Fall detection algorithm based on global and local feature extraction
Falls have become one of the main causes of injury and death among the elderly. A high-accuracy fall detection method can effectively detect falls in the elderly, thereby reducing the probability of injury and mortality. This paper proposes a fall detection algorithm based on global and local featur...
Gespeichert in:
| Veröffentlicht in: | Pattern recognition letters Jg. 185; S. 31 - 37 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.09.2024
|
| Schlagworte: | |
| ISSN: | 0167-8655 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Falls have become one of the main causes of injury and death among the elderly. A high-accuracy fall detection method can effectively detect falls in the elderly, thereby reducing the probability of injury and mortality. This paper proposes a fall detection algorithm based on global and local feature extraction. Specifically, we design a dual-stream network, with one branch composed of a convolutional neural network and a regional attention module for extracting local features from images. The other branch consists of an improved Transformer for extracting global features from images. The local and global features are then fused using a feature fusion module for classification, enabling fall detection. Experimental results show that the proposed approach achieves accuracies of 99.55% and 99.75% when tested with UP-Fall Detection Dataset and Le2i Fall Detection Dataset.
•A novel fall detection algorithm is proposed to extract local and global features.•A regional attention module is proposed to focus on important features.•An improved Transformer is applied to better extract contextual information.•A feature fusion module is designed to combine local and global features. |
|---|---|
| AbstractList | Falls have become one of the main causes of injury and death among the elderly. A high-accuracy fall detection method can effectively detect falls in the elderly, thereby reducing the probability of injury and mortality. This paper proposes a fall detection algorithm based on global and local feature extraction. Specifically, we design a dual-stream network, with one branch composed of a convolutional neural network and a regional attention module for extracting local features from images. The other branch consists of an improved Transformer for extracting global features from images. The local and global features are then fused using a feature fusion module for classification, enabling fall detection. Experimental results show that the proposed approach achieves accuracies of 99.55% and 99.75% when tested with UP-Fall Detection Dataset and Le2i Fall Detection Dataset.
•A novel fall detection algorithm is proposed to extract local and global features.•A regional attention module is proposed to focus on important features.•An improved Transformer is applied to better extract contextual information.•A feature fusion module is designed to combine local and global features. |
| Author | Li, Bin Wang, Peng Li, Jiangjiao |
| Author_xml | – sequence: 1 givenname: Bin orcidid: 0000-0002-4028-0938 surname: Li fullname: Li, Bin email: binli@qlu.edu.cn organization: School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China – sequence: 2 givenname: Jiangjiao surname: Li fullname: Li, Jiangjiao email: 2390100@stu.neu.edu.cn organization: School of Information Science and Engineering, Northeastern University, Shenyang, 110819, Liaoning, China – sequence: 3 givenname: Peng surname: Wang fullname: Wang, Peng email: 202011110042@stu.qlu.edu.cn organization: School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China |
| BookMark | eNqFkMFOwzAMhnMYEtvgDTj0BVbcpk1bDkho2gBpEhc4R67jjkxZO6UBwduTMU4c4GTL9vfr9z8Tk37oWYirDNIMMnW9Sw8YPFOaQ16kUKUAciKmcVUtalWW52I2jjsAULKpp2K1RucSw4Ep2KFP0G0Hb8PrPmlxZJPE0dYNLboEe5O4gWLXMYY3zwl_BI_f2IU469CNfPlT5-JlvXpePiw2T_ePy7vNgiSosMhbI2WmuCoaaPOO2lJWZQ1dragusEZqsexK7KgwuaxJUdNIlKbIK5W30JCci5uTLvlhHD13mmzAo4PoxDqdgT6GoHf6FII-hqCh0jGECBe_4IO3e_Sf_2G3J4zjY--WvR7Jck9sbDwN2gz2b4EvRR99oQ |
| CitedBy_id | crossref_primary_10_1038_s41598_025_02746_w crossref_primary_10_1109_ACCESS_2025_3596520 crossref_primary_10_1007_s00146_025_02395_7 |
| Cites_doi | 10.1016/j.icte.2022.07.003 10.1109/ICCV48922.2021.00986 10.1016/j.archger.2023.104922 10.1109/CVPR.2016.90 10.3390/s23031400 10.1016/j.neucom.2021.04.138 10.3390/s19091988 10.1109/SITIS.2012.155 10.1109/JSEN.2022.3165188 10.1016/j.measurement.2022.110870 10.1016/j.eswa.2020.114226 10.1016/j.micpro.2022.104514 10.1016/j.patrec.2023.10.014 10.1016/j.measurement.2020.108258 10.1007/s13042-022-01730-4 10.1016/j.patrec.2018.08.031 10.3390/s22155482 10.1049/ipr2.12667 10.1016/j.jvcir.2021.103407 10.1016/j.knosys.2021.107948 10.1109/JSEN.2022.3184513 10.1007/s11045-020-00705-4 10.1007/s00521-021-06495-5 10.1016/j.micpro.2021.103828 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patrec.2024.07.003 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EndPage | 37 |
| ExternalDocumentID | 10_1016_j_patrec_2024_07_003 S016786552400206X |
| GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WH7 WUQ XPP Y6R ZMT ~G- 9DU AATTM AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c306t-2bd3316e7490b2fcb537580f86c84a8acba5f5afc4d238c6c993a3d42762b09c3 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001272413300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-8655 |
| IngestDate | Sat Nov 29 03:58:59 EST 2025 Tue Nov 18 21:23:25 EST 2025 Sat Sep 14 18:10:38 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Regional attention module Transformer Dual-stream network Convolutional neural network |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-2bd3316e7490b2fcb537580f86c84a8acba5f5afc4d238c6c993a3d42762b09c3 |
| ORCID | 0000-0002-4028-0938 |
| PageCount | 7 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_patrec_2024_07_003 crossref_primary_10_1016_j_patrec_2024_07_003 elsevier_sciencedirect_doi_10_1016_j_patrec_2024_07_003 |
| PublicationCentury | 2000 |
| PublicationDate | September 2024 2024-09-00 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Pattern recognition letters |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Li, Gao, Li, Zhou, Zhi, Zhang (b12) 2023; 14 Ioffe, Szegedy (b18) 2015 Chen, Yang, Lai, Chu, Lin (b6) 2022; 22 Galvão, Ferreira, Albuquerque, Barros, Fernandes (b29) 2021; 168 Feng, Gao, Wang, Zhao, Song, Li (b8) 2020; 130 Xu, Se, Liu (b13) 2021; 82 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b14) 2017; 30 Yang, Yang, Liu, Yuan, Guan (b7) 2022; 192 Zhang, Cui, Shi, Tao, Zhang (b28) 2023; 53 Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, Houlsby (b15) 2020 Bai, Chen, Yang, Liu (b17) 2023; 176 Wang, Zheng, Guo (b5) 2022; 22 Zhao, Zhang, Shang (b23) 2022; 22 Li, Song, Xu, Qi, Xue (b10) 2023; 9 Alarifi, Alwadain (b3) 2021; 167 I. Charfi, J. Miteran, J. Dubois, M. Atri, R. Tourki, Definition and Performance Evaluation of a Robust SVM Based Fall Detection Solution, in: 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems, 2012, pp. 218–224. nez Marcos, Arganda-Carreras (b20) 2024; 132 Chen, He, Shi, Yang, Du, Shi, Fang (b1) 2023; 108 Saurav, Saini, Singh (b9) 2022; 34 Beddiar, Oussalah, Nini (b26) 2022; 82 Ramirez, Velastin, Cuellar, Fabregas, Farias (b21) 2023; 23 Kerdjidj, Boutellaa, Amira, Ghanem, Chouireb (b2) 2022; 91 Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV, 2021, pp. 10012–10022. Nasir, Muhammad, Ullah, Ahmad, Wook Baik, Sajjad (b27) 2022; 491 Jansi, Amutha (b4) 2020; 31 Gao, Li, Zhou, Zhi, Zhang, Li (b11) 2023; 17 Martínez-Villaseñor, Ponce, Brieva, Moya-Albor, Núñez Martínez, Peñafort-Asturiano (b24) 2019; 19 Yadav, Luthra, Tiwari, Pandey, Akbar (b22) 2022; 239 K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016, pp. 770–778. 10.1016/j.patrec.2024.07.003_b16 10.1016/j.patrec.2024.07.003_b19 Dosovitskiy (10.1016/j.patrec.2024.07.003_b15) 2020 nez Marcos (10.1016/j.patrec.2024.07.003_b20) 2024; 132 Martínez-Villaseñor (10.1016/j.patrec.2024.07.003_b24) 2019; 19 Xu (10.1016/j.patrec.2024.07.003_b13) 2021; 82 Saurav (10.1016/j.patrec.2024.07.003_b9) 2022; 34 Galvão (10.1016/j.patrec.2024.07.003_b29) 2021; 168 Beddiar (10.1016/j.patrec.2024.07.003_b26) 2022; 82 Nasir (10.1016/j.patrec.2024.07.003_b27) 2022; 491 Jansi (10.1016/j.patrec.2024.07.003_b4) 2020; 31 Zhang (10.1016/j.patrec.2024.07.003_b28) 2023; 53 10.1016/j.patrec.2024.07.003_b25 Gao (10.1016/j.patrec.2024.07.003_b11) 2023; 17 Chen (10.1016/j.patrec.2024.07.003_b1) 2023; 108 Alarifi (10.1016/j.patrec.2024.07.003_b3) 2021; 167 Bai (10.1016/j.patrec.2024.07.003_b17) 2023; 176 Feng (10.1016/j.patrec.2024.07.003_b8) 2020; 130 Li (10.1016/j.patrec.2024.07.003_b12) 2023; 14 Yang (10.1016/j.patrec.2024.07.003_b7) 2022; 192 Li (10.1016/j.patrec.2024.07.003_b10) 2023; 9 Wang (10.1016/j.patrec.2024.07.003_b5) 2022; 22 Chen (10.1016/j.patrec.2024.07.003_b6) 2022; 22 Kerdjidj (10.1016/j.patrec.2024.07.003_b2) 2022; 91 Vaswani (10.1016/j.patrec.2024.07.003_b14) 2017; 30 Ramirez (10.1016/j.patrec.2024.07.003_b21) 2023; 23 Yadav (10.1016/j.patrec.2024.07.003_b22) 2022; 239 Ioffe (10.1016/j.patrec.2024.07.003_b18) 2015 Zhao (10.1016/j.patrec.2024.07.003_b23) 2022; 22 |
| References_xml | – volume: 31 start-page: 1207 year: 2020 end-page: 1225 ident: b4 article-title: Detection of fall for the elderly in an indoor environment using a tri-axial accelerometer and kinect depth data publication-title: Multidimens. Syst. Signal Process. – volume: 82 year: 2021 ident: b13 article-title: A fusion fall detection algorithm combining threshold-based method and convolutional neural network publication-title: Microprocess. Microsyst. – volume: 132 year: 2024 ident: b20 article-title: Transformer-based fall detection in videos publication-title: Eng. Appl. Artif. Intell. – volume: 23 start-page: 1400 year: 2023 ident: b21 article-title: BERT for activity recognition using sequences of skeleton features and data augmentation with GAN publication-title: Sensors – volume: 91 year: 2022 ident: b2 article-title: A hardware framework for fall detection using inertial sensors and compressed sensing publication-title: Microprocess. Microsyst. – reference: Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV, 2021, pp. 10012–10022. – volume: 19 start-page: 1988 year: 2019 ident: b24 article-title: UP-fall detection dataset: A multimodal approach publication-title: Sensors – reference: I. Charfi, J. Miteran, J. Dubois, M. Atri, R. Tourki, Definition and Performance Evaluation of a Robust SVM Based Fall Detection Solution, in: 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems, 2012, pp. 218–224. – volume: 239 year: 2022 ident: b22 article-title: ARFDNet: An efficient activity recognition & fall detection system using latent feature pooling publication-title: Knowl.-Based Syst. – reference: K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016, pp. 770–778. – volume: 108 year: 2023 ident: b1 article-title: Age-stratified modifiable fall risk factors in Chinese community-dwelling older adults publication-title: Arch. Gerontol. Geriat. – volume: 34 start-page: 1455 year: 2022 end-page: 1482 ident: b9 article-title: A dual-stream fused neural network for fall detection in multi-camera and 360 videos publication-title: Neural Comput. Appl. – volume: 22 start-page: 9824 year: 2022 end-page: 9831 ident: b5 article-title: Millimeter-wave frequency modulated continuous wave radar-based soft fall detection using pattern contour-confined Doppler-time maps publication-title: IEEE Sens. J. – volume: 14 start-page: 1831 year: 2023 end-page: 1844 ident: b12 article-title: KAMTFENet: a fall detection algorithm based on keypoint attention module and temporal feature extraction publication-title: Int. J. Mach. Learn. Cybern. – volume: 9 start-page: 734 year: 2023 end-page: 740 ident: b10 article-title: Dilated spatial–temporal convolutional auto-encoders for human fall detection in surveillance videos publication-title: ICT Express – volume: 82 year: 2022 ident: b26 article-title: Fall detection using body geometry and human pose estimation in video sequences publication-title: J. Vis. Commun. Image Represent. – volume: 30 year: 2017 ident: b14 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 167 year: 2021 ident: b3 article-title: Killer heuristic optimized convolution neural network-based fall detection with wearable IoT sensor devices publication-title: Measurement – start-page: 448 year: 2015 end-page: 456 ident: b18 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proceedings of the 32nd International Conference on Machine Learning, vol. 37 – volume: 168 year: 2021 ident: b29 article-title: A multimodal approach using deep learning for fall detection publication-title: Expert Syst. Appl. – year: 2020 ident: b15 article-title: An image is worth 16x16 words: Transformers for image recognition at scale. CoRR abs/2010.11929 publication-title: CoRR – volume: 22 start-page: 5482 year: 2022 ident: b23 article-title: A lightweight subgraph-based deep learning approach for fall recognition publication-title: Sensors – volume: 176 start-page: 56 year: 2023 end-page: 61 ident: b17 article-title: Multi-dimension compression of feed-forward network in vision transformers publication-title: Pattern Recognit. Lett. – volume: 22 start-page: 15154 year: 2022 end-page: 15168 ident: b6 article-title: A three-stage low-complexity human fall detection method using IR-UWB radar publication-title: IEEE Sens. J. – volume: 53 start-page: 1 year: 2023 end-page: 8 ident: b28 article-title: ATMLP: Attention and time series MLP for fall detection publication-title: IAENG Int. J. Appl. Math. – volume: 130 start-page: 242 year: 2020 end-page: 249 ident: b8 article-title: Spatio-temporal fall event detection in complex scenes using attention guided LSTM publication-title: Pattern Recognit. Lett. – volume: 491 start-page: 494 year: 2022 end-page: 506 ident: b27 article-title: Enabling automation and edge intelligence over resource constraint IoT devices for smart home publication-title: Neurocomputing – volume: 192 year: 2022 ident: b7 article-title: Fall detection system based on infrared array sensor and multi-dimensional feature fusion publication-title: Measurement – volume: 17 start-page: 722 year: 2023 end-page: 732 ident: b11 article-title: Fall detection based on OpenPose and MobileNetV2 network publication-title: IET Image Process. – volume: 9 start-page: 734 issue: 4 year: 2023 ident: 10.1016/j.patrec.2024.07.003_b10 article-title: Dilated spatial–temporal convolutional auto-encoders for human fall detection in surveillance videos publication-title: ICT Express doi: 10.1016/j.icte.2022.07.003 – volume: 30 year: 2017 ident: 10.1016/j.patrec.2024.07.003_b14 article-title: Attention is all you need – ident: 10.1016/j.patrec.2024.07.003_b16 doi: 10.1109/ICCV48922.2021.00986 – volume: 108 year: 2023 ident: 10.1016/j.patrec.2024.07.003_b1 article-title: Age-stratified modifiable fall risk factors in Chinese community-dwelling older adults publication-title: Arch. Gerontol. Geriat. doi: 10.1016/j.archger.2023.104922 – ident: 10.1016/j.patrec.2024.07.003_b19 doi: 10.1109/CVPR.2016.90 – start-page: 448 year: 2015 ident: 10.1016/j.patrec.2024.07.003_b18 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – volume: 23 start-page: 1400 issue: 3 year: 2023 ident: 10.1016/j.patrec.2024.07.003_b21 article-title: BERT for activity recognition using sequences of skeleton features and data augmentation with GAN publication-title: Sensors doi: 10.3390/s23031400 – volume: 491 start-page: 494 year: 2022 ident: 10.1016/j.patrec.2024.07.003_b27 article-title: Enabling automation and edge intelligence over resource constraint IoT devices for smart home publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.04.138 – volume: 19 start-page: 1988 issue: 9 year: 2019 ident: 10.1016/j.patrec.2024.07.003_b24 article-title: UP-fall detection dataset: A multimodal approach publication-title: Sensors doi: 10.3390/s19091988 – ident: 10.1016/j.patrec.2024.07.003_b25 doi: 10.1109/SITIS.2012.155 – volume: 22 start-page: 9824 issue: 10 year: 2022 ident: 10.1016/j.patrec.2024.07.003_b5 article-title: Millimeter-wave frequency modulated continuous wave radar-based soft fall detection using pattern contour-confined Doppler-time maps publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3165188 – volume: 53 start-page: 1 issue: 1 year: 2023 ident: 10.1016/j.patrec.2024.07.003_b28 article-title: ATMLP: Attention and time series MLP for fall detection publication-title: IAENG Int. J. Appl. Math. – volume: 192 year: 2022 ident: 10.1016/j.patrec.2024.07.003_b7 article-title: Fall detection system based on infrared array sensor and multi-dimensional feature fusion publication-title: Measurement doi: 10.1016/j.measurement.2022.110870 – volume: 168 year: 2021 ident: 10.1016/j.patrec.2024.07.003_b29 article-title: A multimodal approach using deep learning for fall detection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114226 – volume: 91 year: 2022 ident: 10.1016/j.patrec.2024.07.003_b2 article-title: A hardware framework for fall detection using inertial sensors and compressed sensing publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2022.104514 – volume: 176 start-page: 56 year: 2023 ident: 10.1016/j.patrec.2024.07.003_b17 article-title: Multi-dimension compression of feed-forward network in vision transformers publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2023.10.014 – volume: 167 year: 2021 ident: 10.1016/j.patrec.2024.07.003_b3 article-title: Killer heuristic optimized convolution neural network-based fall detection with wearable IoT sensor devices publication-title: Measurement doi: 10.1016/j.measurement.2020.108258 – volume: 132 year: 2024 ident: 10.1016/j.patrec.2024.07.003_b20 article-title: Transformer-based fall detection in videos publication-title: Eng. Appl. Artif. Intell. – volume: 14 start-page: 1831 issue: 5 year: 2023 ident: 10.1016/j.patrec.2024.07.003_b12 article-title: KAMTFENet: a fall detection algorithm based on keypoint attention module and temporal feature extraction publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-022-01730-4 – volume: 130 start-page: 242 year: 2020 ident: 10.1016/j.patrec.2024.07.003_b8 article-title: Spatio-temporal fall event detection in complex scenes using attention guided LSTM publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.08.031 – volume: 22 start-page: 5482 issue: 15 year: 2022 ident: 10.1016/j.patrec.2024.07.003_b23 article-title: A lightweight subgraph-based deep learning approach for fall recognition publication-title: Sensors doi: 10.3390/s22155482 – volume: 17 start-page: 722 issue: 3 year: 2023 ident: 10.1016/j.patrec.2024.07.003_b11 article-title: Fall detection based on OpenPose and MobileNetV2 network publication-title: IET Image Process. doi: 10.1049/ipr2.12667 – volume: 82 year: 2022 ident: 10.1016/j.patrec.2024.07.003_b26 article-title: Fall detection using body geometry and human pose estimation in video sequences publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2021.103407 – volume: 239 year: 2022 ident: 10.1016/j.patrec.2024.07.003_b22 article-title: ARFDNet: An efficient activity recognition & fall detection system using latent feature pooling publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107948 – volume: 22 start-page: 15154 issue: 15 year: 2022 ident: 10.1016/j.patrec.2024.07.003_b6 article-title: A three-stage low-complexity human fall detection method using IR-UWB radar publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3184513 – year: 2020 ident: 10.1016/j.patrec.2024.07.003_b15 article-title: An image is worth 16x16 words: Transformers for image recognition at scale. CoRR abs/2010.11929 publication-title: CoRR – volume: 31 start-page: 1207 issue: 4 year: 2020 ident: 10.1016/j.patrec.2024.07.003_b4 article-title: Detection of fall for the elderly in an indoor environment using a tri-axial accelerometer and kinect depth data publication-title: Multidimens. Syst. Signal Process. doi: 10.1007/s11045-020-00705-4 – volume: 34 start-page: 1455 issue: 2 year: 2022 ident: 10.1016/j.patrec.2024.07.003_b9 article-title: A dual-stream fused neural network for fall detection in multi-camera and 360 videos publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06495-5 – volume: 82 year: 2021 ident: 10.1016/j.patrec.2024.07.003_b13 article-title: A fusion fall detection algorithm combining threshold-based method and convolutional neural network publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2021.103828 |
| SSID | ssj0006398 |
| Score | 2.460966 |
| Snippet | Falls have become one of the main causes of injury and death among the elderly. A high-accuracy fall detection method can effectively detect falls in the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 31 |
| SubjectTerms | Convolutional neural network Dual-stream network Regional attention module Transformer |
| Title | Fall detection algorithm based on global and local feature extraction |
| URI | https://dx.doi.org/10.1016/j.patrec.2024.07.003 |
| Volume | 185 |
| WOSCitedRecordID | wos001272413300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0167-8655 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006398 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBatk0N76CNtafpCh97MFlnSrrTHtDi0oQRDE_BtkbRSauOsg7MN-fkZPXbt4JK0hV4Wo7VWoPmY-TSaB0IffR9JMrKjTCldZNxKlQELZxmzRjnuVKFrGZpNiONjOZ2Wk9Rt8zK0ExBNI6-vy4v_KmoYA2H71Nm_EHf_URiA3yB0eILY4flHgj_0l821bW1qAr44W65m7c_zoTdYtb8cSEVAvMs8mLKhs6G85xAU9SomOmxy1kkowenTXlKsEXxiEbKAej7-PcQEfJ41tweOAHtn85lart32UbVMbDKYyd9AeR9QlZxgW4kw0S8J-tbnuN5WrPmGakzKPhrZWOhlS31HT8L8k78HsL7AJOWhtCpha3PVBxH-8Iv6NX0YLCXF9CHaoSIv5QDtHHwbT496iwwsTHY13v2ELoUyxPltr_V7irJBO06eoSfpvIAPopyfowe22UNPu14cOKnmPfR4o7DkCzT2IMA9CHAPAhxAgGEoggADCHAAAU4gwGsQvESnh-OTL1-z1DAjM3DyazOqa8ZGhRW8JJo6o3MGx0HiZGEkV1IZrXKXK2d4DUzNFAbIqWI1p2ARNSkNe4UGzbKxrxEWRHKmLHGaMXgvlCY5FaY0mkrpBN1HrNujyqRq8r6pyaLqwgbnVdzZyu9sRXyYA9tHWT_rIlZTuef_otv-KjHCyPQqQMydM9_888y36NEa9u_QoF39su_RrrlqZ5erDwlaNy45h9w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fall+detection+algorithm+based+on+global+and+local+feature+extraction&rft.jtitle=Pattern+recognition+letters&rft.au=Li%2C+Bin&rft.au=Li%2C+Jiangjiao&rft.au=Wang%2C+Peng&rft.date=2024-09-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.volume=185&rft.spage=31&rft.epage=37&rft_id=info:doi/10.1016%2Fj.patrec.2024.07.003&rft.externalDocID=S016786552400206X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |