Theoretical analysis, numerical verification and geometrical representation of new three-step DTZD algorithm for time-varying nonlinear equations solving

To solve time-varying nonlinear equations, Zhang et al. have developed a one-step discrete-time Zhang dynamics (DTZD) algorithm with O(τ2) error pattern, where τ denotes the sampling gap. In this paper, by exploiting the Taylor-type difference rule, a new three-step DTZD algorithm with O(τ3) error p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 214; s. 516 - 526
Hlavní autori: Guo, Dongsheng, Nie, Zhuoyun, Yan, Laicheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 19.11.2016
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract To solve time-varying nonlinear equations, Zhang et al. have developed a one-step discrete-time Zhang dynamics (DTZD) algorithm with O(τ2) error pattern, where τ denotes the sampling gap. In this paper, by exploiting the Taylor-type difference rule, a new three-step DTZD algorithm with O(τ3) error pattern is proposed and investigated for time-varying nonlinear equations solving. Note that such an algorithm can achieve better computational performance than the one-step DTZD algorithm. As for the proposed three-step DTZD algorithm, theoretical results are given to show its excellent computational property. Comparative numerical results further substantiate the efficacy and superiority of the proposed three-step DTZD algorithm for solving time-varying nonlinear equations, as compared with the one-step DTZD algorithm. Besides, the geometric representation of the proposed three-step DTZD algorithm is provided for time-varying nonlinear equations solving.
AbstractList To solve time-varying nonlinear equations, Zhang et al. have developed a one-step discrete-time Zhang dynamics (DTZD) algorithm with O(τ2) error pattern, where τ denotes the sampling gap. In this paper, by exploiting the Taylor-type difference rule, a new three-step DTZD algorithm with O(τ3) error pattern is proposed and investigated for time-varying nonlinear equations solving. Note that such an algorithm can achieve better computational performance than the one-step DTZD algorithm. As for the proposed three-step DTZD algorithm, theoretical results are given to show its excellent computational property. Comparative numerical results further substantiate the efficacy and superiority of the proposed three-step DTZD algorithm for solving time-varying nonlinear equations, as compared with the one-step DTZD algorithm. Besides, the geometric representation of the proposed three-step DTZD algorithm is provided for time-varying nonlinear equations solving.
Author Nie, Zhuoyun
Yan, Laicheng
Guo, Dongsheng
Author_xml – sequence: 1
  givenname: Dongsheng
  surname: Guo
  fullname: Guo, Dongsheng
  email: gdongsh@hqu.edu.cn
– sequence: 2
  givenname: Zhuoyun
  surname: Nie
  fullname: Nie, Zhuoyun
– sequence: 3
  givenname: Laicheng
  surname: Yan
  fullname: Yan, Laicheng
BookMark eNqFUMtOIzEQtFZBIoH9Aw7-ACbY7ZnJhAMSgl1AQuISLnuxPJ524mjGDrYTxKfwt2uYPXFgpZb6UV0lVc3IxHmHhJxxNueM1xfbucO99sMc8jZnuQT8IFPeLKBooKknZMqWUBUgOByTWYxbxviCw3JK3lcb9AGT1aqnyqn-Ldp4Tt1-wPB5O-Ru8pSsd_mho2v0A6YRDLgLGNGlEfaGOnylaRMQi5hwR29Xf26p6tc-2LQZqPGBJjtgcVDhzbo1zUZ661AFii_7T5FIo-8PGTslR0b1EX_-6yfk-fev1c198fh093Bz_VhowepUQFd2AMBKqAw0FTelWLYL3mDZiqoTogZtlo0wdduW0IHCGirFNJblgldtVYkTcjnq6uBjDGiktqOfFJTtJWfyI2S5lWPI8iNkyXIJyOTyC3kX7JDN_Y92NdIwGztYDDJqi05jZwPqJDtvvxf4C4k7n2k
CitedBy_id crossref_primary_10_1016_j_neucom_2020_05_093
crossref_primary_10_1109_TII_2017_2780892
crossref_primary_10_1016_j_neucom_2019_04_054
crossref_primary_10_1007_s11075_018_0564_5
crossref_primary_10_1016_j_neucom_2017_05_017
crossref_primary_10_1007_s11071_017_3432_2
crossref_primary_10_1155_2021_6627298
crossref_primary_10_1016_j_neucom_2023_126937
crossref_primary_10_1007_s11063_019_10107_8
crossref_primary_10_1016_j_neucom_2018_01_033
crossref_primary_10_1016_j_neucom_2018_11_064
crossref_primary_10_1109_TNNLS_2020_3041364
crossref_primary_10_1109_TSMC_2017_2656941
crossref_primary_10_1016_j_apm_2019_08_001
crossref_primary_10_1016_j_neucom_2017_09_032
crossref_primary_10_1016_j_jfranklin_2022_05_014
crossref_primary_10_1109_ACCESS_2020_3035530
crossref_primary_10_1109_TCYB_2018_2818747
crossref_primary_10_1007_s11075_017_0302_4
crossref_primary_10_1016_j_neucom_2018_02_059
crossref_primary_10_1109_TNNLS_2017_2761443
crossref_primary_10_1016_j_neucom_2018_10_031
crossref_primary_10_1109_TCYB_2021_3051035
crossref_primary_10_1016_j_neucom_2022_03_010
crossref_primary_10_1109_TII_2018_2789438
crossref_primary_10_1109_TSMC_2017_2693400
crossref_primary_10_1109_ACCESS_2019_2937686
crossref_primary_10_3390_s19010074
crossref_primary_10_1109_TII_2018_2861908
crossref_primary_10_1016_j_neucom_2018_03_053
crossref_primary_10_1016_j_neucom_2020_07_115
crossref_primary_10_1007_s11075_020_01061_x
crossref_primary_10_1007_s11075_018_0581_4
crossref_primary_10_1016_j_neucom_2020_02_011
crossref_primary_10_1016_j_neucom_2019_11_031
crossref_primary_10_1016_j_neucom_2019_11_036
crossref_primary_10_1109_TSMC_2018_2856266
crossref_primary_10_1016_j_laa_2019_06_028
crossref_primary_10_1002_asjc_2315
crossref_primary_10_1109_TFUZZ_2021_3115969
crossref_primary_10_1016_j_neucom_2020_11_012
crossref_primary_10_1109_TNNLS_2019_2938866
Cites_doi 10.1109/TNNLS.2013.2280905
10.1016/j.neucom.2016.01.020
10.1016/j.neucom.2015.09.043
10.1007/s11075-012-9690-7
10.1016/j.neucom.2014.09.047
10.1109/TC.2002.1146704
10.1016/j.neucom.2015.08.031
10.1109/TNNLS.2015.2496658
10.1016/j.neucom.2016.02.017
10.1109/12.863031
10.1007/s00521-010-0452-y
10.1109/ICAL.2009.5262860
10.1007/s100920300006
10.1109/TNNLS.2012.2223484
10.1016/j.cam.2014.05.027
10.1007/978-3-642-21105-8_46
10.1016/j.neucom.2015.04.032
10.1016/j.neucom.2015.11.069
10.1016/j.ipl.2005.11.015
10.1007/s00211-006-0025-2
10.1016/j.neucom.2015.04.070
10.1016/j.neucom.2005.11.006
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2016.06.032
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 526
ExternalDocumentID 10_1016_j_neucom_2016_06_032
S0925231216306701
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-2d4d2220425f2851f439b718e4b35d3362cf983f6bb42d2ae625a0ce44715b553
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386741300049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:18:37 EST 2025
Tue Nov 18 22:18:34 EST 2025
Fri Feb 23 02:30:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Time-varying nonlinear equations
Theoretical analysis
Discrete-time Zhang dynamics
Three-step algorithm
Geometric representation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-2d4d2220425f2851f439b718e4b35d3362cf983f6bb42d2ae625a0ce44715b553
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2016_06_032
crossref_primary_10_1016_j_neucom_2016_06_032
elsevier_sciencedirect_doi_10_1016_j_neucom_2016_06_032
PublicationCentury 2000
PublicationDate 2016-11-19
PublicationDateYYYYMMDD 2016-11-19
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-19
  day: 19
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xiao (bib15) 2015; 167
Y. Zhang, P. Xu, N. Tan, Further studies on Zhang neural-dynamics and gradient dynamics for online nonlinear equations solving, in: Proceedings of IEEE International Conference on Automation and Logistics, 2009, pp. 566–571.
Zhang, Guo (bib23) 2015
Kong, Cai, Yu, Li (bib3) 2006; 98
Shu, Liu, Liu (bib27) 2016; 173
Xiao (bib22) 2016; 173
Frontini (bib4) 2003; 40
He, Li, Huang, Li, Huang (bib12) 2014; 25
Xiao, Lu (bib21) 2015; 151
Zhang, Yi, Guo, Zheng (bib19) 2011; 20
Mead (bib30) 1989
S.K. Mitra, Digital Signal Processing—A Computer-Based Approach, third ed., Tsinghua University Press, Beijing, 2006.
Li, Yu, Huang, Chen, He (bib13) 2016; 27
Pineiro, Bruguera (bib2) 2002; 51
Ujevic (bib6) 2006; 174
Sharma (bib11) 2016; 273
Zhang, Jin, Guo, Yin, Chou (bib29) 2015; 273
Xu, Li, He, Huang (bib14) 2016; 190
Griffiths, Higham (bib33) 2010
Sharma (bib5) 2005; 169
Jarina Banu, Balasubramaniam (bib26) 2016; 179
J.H. Mathews, K.D. Fink, Numerical Methods Using MATLAB, fourth ed., Prentice Hall, New Jersey, 2004.
Zhang, Li, Guo, Ke, Chen, Discrete-time (bib9) 2013; 64
Yang (bib8) 2013; 219
Zhang, Yi (bib20) 2011
Zhang, Ke, Li, Guo (bib18) 2011; 6675
Ercegovac, Lang, Muller, Tisserand (bib1) 2000; 49
Perez-IIzarbe (bib28) 2013; 24
Bao, Zeng (bib25) 2016; 193
Neta, Chun, Scott (bib10) 2014; 227
Guo, Zhang, Xiao, Mao, Liu (bib24) 2015; 167
Chun (bib7) 2006; 104
Zhang (bib16) 2006; 70
Ercegovac (10.1016/j.neucom.2016.06.032_bib1) 2000; 49
Bao (10.1016/j.neucom.2016.06.032_bib25) 2016; 193
Pineiro (10.1016/j.neucom.2016.06.032_bib2) 2002; 51
Zhang (10.1016/j.neucom.2016.06.032_bib20) 2011
Jarina Banu (10.1016/j.neucom.2016.06.032_bib26) 2016; 179
Zhang (10.1016/j.neucom.2016.06.032_bib19) 2011; 20
Guo (10.1016/j.neucom.2016.06.032_bib24) 2015; 167
Neta (10.1016/j.neucom.2016.06.032_bib10) 2014; 227
Mead (10.1016/j.neucom.2016.06.032_bib30) 1989
Kong (10.1016/j.neucom.2016.06.032_bib3) 2006; 98
He (10.1016/j.neucom.2016.06.032_bib12) 2014; 25
Chun (10.1016/j.neucom.2016.06.032_bib7) 2006; 104
Xiao (10.1016/j.neucom.2016.06.032_bib15) 2015; 167
Xu (10.1016/j.neucom.2016.06.032_bib14) 2016; 190
Griffiths (10.1016/j.neucom.2016.06.032_bib33) 2010
Ujevic (10.1016/j.neucom.2016.06.032_bib6) 2006; 174
Zhang (10.1016/j.neucom.2016.06.032_bib23) 2015
Xiao (10.1016/j.neucom.2016.06.032_bib22) 2016; 173
Sharma (10.1016/j.neucom.2016.06.032_bib11) 2016; 273
Shu (10.1016/j.neucom.2016.06.032_bib27) 2016; 173
Li (10.1016/j.neucom.2016.06.032_bib13) 2016; 27
Frontini (10.1016/j.neucom.2016.06.032_bib4) 2003; 40
Zhang (10.1016/j.neucom.2016.06.032_bib29) 2015; 273
Yang (10.1016/j.neucom.2016.06.032_bib8) 2013; 219
Zhang (10.1016/j.neucom.2016.06.032_bib9) 2013; 64
10.1016/j.neucom.2016.06.032_bib31
10.1016/j.neucom.2016.06.032_bib32
Sharma (10.1016/j.neucom.2016.06.032_bib5) 2005; 169
Zhang (10.1016/j.neucom.2016.06.032_bib18) 2011; 6675
Perez-IIzarbe (10.1016/j.neucom.2016.06.032_bib28) 2013; 24
Xiao (10.1016/j.neucom.2016.06.032_bib21) 2015; 151
10.1016/j.neucom.2016.06.032_bib17
Zhang (10.1016/j.neucom.2016.06.032_bib16) 2006; 70
References_xml – volume: 273
  start-page: 29
  year: 2015
  end-page: 40
  ident: bib29
  article-title: Taylor-type 1-step-ahead numerical differentiation rule for first-order derivative approximation and ZNN discretization
  publication-title: J. Comput. Appl. Math.
– volume: 6675
  start-page: 393
  year: 2011
  end-page: 402
  ident: bib18
  article-title: Comparison on continuous-time Zhang dynamics and Newton–Raphson iteration for online solution of nonlinear equations
  publication-title: Lect. Notes Comput. Sci.
– year: 2011
  ident: bib20
  article-title: Zhang Neural Networks and Neural-Dynamic Method
– volume: 70
  start-page: 513
  year: 2006
  end-page: 524
  ident: bib16
  article-title: A set of nonlinear equations and inequalities arising in robotics and its online solution via a primal neural network
  publication-title: Neurocomputing
– volume: 273
  start-page: 793
  year: 2016
  end-page: 796
  ident: bib11
  article-title: A note on the convergence order of some recent methods for solving nonlinear equations
  publication-title: Appl. Math. Comput.
– volume: 173
  start-page: 1983
  year: 2016
  end-page: 1988
  ident: bib22
  article-title: A nonlinearly activated neural dynamics and its finite-time solution to time-varying nonlinear equation
  publication-title: Neurocomputing
– reference: J.H. Mathews, K.D. Fink, Numerical Methods Using MATLAB, fourth ed., Prentice Hall, New Jersey, 2004.
– volume: 169
  start-page: 242
  year: 2005
  end-page: 246
  ident: bib5
  article-title: A composite third order Newton–Steffensen method for solving nonlinear equations
  publication-title: Appl. Math. Comput.
– volume: 27
  start-page: 308
  year: 2016
  end-page: 321
  ident: bib13
  article-title: A generalized Hopfield network for nonsmooth constrained convex optimization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 193
  start-page: 242
  year: 2016
  end-page: 249
  ident: bib25
  article-title: Global asymptotical stability analysis for a kind of discrete-time recurrent neural network with discontinuous activation functions
  publication-title: Neurocomputing
– volume: 151
  start-page: 246
  year: 2015
  end-page: 251
  ident: bib21
  article-title: Finite-time solution to nonlinear equation using recurrent neural dynamics with a specially-constructed activation function
  publication-title: Neurocomputing
– volume: 104
  start-page: 297
  year: 2006
  end-page: 315
  ident: bib7
  article-title: Construction of Newton-like iteration methods for solving nonlinear equations
  publication-title: Numer. Math.
– volume: 179
  start-page: 126
  year: 2016
  end-page: 134
  ident: bib26
  article-title: Robust stability analysis for discrete-time neural networks with time-varying leakage delays and random parameter uncertainties
  publication-title: Neurocomputing
– volume: 174
  start-page: 1416
  year: 2006
  end-page: 1426
  ident: bib6
  article-title: A method for solving nonlinear equations
  publication-title: Appl. Math. Comput.
– volume: 167
  start-page: 254
  year: 2015
  end-page: 259
  ident: bib15
  article-title: A finite-time convergent neural dynamics for online solution of time-varying linear complex matrix equation
  publication-title: Neurocomputing
– volume: 49
  start-page: 628
  year: 2000
  end-page: 637
  ident: bib1
  article-title: A, reciprocation, square root, inverse square root, and some elementary functions using small multipliers
  publication-title: IEEE Trans. Comput.
– reference: S.K. Mitra, Digital Signal Processing—A Computer-Based Approach, third ed., Tsinghua University Press, Beijing, 2006.
– volume: 190
  start-page: 172
  year: 2016
  end-page: 178
  ident: bib14
  article-title: Recurrent neural network for solving model predictive control problem in application of four-tank benchmark
  publication-title: Neurocomputing
– year: 2015
  ident: bib23
  article-title: Zhang Functions and Various Models
– year: 1989
  ident: bib30
  article-title: Analog VLSI and Neural Systems
– volume: 40
  start-page: 109
  year: 2003
  end-page: 119
  ident: bib4
  article-title: Hermite interpolation and a new iterative method for the computation of the roots of non-linear equations
  publication-title: Calcolo
– volume: 167
  start-page: 578
  year: 2015
  end-page: 586
  ident: bib24
  article-title: Common nature of learning between BP-type and Hopfield-type neural networks
  publication-title: Neurocomputing
– year: 2010
  ident: bib33
  article-title: Numerical Methods for Ordinary Differential Equations: Initial Value Problems
– volume: 25
  start-page: 824
  year: 2014
  end-page: 830
  ident: bib12
  article-title: A recurrent neural network for solving bilevel linear programming problem
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 173
  start-page: 1706
  year: 2016
  end-page: 1714
  ident: bib27
  article-title: Stability and passivity analysis for uncertain discrete-time neural networks with time-varying delay
  publication-title: Neurocomputing
– reference: Y. Zhang, P. Xu, N. Tan, Further studies on Zhang neural-dynamics and gradient dynamics for online nonlinear equations solving, in: Proceedings of IEEE International Conference on Automation and Logistics, 2009, pp. 566–571.
– volume: 98
  start-page: 1
  year: 2006
  end-page: 5
  ident: bib3
  article-title: Improved generalized Atkin algorithm for computing square roots in finite fields
  publication-title: Inf. Process. Lett.
– volume: 51
  start-page: 1377
  year: 2002
  end-page: 1388
  ident: bib2
  article-title: High-speed double-precision computation of reciprocal, division, square root, and inverse square root
  publication-title: IEEE Trans. Comput.
– volume: 64
  start-page: 721
  year: 2013
  end-page: 740
  ident: bib9
  article-title: GD and NI for solving nonlinear time-varying equations
  publication-title: Numer. Algorithms
– volume: 24
  start-page: 322
  year: 2013
  end-page: 328
  ident: bib28
  article-title: New discrete-time recurrent neural network proposal for quadratic optimization with general linear constraints
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 20
  start-page: 1
  year: 2011
  end-page: 7
  ident: bib19
  article-title: Comparison on Zhang neural dynamics and gradient-based neural dynamics for online solution of nonlinear time-varying equation
  publication-title: Neural Comput. Appl.
– volume: 219
  start-page: 10682
  year: 2013
  end-page: 10694
  ident: bib8
  article-title: A higher-order Levenberg–Marquardt method for nonlinear equations
  publication-title: Appl. Math. Comput.
– volume: 227
  start-page: 567
  year: 2014
  end-page: 592
  ident: bib10
  article-title: Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations
  publication-title: Appl. Math. Comput.
– volume: 169
  start-page: 242
  year: 2005
  ident: 10.1016/j.neucom.2016.06.032_bib5
  article-title: A composite third order Newton–Steffensen method for solving nonlinear equations
  publication-title: Appl. Math. Comput.
– volume: 25
  start-page: 824
  issue: 4
  year: 2014
  ident: 10.1016/j.neucom.2016.06.032_bib12
  article-title: A recurrent neural network for solving bilevel linear programming problem
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2280905
– volume: 190
  start-page: 172
  year: 2016
  ident: 10.1016/j.neucom.2016.06.032_bib14
  article-title: Recurrent neural network for solving model predictive control problem in application of four-tank benchmark
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.020
– volume: 173
  start-page: 1706
  year: 2016
  ident: 10.1016/j.neucom.2016.06.032_bib27
  article-title: Stability and passivity analysis for uncertain discrete-time neural networks with time-varying delay
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.043
– volume: 64
  start-page: 721
  issue: 4
  year: 2013
  ident: 10.1016/j.neucom.2016.06.032_bib9
  article-title: GD and NI for solving nonlinear time-varying equations
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-012-9690-7
– volume: 151
  start-page: 246
  year: 2015
  ident: 10.1016/j.neucom.2016.06.032_bib21
  article-title: Finite-time solution to nonlinear equation using recurrent neural dynamics with a specially-constructed activation function
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.047
– volume: 273
  start-page: 793
  year: 2016
  ident: 10.1016/j.neucom.2016.06.032_bib11
  article-title: A note on the convergence order of some recent methods for solving nonlinear equations
  publication-title: Appl. Math. Comput.
– volume: 51
  start-page: 1377
  issue: 12
  year: 2002
  ident: 10.1016/j.neucom.2016.06.032_bib2
  article-title: High-speed double-precision computation of reciprocal, division, square root, and inverse square root
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2002.1146704
– volume: 173
  start-page: 1983
  year: 2016
  ident: 10.1016/j.neucom.2016.06.032_bib22
  article-title: A nonlinearly activated neural dynamics and its finite-time solution to time-varying nonlinear equation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.031
– ident: 10.1016/j.neucom.2016.06.032_bib32
– volume: 27
  start-page: 308
  issue: 2
  year: 2016
  ident: 10.1016/j.neucom.2016.06.032_bib13
  article-title: A generalized Hopfield network for nonsmooth constrained convex optimization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2496658
– volume: 193
  start-page: 242
  year: 2016
  ident: 10.1016/j.neucom.2016.06.032_bib25
  article-title: Global asymptotical stability analysis for a kind of discrete-time recurrent neural network with discontinuous activation functions
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.017
– year: 2011
  ident: 10.1016/j.neucom.2016.06.032_bib20
– volume: 49
  start-page: 628
  issue: 7
  year: 2000
  ident: 10.1016/j.neucom.2016.06.032_bib1
  article-title: A, reciprocation, square root, inverse square root, and some elementary functions using small multipliers
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/12.863031
– volume: 20
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.neucom.2016.06.032_bib19
  article-title: Comparison on Zhang neural dynamics and gradient-based neural dynamics for online solution of nonlinear time-varying equation
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-010-0452-y
– ident: 10.1016/j.neucom.2016.06.032_bib17
  doi: 10.1109/ICAL.2009.5262860
– year: 2010
  ident: 10.1016/j.neucom.2016.06.032_bib33
– volume: 40
  start-page: 109
  year: 2003
  ident: 10.1016/j.neucom.2016.06.032_bib4
  article-title: Hermite interpolation and a new iterative method for the computation of the roots of non-linear equations
  publication-title: Calcolo
  doi: 10.1007/s100920300006
– volume: 227
  start-page: 567
  year: 2014
  ident: 10.1016/j.neucom.2016.06.032_bib10
  article-title: Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations
  publication-title: Appl. Math. Comput.
– volume: 219
  start-page: 10682
  year: 2013
  ident: 10.1016/j.neucom.2016.06.032_bib8
  article-title: A higher-order Levenberg–Marquardt method for nonlinear equations
  publication-title: Appl. Math. Comput.
– volume: 24
  start-page: 322
  issue: 2
  year: 2013
  ident: 10.1016/j.neucom.2016.06.032_bib28
  article-title: New discrete-time recurrent neural network proposal for quadratic optimization with general linear constraints
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2223484
– year: 1989
  ident: 10.1016/j.neucom.2016.06.032_bib30
– volume: 174
  start-page: 1416
  year: 2006
  ident: 10.1016/j.neucom.2016.06.032_bib6
  article-title: A method for solving nonlinear equations
  publication-title: Appl. Math. Comput.
– volume: 273
  start-page: 29
  year: 2015
  ident: 10.1016/j.neucom.2016.06.032_bib29
  article-title: Taylor-type 1-step-ahead numerical differentiation rule for first-order derivative approximation and ZNN discretization
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2014.05.027
– volume: 6675
  start-page: 393
  year: 2011
  ident: 10.1016/j.neucom.2016.06.032_bib18
  article-title: Comparison on continuous-time Zhang dynamics and Newton–Raphson iteration for online solution of nonlinear equations
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-642-21105-8_46
– volume: 167
  start-page: 578
  year: 2015
  ident: 10.1016/j.neucom.2016.06.032_bib24
  article-title: Common nature of learning between BP-type and Hopfield-type neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.032
– year: 2015
  ident: 10.1016/j.neucom.2016.06.032_bib23
– ident: 10.1016/j.neucom.2016.06.032_bib31
– volume: 179
  start-page: 126
  year: 2016
  ident: 10.1016/j.neucom.2016.06.032_bib26
  article-title: Robust stability analysis for discrete-time neural networks with time-varying leakage delays and random parameter uncertainties
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.069
– volume: 98
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.neucom.2016.06.032_bib3
  article-title: Improved generalized Atkin algorithm for computing square roots in finite fields
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2005.11.015
– volume: 104
  start-page: 297
  year: 2006
  ident: 10.1016/j.neucom.2016.06.032_bib7
  article-title: Construction of Newton-like iteration methods for solving nonlinear equations
  publication-title: Numer. Math.
  doi: 10.1007/s00211-006-0025-2
– volume: 167
  start-page: 254
  year: 2015
  ident: 10.1016/j.neucom.2016.06.032_bib15
  article-title: A finite-time convergent neural dynamics for online solution of time-varying linear complex matrix equation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.070
– volume: 70
  start-page: 513
  issue: 1–3
  year: 2006
  ident: 10.1016/j.neucom.2016.06.032_bib16
  article-title: A set of nonlinear equations and inequalities arising in robotics and its online solution via a primal neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.11.006
SSID ssj0017129
Score 2.4087296
Snippet To solve time-varying nonlinear equations, Zhang et al. have developed a one-step discrete-time Zhang dynamics (DTZD) algorithm with O(τ2) error pattern, where...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 516
SubjectTerms Discrete-time Zhang dynamics
Geometric representation
Theoretical analysis
Three-step algorithm
Time-varying nonlinear equations
Title Theoretical analysis, numerical verification and geometrical representation of new three-step DTZD algorithm for time-varying nonlinear equations solving
URI https://dx.doi.org/10.1016/j.neucom.2016.06.032
Volume 214
WOSCitedRecordID wos000386741300049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLWqDgs2vBEzA8gLdiWoSewmWVbM8BIasSiosIn87ENtUjpNNfMpfAj_x3XsuCmDBmbBJqoix45zT32Pr-8DoReJzFQaSxFQzVlATBpCHrI04IoILmSodW3Q__IxOTtLx-PsU6fzs4mF2S6SokgvLrLVfxU13ANhm9DZG4jbdwo34DcIHa4gdrj-q-B9aCJzKUfMhywqeziz6MGUjIOQFb0xnE9UuTSVtUSd5X-1i0iquSQQb1POR6kAELHqnYy-nfTYYlKuZ5vp0ropzpYq2LJ1HTJV2OQbbN1T3yvnaAcz3jY6ct7ki6pAd9Y1JZy1Yrg0SRukQai3TrytSkvzi8n5VLke6mMUe6wyrcrLyuP7qwukYMa_1TV2Fo1wYEL73LrpTJMRDYB37q3SUUha6ywNBy2VTW3Q_RVtYA0T81eFqoxrkBmrTtbqLKp7ybd_U4reVbHxgpvntpfc9JIbZ8AYNP9BlNAs7aKD4fvT8Qd_fJWEkU3y6CbSxGzWjoVX3-bPnKjFc0b30B23QcFDC6z7qKOKB-huU_wDO13wEP1o4Qw3OHuJPcpwG2XQQOIWyvA-ynCpMaAM71CGDcqwRxkGlOE2yrBHGfYoww5lj9DnN6ej1-8CV-cjELBh3QSRJBJoqlEfOoIdgAaSzIEzKcJjKmOgWEJnaawHnJNIRkzBnp31hSJArCinNH6MujCqeoJwxqiSOpJaCEJUKlI5iElMItaXXMqwf4ji5kvnwiXBN7VYFvl1cj5EgX9qZZPA_KV90ggxd0TWEtQckHntk0c3HOkY3d79g56i7mZdqWfolthuZufr5w6WvwC17MvJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+analysis%2C+numerical+verification+and+geometrical+representation+of+new+three-step+DTZD+algorithm+for+time-varying+nonlinear+equations+solving&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Guo%2C+Dongsheng&rft.au=Nie%2C+Zhuoyun&rft.au=Yan%2C+Laicheng&rft.date=2016-11-19&rft.issn=0925-2312&rft.volume=214&rft.spage=516&rft.epage=526&rft_id=info:doi/10.1016%2Fj.neucom.2016.06.032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2016_06_032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon