Fall detection algorithm based on global and local feature extraction

Falls have become one of the main causes of injury and death among the elderly. A high-accuracy fall detection method can effectively detect falls in the elderly, thereby reducing the probability of injury and mortality. This paper proposes a fall detection algorithm based on global and local featur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition letters Jg. 185; S. 31 - 37
Hauptverfasser: Li, Bin, Li, Jiangjiao, Wang, Peng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.09.2024
Schlagworte:
ISSN:0167-8655
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Falls have become one of the main causes of injury and death among the elderly. A high-accuracy fall detection method can effectively detect falls in the elderly, thereby reducing the probability of injury and mortality. This paper proposes a fall detection algorithm based on global and local feature extraction. Specifically, we design a dual-stream network, with one branch composed of a convolutional neural network and a regional attention module for extracting local features from images. The other branch consists of an improved Transformer for extracting global features from images. The local and global features are then fused using a feature fusion module for classification, enabling fall detection. Experimental results show that the proposed approach achieves accuracies of 99.55% and 99.75% when tested with UP-Fall Detection Dataset and Le2i Fall Detection Dataset. •A novel fall detection algorithm is proposed to extract local and global features.•A regional attention module is proposed to focus on important features.•An improved Transformer is applied to better extract contextual information.•A feature fusion module is designed to combine local and global features.
AbstractList Falls have become one of the main causes of injury and death among the elderly. A high-accuracy fall detection method can effectively detect falls in the elderly, thereby reducing the probability of injury and mortality. This paper proposes a fall detection algorithm based on global and local feature extraction. Specifically, we design a dual-stream network, with one branch composed of a convolutional neural network and a regional attention module for extracting local features from images. The other branch consists of an improved Transformer for extracting global features from images. The local and global features are then fused using a feature fusion module for classification, enabling fall detection. Experimental results show that the proposed approach achieves accuracies of 99.55% and 99.75% when tested with UP-Fall Detection Dataset and Le2i Fall Detection Dataset. •A novel fall detection algorithm is proposed to extract local and global features.•A regional attention module is proposed to focus on important features.•An improved Transformer is applied to better extract contextual information.•A feature fusion module is designed to combine local and global features.
Author Li, Bin
Wang, Peng
Li, Jiangjiao
Author_xml – sequence: 1
  givenname: Bin
  orcidid: 0000-0002-4028-0938
  surname: Li
  fullname: Li, Bin
  email: binli@qlu.edu.cn
  organization: School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
– sequence: 2
  givenname: Jiangjiao
  surname: Li
  fullname: Li, Jiangjiao
  email: 2390100@stu.neu.edu.cn
  organization: School of Information Science and Engineering, Northeastern University, Shenyang, 110819, Liaoning, China
– sequence: 3
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  email: 202011110042@stu.qlu.edu.cn
  organization: School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
BookMark eNqFkMFOwzAMhnMYEtvgDTj0BVbcpk1bDkho2gBpEhc4R67jjkxZO6UBwduTMU4c4GTL9vfr9z8Tk37oWYirDNIMMnW9Sw8YPFOaQ16kUKUAciKmcVUtalWW52I2jjsAULKpp2K1RucSw4Ep2KFP0G0Hb8PrPmlxZJPE0dYNLboEe5O4gWLXMYY3zwl_BI_f2IU469CNfPlT5-JlvXpePiw2T_ePy7vNgiSosMhbI2WmuCoaaPOO2lJWZQ1dragusEZqsexK7KgwuaxJUdNIlKbIK5W30JCci5uTLvlhHD13mmzAo4PoxDqdgT6GoHf6FII-hqCh0jGECBe_4IO3e_Sf_2G3J4zjY--WvR7Jck9sbDwN2gz2b4EvRR99oQ
CitedBy_id crossref_primary_10_1038_s41598_025_02746_w
crossref_primary_10_1109_ACCESS_2025_3596520
crossref_primary_10_1007_s00146_025_02395_7
Cites_doi 10.1016/j.icte.2022.07.003
10.1109/ICCV48922.2021.00986
10.1016/j.archger.2023.104922
10.1109/CVPR.2016.90
10.3390/s23031400
10.1016/j.neucom.2021.04.138
10.3390/s19091988
10.1109/SITIS.2012.155
10.1109/JSEN.2022.3165188
10.1016/j.measurement.2022.110870
10.1016/j.eswa.2020.114226
10.1016/j.micpro.2022.104514
10.1016/j.patrec.2023.10.014
10.1016/j.measurement.2020.108258
10.1007/s13042-022-01730-4
10.1016/j.patrec.2018.08.031
10.3390/s22155482
10.1049/ipr2.12667
10.1016/j.jvcir.2021.103407
10.1016/j.knosys.2021.107948
10.1109/JSEN.2022.3184513
10.1007/s11045-020-00705-4
10.1007/s00521-021-06495-5
10.1016/j.micpro.2021.103828
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.patrec.2024.07.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EndPage 37
ExternalDocumentID 10_1016_j_patrec_2024_07_003
S016786552400206X
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WH7
WUQ
XPP
Y6R
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-2bd3316e7490b2fcb537580f86c84a8acba5f5afc4d238c6c993a3d42762b09c3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001272413300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-8655
IngestDate Sat Nov 29 03:58:59 EST 2025
Tue Nov 18 21:23:25 EST 2025
Sat Sep 14 18:10:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Regional attention module
Transformer
Dual-stream network
Convolutional neural network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-2bd3316e7490b2fcb537580f86c84a8acba5f5afc4d238c6c993a3d42762b09c3
ORCID 0000-0002-4028-0938
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_patrec_2024_07_003
crossref_primary_10_1016_j_patrec_2024_07_003
elsevier_sciencedirect_doi_10_1016_j_patrec_2024_07_003
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Pattern recognition letters
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Gao, Li, Zhou, Zhi, Zhang (b12) 2023; 14
Ioffe, Szegedy (b18) 2015
Chen, Yang, Lai, Chu, Lin (b6) 2022; 22
Galvão, Ferreira, Albuquerque, Barros, Fernandes (b29) 2021; 168
Feng, Gao, Wang, Zhao, Song, Li (b8) 2020; 130
Xu, Se, Liu (b13) 2021; 82
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b14) 2017; 30
Yang, Yang, Liu, Yuan, Guan (b7) 2022; 192
Zhang, Cui, Shi, Tao, Zhang (b28) 2023; 53
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, Houlsby (b15) 2020
Bai, Chen, Yang, Liu (b17) 2023; 176
Wang, Zheng, Guo (b5) 2022; 22
Zhao, Zhang, Shang (b23) 2022; 22
Li, Song, Xu, Qi, Xue (b10) 2023; 9
Alarifi, Alwadain (b3) 2021; 167
I. Charfi, J. Miteran, J. Dubois, M. Atri, R. Tourki, Definition and Performance Evaluation of a Robust SVM Based Fall Detection Solution, in: 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems, 2012, pp. 218–224.
nez Marcos, Arganda-Carreras (b20) 2024; 132
Chen, He, Shi, Yang, Du, Shi, Fang (b1) 2023; 108
Saurav, Saini, Singh (b9) 2022; 34
Beddiar, Oussalah, Nini (b26) 2022; 82
Ramirez, Velastin, Cuellar, Fabregas, Farias (b21) 2023; 23
Kerdjidj, Boutellaa, Amira, Ghanem, Chouireb (b2) 2022; 91
Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV, 2021, pp. 10012–10022.
Nasir, Muhammad, Ullah, Ahmad, Wook Baik, Sajjad (b27) 2022; 491
Jansi, Amutha (b4) 2020; 31
Gao, Li, Zhou, Zhi, Zhang, Li (b11) 2023; 17
Martínez-Villaseñor, Ponce, Brieva, Moya-Albor, Núñez Martínez, Peñafort-Asturiano (b24) 2019; 19
Yadav, Luthra, Tiwari, Pandey, Akbar (b22) 2022; 239
K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016, pp. 770–778.
10.1016/j.patrec.2024.07.003_b16
10.1016/j.patrec.2024.07.003_b19
Dosovitskiy (10.1016/j.patrec.2024.07.003_b15) 2020
nez Marcos (10.1016/j.patrec.2024.07.003_b20) 2024; 132
Martínez-Villaseñor (10.1016/j.patrec.2024.07.003_b24) 2019; 19
Xu (10.1016/j.patrec.2024.07.003_b13) 2021; 82
Saurav (10.1016/j.patrec.2024.07.003_b9) 2022; 34
Galvão (10.1016/j.patrec.2024.07.003_b29) 2021; 168
Beddiar (10.1016/j.patrec.2024.07.003_b26) 2022; 82
Nasir (10.1016/j.patrec.2024.07.003_b27) 2022; 491
Jansi (10.1016/j.patrec.2024.07.003_b4) 2020; 31
Zhang (10.1016/j.patrec.2024.07.003_b28) 2023; 53
10.1016/j.patrec.2024.07.003_b25
Gao (10.1016/j.patrec.2024.07.003_b11) 2023; 17
Chen (10.1016/j.patrec.2024.07.003_b1) 2023; 108
Alarifi (10.1016/j.patrec.2024.07.003_b3) 2021; 167
Bai (10.1016/j.patrec.2024.07.003_b17) 2023; 176
Feng (10.1016/j.patrec.2024.07.003_b8) 2020; 130
Li (10.1016/j.patrec.2024.07.003_b12) 2023; 14
Yang (10.1016/j.patrec.2024.07.003_b7) 2022; 192
Li (10.1016/j.patrec.2024.07.003_b10) 2023; 9
Wang (10.1016/j.patrec.2024.07.003_b5) 2022; 22
Chen (10.1016/j.patrec.2024.07.003_b6) 2022; 22
Kerdjidj (10.1016/j.patrec.2024.07.003_b2) 2022; 91
Vaswani (10.1016/j.patrec.2024.07.003_b14) 2017; 30
Ramirez (10.1016/j.patrec.2024.07.003_b21) 2023; 23
Yadav (10.1016/j.patrec.2024.07.003_b22) 2022; 239
Ioffe (10.1016/j.patrec.2024.07.003_b18) 2015
Zhao (10.1016/j.patrec.2024.07.003_b23) 2022; 22
References_xml – volume: 31
  start-page: 1207
  year: 2020
  end-page: 1225
  ident: b4
  article-title: Detection of fall for the elderly in an indoor environment using a tri-axial accelerometer and kinect depth data
  publication-title: Multidimens. Syst. Signal Process.
– volume: 82
  year: 2021
  ident: b13
  article-title: A fusion fall detection algorithm combining threshold-based method and convolutional neural network
  publication-title: Microprocess. Microsyst.
– volume: 132
  year: 2024
  ident: b20
  article-title: Transformer-based fall detection in videos
  publication-title: Eng. Appl. Artif. Intell.
– volume: 23
  start-page: 1400
  year: 2023
  ident: b21
  article-title: BERT for activity recognition using sequences of skeleton features and data augmentation with GAN
  publication-title: Sensors
– volume: 91
  year: 2022
  ident: b2
  article-title: A hardware framework for fall detection using inertial sensors and compressed sensing
  publication-title: Microprocess. Microsyst.
– reference: Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV, 2021, pp. 10012–10022.
– volume: 19
  start-page: 1988
  year: 2019
  ident: b24
  article-title: UP-fall detection dataset: A multimodal approach
  publication-title: Sensors
– reference: I. Charfi, J. Miteran, J. Dubois, M. Atri, R. Tourki, Definition and Performance Evaluation of a Robust SVM Based Fall Detection Solution, in: 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems, 2012, pp. 218–224.
– volume: 239
  year: 2022
  ident: b22
  article-title: ARFDNet: An efficient activity recognition & fall detection system using latent feature pooling
  publication-title: Knowl.-Based Syst.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016, pp. 770–778.
– volume: 108
  year: 2023
  ident: b1
  article-title: Age-stratified modifiable fall risk factors in Chinese community-dwelling older adults
  publication-title: Arch. Gerontol. Geriat.
– volume: 34
  start-page: 1455
  year: 2022
  end-page: 1482
  ident: b9
  article-title: A dual-stream fused neural network for fall detection in multi-camera and 360 videos
  publication-title: Neural Comput. Appl.
– volume: 22
  start-page: 9824
  year: 2022
  end-page: 9831
  ident: b5
  article-title: Millimeter-wave frequency modulated continuous wave radar-based soft fall detection using pattern contour-confined Doppler-time maps
  publication-title: IEEE Sens. J.
– volume: 14
  start-page: 1831
  year: 2023
  end-page: 1844
  ident: b12
  article-title: KAMTFENet: a fall detection algorithm based on keypoint attention module and temporal feature extraction
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 9
  start-page: 734
  year: 2023
  end-page: 740
  ident: b10
  article-title: Dilated spatial–temporal convolutional auto-encoders for human fall detection in surveillance videos
  publication-title: ICT Express
– volume: 82
  year: 2022
  ident: b26
  article-title: Fall detection using body geometry and human pose estimation in video sequences
  publication-title: J. Vis. Commun. Image Represent.
– volume: 30
  year: 2017
  ident: b14
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 167
  year: 2021
  ident: b3
  article-title: Killer heuristic optimized convolution neural network-based fall detection with wearable IoT sensor devices
  publication-title: Measurement
– start-page: 448
  year: 2015
  end-page: 456
  ident: b18
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proceedings of the 32nd International Conference on Machine Learning, vol. 37
– volume: 168
  year: 2021
  ident: b29
  article-title: A multimodal approach using deep learning for fall detection
  publication-title: Expert Syst. Appl.
– year: 2020
  ident: b15
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale. CoRR abs/2010.11929
  publication-title: CoRR
– volume: 22
  start-page: 5482
  year: 2022
  ident: b23
  article-title: A lightweight subgraph-based deep learning approach for fall recognition
  publication-title: Sensors
– volume: 176
  start-page: 56
  year: 2023
  end-page: 61
  ident: b17
  article-title: Multi-dimension compression of feed-forward network in vision transformers
  publication-title: Pattern Recognit. Lett.
– volume: 22
  start-page: 15154
  year: 2022
  end-page: 15168
  ident: b6
  article-title: A three-stage low-complexity human fall detection method using IR-UWB radar
  publication-title: IEEE Sens. J.
– volume: 53
  start-page: 1
  year: 2023
  end-page: 8
  ident: b28
  article-title: ATMLP: Attention and time series MLP for fall detection
  publication-title: IAENG Int. J. Appl. Math.
– volume: 130
  start-page: 242
  year: 2020
  end-page: 249
  ident: b8
  article-title: Spatio-temporal fall event detection in complex scenes using attention guided LSTM
  publication-title: Pattern Recognit. Lett.
– volume: 491
  start-page: 494
  year: 2022
  end-page: 506
  ident: b27
  article-title: Enabling automation and edge intelligence over resource constraint IoT devices for smart home
  publication-title: Neurocomputing
– volume: 192
  year: 2022
  ident: b7
  article-title: Fall detection system based on infrared array sensor and multi-dimensional feature fusion
  publication-title: Measurement
– volume: 17
  start-page: 722
  year: 2023
  end-page: 732
  ident: b11
  article-title: Fall detection based on OpenPose and MobileNetV2 network
  publication-title: IET Image Process.
– volume: 9
  start-page: 734
  issue: 4
  year: 2023
  ident: 10.1016/j.patrec.2024.07.003_b10
  article-title: Dilated spatial–temporal convolutional auto-encoders for human fall detection in surveillance videos
  publication-title: ICT Express
  doi: 10.1016/j.icte.2022.07.003
– volume: 30
  year: 2017
  ident: 10.1016/j.patrec.2024.07.003_b14
  article-title: Attention is all you need
– ident: 10.1016/j.patrec.2024.07.003_b16
  doi: 10.1109/ICCV48922.2021.00986
– volume: 108
  year: 2023
  ident: 10.1016/j.patrec.2024.07.003_b1
  article-title: Age-stratified modifiable fall risk factors in Chinese community-dwelling older adults
  publication-title: Arch. Gerontol. Geriat.
  doi: 10.1016/j.archger.2023.104922
– ident: 10.1016/j.patrec.2024.07.003_b19
  doi: 10.1109/CVPR.2016.90
– start-page: 448
  year: 2015
  ident: 10.1016/j.patrec.2024.07.003_b18
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– volume: 23
  start-page: 1400
  issue: 3
  year: 2023
  ident: 10.1016/j.patrec.2024.07.003_b21
  article-title: BERT for activity recognition using sequences of skeleton features and data augmentation with GAN
  publication-title: Sensors
  doi: 10.3390/s23031400
– volume: 491
  start-page: 494
  year: 2022
  ident: 10.1016/j.patrec.2024.07.003_b27
  article-title: Enabling automation and edge intelligence over resource constraint IoT devices for smart home
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.04.138
– volume: 19
  start-page: 1988
  issue: 9
  year: 2019
  ident: 10.1016/j.patrec.2024.07.003_b24
  article-title: UP-fall detection dataset: A multimodal approach
  publication-title: Sensors
  doi: 10.3390/s19091988
– ident: 10.1016/j.patrec.2024.07.003_b25
  doi: 10.1109/SITIS.2012.155
– volume: 22
  start-page: 9824
  issue: 10
  year: 2022
  ident: 10.1016/j.patrec.2024.07.003_b5
  article-title: Millimeter-wave frequency modulated continuous wave radar-based soft fall detection using pattern contour-confined Doppler-time maps
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3165188
– volume: 53
  start-page: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.patrec.2024.07.003_b28
  article-title: ATMLP: Attention and time series MLP for fall detection
  publication-title: IAENG Int. J. Appl. Math.
– volume: 192
  year: 2022
  ident: 10.1016/j.patrec.2024.07.003_b7
  article-title: Fall detection system based on infrared array sensor and multi-dimensional feature fusion
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110870
– volume: 168
  year: 2021
  ident: 10.1016/j.patrec.2024.07.003_b29
  article-title: A multimodal approach using deep learning for fall detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114226
– volume: 91
  year: 2022
  ident: 10.1016/j.patrec.2024.07.003_b2
  article-title: A hardware framework for fall detection using inertial sensors and compressed sensing
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2022.104514
– volume: 176
  start-page: 56
  year: 2023
  ident: 10.1016/j.patrec.2024.07.003_b17
  article-title: Multi-dimension compression of feed-forward network in vision transformers
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2023.10.014
– volume: 167
  year: 2021
  ident: 10.1016/j.patrec.2024.07.003_b3
  article-title: Killer heuristic optimized convolution neural network-based fall detection with wearable IoT sensor devices
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108258
– volume: 132
  year: 2024
  ident: 10.1016/j.patrec.2024.07.003_b20
  article-title: Transformer-based fall detection in videos
  publication-title: Eng. Appl. Artif. Intell.
– volume: 14
  start-page: 1831
  issue: 5
  year: 2023
  ident: 10.1016/j.patrec.2024.07.003_b12
  article-title: KAMTFENet: a fall detection algorithm based on keypoint attention module and temporal feature extraction
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-022-01730-4
– volume: 130
  start-page: 242
  year: 2020
  ident: 10.1016/j.patrec.2024.07.003_b8
  article-title: Spatio-temporal fall event detection in complex scenes using attention guided LSTM
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.08.031
– volume: 22
  start-page: 5482
  issue: 15
  year: 2022
  ident: 10.1016/j.patrec.2024.07.003_b23
  article-title: A lightweight subgraph-based deep learning approach for fall recognition
  publication-title: Sensors
  doi: 10.3390/s22155482
– volume: 17
  start-page: 722
  issue: 3
  year: 2023
  ident: 10.1016/j.patrec.2024.07.003_b11
  article-title: Fall detection based on OpenPose and MobileNetV2 network
  publication-title: IET Image Process.
  doi: 10.1049/ipr2.12667
– volume: 82
  year: 2022
  ident: 10.1016/j.patrec.2024.07.003_b26
  article-title: Fall detection using body geometry and human pose estimation in video sequences
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2021.103407
– volume: 239
  year: 2022
  ident: 10.1016/j.patrec.2024.07.003_b22
  article-title: ARFDNet: An efficient activity recognition & fall detection system using latent feature pooling
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107948
– volume: 22
  start-page: 15154
  issue: 15
  year: 2022
  ident: 10.1016/j.patrec.2024.07.003_b6
  article-title: A three-stage low-complexity human fall detection method using IR-UWB radar
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3184513
– year: 2020
  ident: 10.1016/j.patrec.2024.07.003_b15
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale. CoRR abs/2010.11929
  publication-title: CoRR
– volume: 31
  start-page: 1207
  issue: 4
  year: 2020
  ident: 10.1016/j.patrec.2024.07.003_b4
  article-title: Detection of fall for the elderly in an indoor environment using a tri-axial accelerometer and kinect depth data
  publication-title: Multidimens. Syst. Signal Process.
  doi: 10.1007/s11045-020-00705-4
– volume: 34
  start-page: 1455
  issue: 2
  year: 2022
  ident: 10.1016/j.patrec.2024.07.003_b9
  article-title: A dual-stream fused neural network for fall detection in multi-camera and 360 videos
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06495-5
– volume: 82
  year: 2021
  ident: 10.1016/j.patrec.2024.07.003_b13
  article-title: A fusion fall detection algorithm combining threshold-based method and convolutional neural network
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2021.103828
SSID ssj0006398
Score 2.460966
Snippet Falls have become one of the main causes of injury and death among the elderly. A high-accuracy fall detection method can effectively detect falls in the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 31
SubjectTerms Convolutional neural network
Dual-stream network
Regional attention module
Transformer
Title Fall detection algorithm based on global and local feature extraction
URI https://dx.doi.org/10.1016/j.patrec.2024.07.003
Volume 185
WOSCitedRecordID wos001272413300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0167-8655
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006398
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBatk0N76CNtafpCh97MFlnSrrTHtDi0oQRDE_BtkbRSauOsg7MN-fkZPXbt4JK0hV4Wo7VWoPmY-TSaB0IffR9JMrKjTCldZNxKlQELZxmzRjnuVKFrGZpNiONjOZ2Wk9Rt8zK0ExBNI6-vy4v_KmoYA2H71Nm_EHf_URiA3yB0eILY4flHgj_0l821bW1qAr44W65m7c_zoTdYtb8cSEVAvMs8mLKhs6G85xAU9SomOmxy1kkowenTXlKsEXxiEbKAej7-PcQEfJ41tweOAHtn85lart32UbVMbDKYyd9AeR9QlZxgW4kw0S8J-tbnuN5WrPmGakzKPhrZWOhlS31HT8L8k78HsL7AJOWhtCpha3PVBxH-8Iv6NX0YLCXF9CHaoSIv5QDtHHwbT496iwwsTHY13v2ELoUyxPltr_V7irJBO06eoSfpvIAPopyfowe22UNPu14cOKnmPfR4o7DkCzT2IMA9CHAPAhxAgGEoggADCHAAAU4gwGsQvESnh-OTL1-z1DAjM3DyazOqa8ZGhRW8JJo6o3MGx0HiZGEkV1IZrXKXK2d4DUzNFAbIqWI1p2ARNSkNe4UGzbKxrxEWRHKmLHGaMXgvlCY5FaY0mkrpBN1HrNujyqRq8r6pyaLqwgbnVdzZyu9sRXyYA9tHWT_rIlZTuef_otv-KjHCyPQqQMydM9_888y36NEa9u_QoF39su_RrrlqZ5erDwlaNy45h9w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fall+detection+algorithm+based+on+global+and+local+feature+extraction&rft.jtitle=Pattern+recognition+letters&rft.au=Li%2C+Bin&rft.au=Li%2C+Jiangjiao&rft.au=Wang%2C+Peng&rft.date=2024-09-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.volume=185&rft.spage=31&rft.epage=37&rft_id=info:doi/10.1016%2Fj.patrec.2024.07.003&rft.externalDocID=S016786552400206X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon