERFORMANCE CONCRETE BY PARTIAL REPLACEMENT OF CEMENT WITH METAKAOLIN,” 2020.
– volume: vol. 23
  start-page: 2435
  year: 2022
  end-page: 2449
  ident: bib25
  article-title: Prediction of compressive and splitting tensile strength of concrete with fly ash by using gene expression programming
  publication-title: Struct. Concr.
– volume: vol. 29
  start-page: 89198
  year: 2022
  end-page: 89209
  ident: bib37
  article-title: Splitting tensile strength prediction of sustainable high-performance concrete using machine learning techniques
  publication-title: Environ. Sci. Pollut. Res.
– volume: vol. 243
  year: 2020
  ident: bib61
  article-title: Machine learning study of the mechanical properties of concretes containing waste foundry sand
  publication-title: Constr. Build. Mater.
– volume: vol. 57
  year: 2023
  ident: bib52
  article-title: DETDO: an adaptive hybrid dandelion optimizer for engineering optimization
  publication-title: Adv. Eng. Inform.
– volume: vol. 33
  start-page: 7851
  year: 2021
  end-page: 7873
  ident: bib18
  article-title: Artificial neural network (ANN), M5P-tree, and regression analyses to predict the early age compression strength of concrete modified with DBC-21 and VK-98 polymers
  publication-title: Neural Comput. Appl.
– volume: vol. 114
  year: 2022
  ident: bib51
  article-title: Dandelion optimizer: a nature-inspired metaheuristic algorithm for engineering applications
  publication-title: Eng. Appl. Artif. Intell.
– volume: vol. 2022
  year: 2022
  ident: bib36
  article-title: High-performance concrete strength prediction based on machine learning
  publication-title: Comput. Intell. Neurosci.
– volume: vol. 18
  year: 2023
  ident: bib24
  article-title: Feasibility analysis for predicting the compressive and tensile strength of concrete using machine learning algorithms
  publication-title: Case Stud. Constr. Mater.
– volume: vol. 44
  start-page: 10116
  year: 2022
  end-page: 10134
  ident: bib48
  article-title: An enhanced arithmetic optimization algorithm for global maximum power point tracking of photovoltaic systems under dynamic irradiance patterns
  publication-title: Energy Sources, Part A Recover. Util. Environ. Eff.
– volume: vol. 14
  start-page: 794
  year: 2021
  ident: bib46
  article-title: Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm
  publication-title: Mater. (Basel)
– volume: vol. 49
  start-page: 554
  year: 2013
  end-page: 563
  ident: bib21
  article-title: Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength
  publication-title: Constr. Build. Mater.
– volume: vol. 5
  start-page: 16568
  year: 2017
  end-page: 16575
  ident: bib59
  article-title: An ensemble random forest algorithm for insurance big data analysis
  publication-title: IEEE Access
– volume: vol. 29
  start-page: 537
  year: 1999
  end-page: 544
  ident: bib3
  article-title: Effects of raised temperature of sulfate solutions on the sulfate resistance of mortars with and without silica fume
  publication-title: Cem. Concr. Res.
– volume: vol. 24
  start-page: 1896
  year: 2021
  end-page: 1909
  ident: bib19
  article-title: Deep learning based thermal crack detection on structural concrete exposed to elevated temperature
  publication-title: Adv. Struct. Eng.
– volume: vol. 22
  start-page: 289
  year: 2011
  end-page: 294
  ident: bib54
  article-title: Territory and territorial behavior of migrating Common Coot (Fulica atra)
  publication-title: J. Res.
– volume: vol. 28
  start-page: 49074
  year: 2021
  end-page: 49088
  ident: bib42
  article-title: Investigating embodied carbon, mechanical properties, and durability of high-performance concrete using ternary and quaternary blends of metakaolin, nano-silica, and fly ash
  publication-title: Environ. Sci. Pollut. Res.
– volume: vol. 26
  start-page: 1689
  year: 2013
  end-page: 1697
  ident: bib47
  article-title: Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction
  publication-title: Eng. Appl. Artif. Intell.
– volume: vol. 183
  year: 2021
  ident: bib56
  article-title: A new optimization method based on COOT bird natural life model
  publication-title: Expert Syst. Appl.
– volume: vol. 12
  start-page: 285
  year: 2013
  end-page: 301
  ident: bib13
  article-title: Predicting the indirect tensile strength of self-compacting concrete using artificial neural networks
  publication-title: Comput. Concr.
– volume: vol. 9
  start-page: 9016
  year: 2020
  end-page: 9028
  ident: bib27
  article-title: Estimating strength properties of geopolymer self-compacting concrete using machine learning techniques
  publication-title: J. Mater. Res. Technol.
– volume: vol. 140
  start-page: 203
  year: 2017
  end-page: 209
  ident: bib40
  article-title: Mechanical performance of high strength concrete made from high volume of Metakaolin and hybrid fibers
  publication-title: Constr. Build. Mater.
– volume: vol. 35
  start-page: 722
  year: 2022
  end-page: 733
  ident: bib17
  article-title: GNDO-SVR: An efficient surrogate modeling approach for reliability-based design optimization of concrete dams
  publication-title: Structures
– volume: vol. 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: bib57
  article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
– volume: vol. 15
  start-page: 5194
  year: 2022
  ident: bib2
  article-title: Flexural strength prediction of steel fiber-reinforced concrete using artificial intelligence
  publication-title: Mater. (Basel)
– volume: vol. 292
  year: 2021
  ident: bib34
  article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: a comparison and optimization of models using ensemble learners
  publication-title: J. Clean. Prod.
– volume: vol. 70
  start-page: 107
  year: 2023
  ident: bib15
  article-title: Predict the compressive strength of ultra high-performance concrete by a hybrid method of machine learning
  publication-title: J. Eng. Appl. Sci.
– volume: vol. 35
  start-page: 612
  year: 2008
  end-page: 616
  ident: bib55
  article-title: Differences in foraging behaviour of sympatric coots with different conservation status
  publication-title: Wildl. Res.
– volume: vol. 30
  start-page: 515
  year: 1998
  end-page: 525
  ident: bib58
  article-title: Parallel quaternary signed-digit arithmetic operations: addition, subtraction, multiplication and division
  publication-title: Opt. Laser Technol.
– volume: vol. 133
  year: 2024
  ident: bib9
  article-title: Evaluating strength properties of eco-friendly seashell-containing concrete: comparative analysis of hybrid and ensemble boosting methods based on environmental effects of seashell usage
  publication-title: Eng. Appl. Artif. Intell.
– volume: vol. 264
  year: 2020
  ident: bib31
  article-title: Compressive strength prediction of high-performance concrete using gradient tree boosting machine
  publication-title: Constr. Build. Mater.
– volume: vol. 10
  start-page: 16188
  year: 2022
  end-page: 16208
  ident: bib50
  article-title: Dynamic arithmetic optimization algorithm for truss optimization under natural frequency constraints
  publication-title: IEEE Access
– volume: vol. 05
  start-page: 2582
  year: 2023
  end-page: 5208
  ident: bib41
  article-title: Advancement of high performance concrete utilizing natural admixture
  publication-title: IRJMETS
– volume: vol. 389
  year: 2021
  ident: bib23
  article-title: A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean
  publication-title: Appl. Math. Comput.
– volume: vol. 88
  start-page: 1248
  year: 2010
  end-page: 1253
  ident: bib29
  article-title: A comparison of model selection methods for compressive strength prediction of high-performance concrete using neural networks
  publication-title: Comput. Struct.
– year: 2022
  ident: bib35
  article-title: Super learner machine-learning algorithms for compressive strength prediction of high performance concrete
  publication-title: Struct. Concr.
– volume: vol. 130
  start-page: 46
  year: 2014
  end-page: 56
  ident: bib45
  article-title: Damage prediction for regular reinforced concrete buildings using the decision tree algorithm
  publication-title: Comput. Struct.
– volume: vol. 13
  start-page: 1023
  year: 2020
  ident: bib32
  article-title: Non-tuned machine learning approach for predicting the compressive strength of high-performance concrete
  publication-title: Mater. (Basel)
– volume: vol. 12
  start-page: 830
  year: 2020
  ident: bib30
  article-title: A sensitivity and robustness analysis of GPR and ANN for high-performance concrete compressive strength prediction using a Monte Carlo simulation
  publication-title: Sustainability
– volume: vol. 180
  start-page: 320
  year: 2018
  end-page: 333
  ident: bib28
  article-title: A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete
  publication-title: Constr. Build. Mater.
– reference: G. Muthumari and K.N. Sekaran, “Strength and Durability Properties of Metakaolin Amalgamated High Performance Concrete”.
– volume: vol. 002
  year: 2023
  ident: bib10
  article-title: Predict the maximum dry density of soil based on individual and hybrid methods of machine learning
  publication-title: Adv. Eng. Intell. Syst.
– volume: vol. 266
  year: 2021
  ident: bib38
  article-title: Efficient machine learning models for prediction of concrete strengths
  publication-title: Constr. Build. Mater.
– volume: vol. 23
  start-page: 117
  year: 2009
  end-page: 128
  ident: bib1
  article-title: Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN
  publication-title: Constr. Build. Mater.
– volume: vol. 23
  start-page: 2477
  year: 2022
  end-page: 2495
  ident: bib8
  article-title: Prediction of the elastic modulus of recycled aggregate concrete applying hybrid artificial intelligence and machine learning algorithms
  publication-title: Struct. Concr.
– volume: vol. 80
  start-page: 8615
  year: 2021
  end-page: 8632
  ident: bib4
  article-title: Effect of EPS beads in lightening a typical zeolite and cement-treated sand
  publication-title: Bull. Eng. Geol. Environ.
– volume: vol. 12
  start-page: 569
  year: 2022
  ident: bib7
  article-title: Predicting the splitting tensile strength of recycled aggregate concrete using individual and ensemble machine learning approaches
  publication-title: Crystals
– volume: vol. 16
  start-page: 4200
  year: 2023
  ident: bib5
  article-title: Estimating compressive strength of concrete using neural electromagnetic field optimization
  publication-title: Mater. (Basel)
– year: 2018
  ident: bib60
  article-title: Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties and typology
  publication-title: arXiv Prepr. arXiv1809
– volume: vol. 376
  year: 2021
  ident: bib49
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: vol. 20
  start-page: 3487
  year: 2020
  end-page: 3501
  ident: bib6
  article-title: Automatic calibration of the groundwater simulation model with high parameter dimensionality using sequential uncertainty fitting approach
  publication-title: Water Supply
– volume: vol. 41
  start-page: 844
  year: 2013
  end-page: 851
  ident: bib11
  article-title: Compressive and tensile properties of reactive powder concrete with steel fibres at elevated temperatures
  publication-title: Constr. Build. Mater.
– volume: vol. 324
  year: 2022
  ident: bib39
  article-title: High-performance concrete strength prediction based on ensemble learning
  publication-title: Constr. Build. Mater.
– volume: vol. 33
  start-page: 4021135
  year: 2021
  ident: bib14
  article-title: Prediction of compressive strength of concrete with manufactured sand by ensemble classification and regression tree method
  publication-title: J. Mater. Civ. Eng.
– volume: vol. 35
  start-page: 722
  year: 2022
  ident: 10.1016/j.mtcomm.2024.109922_bib17
  article-title: GNDO-SVR: An efficient surrogate modeling approach for reliability-based design optimization of concrete dams
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.11.048
– ident: 10.1016/j.mtcomm.2024.109922_bib44
– volume: vol. 44
  start-page: 10116
  issue: 4
  year: 2022
  ident: 10.1016/j.mtcomm.2024.109922_bib48
  article-title: An enhanced arithmetic optimization algorithm for global maximum power point tracking of photovoltaic systems under dynamic irradiance patterns
  publication-title: Energy Sources, Part A Recover. Util. Environ. Eff.
– volume: vol. 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.mtcomm.2024.109922_bib57
  article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: vol. 266
  year: 2021
  ident: 10.1016/j.mtcomm.2024.109922_bib38
  article-title: Efficient machine learning models for prediction of concrete strengths
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.120950
– volume: vol. 292
  year: 2021
  ident: 10.1016/j.mtcomm.2024.109922_bib34
  article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: a comparison and optimization of models using ensemble learners
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126032
– volume: vol. 23
  start-page: 2435
  issue: 4
  year: 2022
  ident: 10.1016/j.mtcomm.2024.109922_bib25
  article-title: Prediction of compressive and splitting tensile strength of concrete with fly ash by using gene expression programming
  publication-title: Struct. Concr.
  doi: 10.1002/suco.202100213
– volume: vol. 20
  start-page: 3487
  issue: 8
  year: 2020
  ident: 10.1016/j.mtcomm.2024.109922_bib6
  article-title: Automatic calibration of the groundwater simulation model with high parameter dimensionality using sequential uncertainty fitting approach
  publication-title: Water Supply
  doi: 10.2166/ws.2020.241
– volume: vol. 9
  start-page: 9016
  issue: 4
  year: 2020
  ident: 10.1016/j.mtcomm.2024.109922_bib27
  article-title: Estimating strength properties of geopolymer self-compacting concrete using machine learning techniques
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2020.06.008
– volume: vol. 2022
  year: 2022
  ident: 10.1016/j.mtcomm.2024.109922_bib36
  article-title: High-performance concrete strength prediction based on machine learning
  publication-title: Comput. Intell. Neurosci.
– volume: vol. 05
  start-page: 2582
  issue: 01
  year: 2023
  ident: 10.1016/j.mtcomm.2024.109922_bib41
  article-title: Advancement of high performance concrete utilizing natural admixture
  publication-title: IRJMETS
– volume: vol. 28
  start-page: 49074
  year: 2021
  ident: 10.1016/j.mtcomm.2024.109922_bib42
  article-title: Investigating embodied carbon, mechanical properties, and durability of high-performance concrete using ternary and quaternary blends of metakaolin, nano-silica, and fly ash
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-13918-2
– volume: vol. 140
  start-page: 203
  year: 2017
  ident: 10.1016/j.mtcomm.2024.109922_bib40
  article-title: Mechanical performance of high strength concrete made from high volume of Metakaolin and hybrid fibers
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.02.118
– volume: vol. 12
  start-page: 569
  issue: 5
  year: 2022
  ident: 10.1016/j.mtcomm.2024.109922_bib7
  article-title: Predicting the splitting tensile strength of recycled aggregate concrete using individual and ensemble machine learning approaches
  publication-title: Crystals
  doi: 10.3390/cryst12050569
– volume: vol. 133
  year: 2024
  ident: 10.1016/j.mtcomm.2024.109922_bib9
  article-title: Evaluating strength properties of eco-friendly seashell-containing concrete: comparative analysis of hybrid and ensemble boosting methods based on environmental effects of seashell usage
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.108388
– year: 2023
  ident: 10.1016/j.mtcomm.2024.109922_bib53
  article-title: Dandelion optimizer algorithm-based method for accurate photovoltaic model parameter identification
  publication-title: Energy Convers. Manag. X
– volume: vol. 115
  start-page: 379
  year: 2019
  ident: 10.1016/j.mtcomm.2024.109922_bib20
  article-title: Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2018.09.006
– volume: vol. 376
  year: 2021
  ident: 10.1016/j.mtcomm.2024.109922_bib49
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113609
– volume: vol. 18
  year: 2023
  ident: 10.1016/j.mtcomm.2024.109922_bib24
  article-title: Feasibility analysis for predicting the compressive and tensile strength of concrete using machine learning algorithms
  publication-title: Case Stud. Constr. Mater.
– volume: vol. 10
  start-page: 16188
  year: 2022
  ident: 10.1016/j.mtcomm.2024.109922_bib50
  article-title: Dynamic arithmetic optimization algorithm for truss optimization under natural frequency constraints
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3146374
– volume: vol. 30
  start-page: 515
  issue: 8
  year: 1998
  ident: 10.1016/j.mtcomm.2024.109922_bib58
  article-title: Parallel quaternary signed-digit arithmetic operations: addition, subtraction, multiplication and division
  publication-title: Opt. Laser Technol.
  doi: 10.1016/S0030-3992(99)00004-3
– volume: vol. 29
  start-page: 89198
  issue: 59
  year: 2022
  ident: 10.1016/j.mtcomm.2024.109922_bib37
  article-title: Splitting tensile strength prediction of sustainable high-performance concrete using machine learning techniques
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-022-22048-2
– volume: vol. 12
  start-page: 830
  issue: 3
  year: 2020
  ident: 10.1016/j.mtcomm.2024.109922_bib30
  article-title: A sensitivity and robustness analysis of GPR and ANN for high-performance concrete compressive strength prediction using a Monte Carlo simulation
  publication-title: Sustainability
  doi: 10.3390/su12030830
– volume: vol. 49
  start-page: 554
  year: 2013
  ident: 10.1016/j.mtcomm.2024.109922_bib21
  article-title: Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.08.078
– volume: vol. 13
  start-page: 1023
  issue: 5
  year: 2020
  ident: 10.1016/j.mtcomm.2024.109922_bib32
  article-title: Non-tuned machine learning approach for predicting the compressive strength of high-performance concrete
  publication-title: Mater. (Basel)
  doi: 10.3390/ma13051023
– volume: vol. 183
  year: 2021
  ident: 10.1016/j.mtcomm.2024.109922_bib56
  article-title: A new optimization method based on COOT bird natural life model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115352
– volume: vol. 16
  start-page: 4200
  issue: 11
  year: 2023
  ident: 10.1016/j.mtcomm.2024.109922_bib5
  article-title: Estimating compressive strength of concrete using neural electromagnetic field optimization
  publication-title: Mater. (Basel)
  doi: 10.3390/ma16114200
– volume: vol. 70
  start-page: 107
  issue: 1
  year: 2023
  ident: 10.1016/j.mtcomm.2024.109922_bib15
  article-title: Predict the compressive strength of ultra high-performance concrete by a hybrid method of machine learning
  publication-title: J. Eng. Appl. Sci.
  doi: 10.1186/s44147-023-00274-w
– volume: vol. 22
  start-page: 1521
  issue: 7
  year: 2021
  ident: 10.1016/j.mtcomm.2024.109922_bib16
  article-title: Prediction of compressive and flexural strengths of jarosite mixed cement concrete pavements using artificial neural networks
  publication-title: Road. Mater. Pavement Des.
  doi: 10.1080/14680629.2019.1702583
– volume: 03006
  year: 2018
  ident: 10.1016/j.mtcomm.2024.109922_bib60
  article-title: Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties and typology
  publication-title: arXiv Prepr. arXiv1809
– volume: vol. 23
  start-page: 2477
  issue: 4
  year: 2022
  ident: 10.1016/j.mtcomm.2024.109922_bib8
  article-title: Prediction of the elastic modulus of recycled aggregate concrete applying hybrid artificial intelligence and machine learning algorithms
  publication-title: Struct. Concr.
  doi: 10.1002/suco.202100250
– volume: vol. 14
  start-page: 794
  issue: 4
  year: 2021
  ident: 10.1016/j.mtcomm.2024.109922_bib46
  article-title: Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm
  publication-title: Mater. (Basel)
  doi: 10.3390/ma14040794
– volume: vol. 389
  year: 2021
  ident: 10.1016/j.mtcomm.2024.109922_bib23
  article-title: A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean
  publication-title: Appl. Math. Comput.
– volume: vol. 264
  year: 2020
  ident: 10.1016/j.mtcomm.2024.109922_bib31
  article-title: Compressive strength prediction of high-performance concrete using gradient tree boosting machine
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.120198
– volume: vol. 15
  start-page: 5194
  issue: 15
  year: 2022
  ident: 10.1016/j.mtcomm.2024.109922_bib2
  article-title: Flexural strength prediction of steel fiber-reinforced concrete using artificial intelligence
  publication-title: Mater. (Basel)
  doi: 10.3390/ma15155194
– volume: vol. 37
  start-page: 3329
  year: 2021
  ident: 10.1016/j.mtcomm.2024.109922_bib22
  article-title: A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-020-01003-0
– volume: vol. 180
  start-page: 320
  year: 2018
  ident: 10.1016/j.mtcomm.2024.109922_bib28
  article-title: A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.05.201
– volume: vol. 27
  start-page: 961
  issue: 2
  year: 2023
  ident: 10.1016/j.mtcomm.2024.109922_bib12
  article-title: Estimation of the compressive strength of green concretes containing rice husk ash: a comparison of different machine learning approaches
  publication-title: Eur. J. Environ. Civ. Eng.
  doi: 10.1080/19648189.2022.2068657
– volume: vol. 29
  start-page: 537
  issue: 4
  year: 1999
  ident: 10.1016/j.mtcomm.2024.109922_bib3
  article-title: Effects of raised temperature of sulfate solutions on the sulfate resistance of mortars with and without silica fume
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(98)00251-8
– year: 2022
  ident: 10.1016/j.mtcomm.2024.109922_bib35
  article-title: Super learner machine-learning algorithms for compressive strength prediction of high performance concrete
  publication-title: Struct. Concr.
– volume: vol. 114
  year: 2022
  ident: 10.1016/j.mtcomm.2024.109922_bib51
  article-title: Dandelion optimizer: a nature-inspired metaheuristic algorithm for engineering applications
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105075
– volume: vol. 002
  issue: 03
  year: 2023
  ident: 10.1016/j.mtcomm.2024.109922_bib10
  article-title: Predict the maximum dry density of soil based on individual and hybrid methods of machine learning
  publication-title: Adv. Eng. Intell. Syst.
– volume: vol. 41
  start-page: 844
  year: 2013
  ident: 10.1016/j.mtcomm.2024.109922_bib11
  article-title: Compressive and tensile properties of reactive powder concrete with steel fibres at elevated temperatures
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.12.066
– volume: vol. 130
  start-page: 46
  year: 2014
  ident: 10.1016/j.mtcomm.2024.109922_bib45
  article-title: Damage prediction for regular reinforced concrete buildings using the decision tree algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2013.10.006
– volume: vol. 80
  start-page: 8615
  issue: 11
  year: 2021
  ident: 10.1016/j.mtcomm.2024.109922_bib4
  article-title: Effect of EPS beads in lightening a typical zeolite and cement-treated sand
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-021-02458-1
– ident: 10.1016/j.mtcomm.2024.109922_bib43
– volume: vol. 5
  start-page: 16568
  year: 2017
  ident: 10.1016/j.mtcomm.2024.109922_bib59
  article-title: An ensemble random forest algorithm for insurance big data analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2738069
– volume: vol. 23
  start-page: 117
  issue: 1
  year: 2009
  ident: 10.1016/j.mtcomm.2024.109922_bib1
  article-title: Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2008.01.014
– volume: vol. 40
  year: 2021
  ident: 10.1016/j.mtcomm.2024.109922_bib26
  article-title: Propose new implement models to determine the compressive, tensile and flexural strengths of recycled coarse aggregate concrete via imperialist competitive algorithm
  publication-title: J. Build. Eng.
– volume: vol. 35
  start-page: 612
  issue: 7
  year: 2008
  ident: 10.1016/j.mtcomm.2024.109922_bib55
  article-title: Differences in foraging behaviour of sympatric coots with different conservation status
  publication-title: Wildl. Res.
  doi: 10.1071/WR07179
– volume: vol. 33
  start-page: 4021135
  issue: 7
  year: 2021
  ident: 10.1016/j.mtcomm.2024.109922_bib14
  article-title: Prediction of compressive strength of concrete with manufactured sand by ensemble classification and regression tree method
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0003741
– volume: vol. 33
  start-page: 7851
  issue: 13
  year: 2021
  ident: 10.1016/j.mtcomm.2024.109922_bib18
  article-title: Artificial neural network (ANN), M5P-tree, and regression analyses to predict the early age compression strength of concrete modified with DBC-21 and VK-98 polymers
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05525-y
– volume: vol. 12
  start-page: 285
  issue: 3
  year: 2013
  ident: 10.1016/j.mtcomm.2024.109922_bib13
  article-title: Predicting the indirect tensile strength of self-compacting concrete using artificial neural networks
  publication-title: Comput. Concr.
  doi: 10.12989/cac.2013.12.3.285
– volume: vol. 14
  start-page: 7034
  issue: 22
  year: 2021
  ident: 10.1016/j.mtcomm.2024.109922_bib33
  article-title: Computation of high-performance concrete compressive strength using standalone and ensembled machine learning techniques
  publication-title: Mater. (Basel)
  doi: 10.3390/ma14227034
– volume: vol. 88
  start-page: 1248
  issue: 21–22
  year: 2010
  ident: 10.1016/j.mtcomm.2024.109922_bib29
  article-title: A comparison of model selection methods for compressive strength prediction of high-performance concrete using neural networks
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2010.07.003
– volume: vol. 57
  year: 2023
  ident: 10.1016/j.mtcomm.2024.109922_bib52
  article-title: DETDO: an adaptive hybrid dandelion optimizer for engineering optimization
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2023.102004
– volume: vol. 24
  start-page: 1896
  issue: 9
  year: 2021
  ident: 10.1016/j.mtcomm.2024.109922_bib19
  article-title: Deep learning based thermal crack detection on structural concrete exposed to elevated temperature
  publication-title: Adv. Struct. Eng.
  doi: 10.1177/1369433220986637
– volume: vol. 243
  year: 2020
  ident: 10.1016/j.mtcomm.2024.109922_bib61
  article-title: Machine learning study of the mechanical properties of concretes containing waste foundry sand
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118152
– volume: vol. 26
  start-page: 1689
  issue: 7
  year: 2013
  ident: 10.1016/j.mtcomm.2024.109922_bib47
  article-title: Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.03.014
– volume: vol. 22
  start-page: 289
  issue: 2
  year: 2011
  ident: 10.1016/j.mtcomm.2024.109922_bib54
  article-title: Territory and territorial behavior of migrating Common Coot (Fulica atra)
  publication-title: J. Res.
  doi: 10.1007/s11676-011-0164-x
– volume: vol. 324
  year: 2022
  ident: 10.1016/j.mtcomm.2024.109922_bib39
  article-title: High-performance concrete strength prediction based on ensemble learning
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.126694
SSID ssj0001850494
Score 2.3232257
Snippet Concrete's workability and durability are influenced by its mechanical properties, including Tensile and Compressive strength. High-performance concrete...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109922
SubjectTerms Compressive and tensile strength
Decision tree
Ensemble learning
High-performance concrete
Meta-heuristic algorithms
Title Investigation of mechanical properties of high-performance concrete via multi-method of regression tree approach
URI https://dx.doi.org/10.1016/j.mtcomm.2024.109922
Volume 40
WOSCitedRecordID wos001293571700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2352-4928
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001850494
  issn: 2352-4928
  databaseCode: AIEXJ
  dateStart: 20140901
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBayZIddhhXbsO4FHXobHMSvWD4WRYt2SINuyIbsZMiSHCRoHcNzgvbH7L-WtORHkiJbDrsYgkzLdvhF_CiTFCEnQ7DhYEbAUx340vIEtDhLMHLKFvjhR8RllO_PUTAes-k0vOl0_lS5MOvbIE3Z_X2Y_VdVQx8oG1NnD1B3PSh0QBuUDkdQOxz_SfGtyhmaC94pzO4tlZHh0nuONVRLkgiOuZW1MgfANwYSWagv6znXoYaW3mEapXM10zGzKUanq7oaeZveXvNCvyJQWkwwEe30k5q9fysjCL6v5rVFWJUWkM8fGqxqoV_LdLZYNcHCZnUbREemZLhZsXC8Ol7OTGwOkD7LC01SuHqiz8zMupCTmVrxE55OYd6Z9fUCxKJ_V-Br9fGe_UZ8s8j2lvGrQxKraLdFpEeJcJRIj_KM9JzAD1mX9E6vzqdfm0U85mN9nXIDQ_P8VXpmGUO4-0BP058WpZm8Ii-NL0JPNYaOSEelr0m2gR-6TGiDH9rgB09s44dW-KGAH9rGD0o3-KGIH1rh5w35cXE-Obu0zLYclgD_srAcqZiKGXhlvu9LFnqxG4ROkgQ2F9AIbMFdxkM79pgaxkI60vHVgMmASWCTru2-Jd10map3hHKlktBmAxjP8RLJONB_kE98e5jYsVTHxK1-rUiYmvW4dcpttE9dx8Sqr8p0zZa_yAeVIiLDOzWfjABge698f-CdPpAXzR_iI-kW-Up9Is_Fupj_zj8bdD0CIAGqBQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+mechanical+properties+of+high-performance+concrete+via+multi-method+of+regression+tree+approach&rft.jtitle=Materials+today+communications&rft.au=Qi%2C+Rui&rft.au=Wu%2C+Haiyan&rft.au=Qi%2C+Yongjun&rft.au=Tang%2C+HaiLin&rft.date=2024-08-01&rft.issn=2352-4928&rft.eissn=2352-4928&rft.volume=40&rft.spage=109922&rft_id=info:doi/10.1016%2Fj.mtcomm.2024.109922&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mtcomm_2024_109922
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4928&client=summon