Rapid and simultaneous analysis of monoiodoacetic acid and inorganic iodine in drinking water by capillary electrophoresis-inductively coupled plasma mass spectrometry

Determination of monoiodoacetic acid and inorganic iodine in drinking water by capillary electrophoresis combined with inductively coupled plasma mass spectrometry. [Display omitted] •A simple method was developed to determination of MIAA and inorganic iodine.•This method is fast, efficient, conveni...

Full description

Saved in:
Bibliographic Details
Published in:Microchemical journal Vol. 203; p. 110809
Main Authors: Wu, Yuke, Wang, Xi, Pang, Zhengqin, Zhang, Jinyi, Zheng, Chengbin
Format: Journal Article
Language:English
Published: Elsevier B.V 01.08.2024
Subjects:
ISSN:0026-265X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Determination of monoiodoacetic acid and inorganic iodine in drinking water by capillary electrophoresis combined with inductively coupled plasma mass spectrometry. [Display omitted] •A simple method was developed to determination of MIAA and inorganic iodine.•This method is fast, efficient, convenient and environmentally friendly.•It is applicable to monitor the environmental risk of drinking water. Monoiodoacetic acid (MIAA) is a disinfection by-product formed during water disinfection through the oxidation of iodide, followed by a reaction with natural organic matter. It exhibits high toxicity and strong mutagenicity and is potentially carcinogenic to humans. Therefore, the simultaneous detection of MIAA and inorganic iodine can enable the safety assessment of drinking water and expand the study of the dynamic transformation process between the two forms. Currently, there is a lack of efficient and rapid universal screening methods for MIAA and inorganic iodine. In this work, a simple and efficient method was developed to combine capillary electrophoresis with inductively coupled plasma mass spectrometry using a spray-efficient nebulizer interface for the speciation analysis of I− , IO3− , and MIAA. The method is based on qualitative analysis of retention time and quantitative determination using peak area. The detection limits of the three iodine forms were 0.16 μg L−1, 0.40 μg L−1, and 1.22 μg L−1, respectively. By coupling two instruments, the method combines the advantages of rapidity and accuracy with high injection efficiency. It is also more environmentally friendly as it does not require complex pre-treatment and avoids the use of toxic organic compounds. The accuracy of this method has been validated through the incorporation of authentic samples, paving the way for its deployment in the risk assessment of substantial volumes of drinking water and the expansion of the novel approach for further investigation into the genesis and transformation of MIAA.
AbstractList Determination of monoiodoacetic acid and inorganic iodine in drinking water by capillary electrophoresis combined with inductively coupled plasma mass spectrometry. [Display omitted] •A simple method was developed to determination of MIAA and inorganic iodine.•This method is fast, efficient, convenient and environmentally friendly.•It is applicable to monitor the environmental risk of drinking water. Monoiodoacetic acid (MIAA) is a disinfection by-product formed during water disinfection through the oxidation of iodide, followed by a reaction with natural organic matter. It exhibits high toxicity and strong mutagenicity and is potentially carcinogenic to humans. Therefore, the simultaneous detection of MIAA and inorganic iodine can enable the safety assessment of drinking water and expand the study of the dynamic transformation process between the two forms. Currently, there is a lack of efficient and rapid universal screening methods for MIAA and inorganic iodine. In this work, a simple and efficient method was developed to combine capillary electrophoresis with inductively coupled plasma mass spectrometry using a spray-efficient nebulizer interface for the speciation analysis of I− , IO3− , and MIAA. The method is based on qualitative analysis of retention time and quantitative determination using peak area. The detection limits of the three iodine forms were 0.16 μg L−1, 0.40 μg L−1, and 1.22 μg L−1, respectively. By coupling two instruments, the method combines the advantages of rapidity and accuracy with high injection efficiency. It is also more environmentally friendly as it does not require complex pre-treatment and avoids the use of toxic organic compounds. The accuracy of this method has been validated through the incorporation of authentic samples, paving the way for its deployment in the risk assessment of substantial volumes of drinking water and the expansion of the novel approach for further investigation into the genesis and transformation of MIAA.
ArticleNumber 110809
Author Pang, Zhengqin
Zheng, Chengbin
Wu, Yuke
Zhang, Jinyi
Wang, Xi
Author_xml – sequence: 1
  givenname: Yuke
  surname: Wu
  fullname: Wu, Yuke
– sequence: 2
  givenname: Xi
  surname: Wang
  fullname: Wang, Xi
– sequence: 3
  givenname: Zhengqin
  surname: Pang
  fullname: Pang, Zhengqin
– sequence: 4
  givenname: Jinyi
  surname: Zhang
  fullname: Zhang, Jinyi
  email: jinyizhang@scu.edu
– sequence: 5
  givenname: Chengbin
  orcidid: 0000-0002-7496-8335
  surname: Zheng
  fullname: Zheng, Chengbin
  email: abinscu@scu.edu.cn
BookMark eNqFkE1uFDEQRr0IEkngBln4Aj2UnbZnhgUSiviTIiEhkLJrVdvVSQ1uu2V7guZEXDMeJisWsLL0ud5n17sQZzFFEuJKwUqBsm92q5ldTm6lQfcrpWAD2zNxDqBtp625eykuStkBwNpodS5-f8OFvcToZeF5HypGSvvSAgyHwkWmSc4pJk4-oaPKTqJ7BjimfI-xRe2WI7VA-szxJ8d7-QsrZTkepGsPhID5ICmQqzktDylTq-44-r2r_EihTaX9EsjLJWCZUc5YiizLn_mZaj68Ei8mDIVeP5-X4sfHD99vPne3Xz99uXl_27lrsLXTOPa0RTMZo623artBsMroEVQP4xq3x7UdWEvO6d5MXtNIMCJtoDd6ba4vRX_qbQ5LyTQNS-a5_X5QMBwFD7vhJHg4Ch5Oghv29i_MccXKKdaMHP4HvzvB1BZ7ZMpDcUzRkefcDAw-8b8LngBp-KMz
CitedBy_id crossref_primary_10_1021_acssensors_5c01101
crossref_primary_10_1016_j_microc_2024_110932
crossref_primary_10_1016_j_diamond_2025_112723
crossref_primary_10_1016_j_talanta_2025_127729
Cites_doi 10.1021/acs.analchem.1c00839
10.1002/jssc.201600415
10.1016/S0026-265X(00)00062-X
10.1080/05704928.2021.1897991
10.1021/es060353j
10.1016/j.microc.2020.105401
10.1016/j.watres.2016.03.051
10.1016/j.jhazmat.2024.133729
10.1016/j.teac.2018.03.001
10.1016/S0021-9673(98)01036-X
10.1016/S0026-265X(03)00055-9
10.1016/0584-8547(96)01517-0
10.1021/es801169k
10.1016/j.chemosphere.2019.125793
10.1016/j.chemosphere.2018.01.124
10.1007/s00216-016-9773-8
10.1002/elps.200700241
10.1016/j.jes.2017.04.021
10.1016/j.microc.2019.104088
10.1016/j.sab.2021.106211
10.1016/j.trac.2022.116811
10.1016/j.watres.2015.10.002
10.1016/j.microc.2024.110480
10.1007/s002160101080
10.1007/s00216-021-03290-y
10.1016/j.talanta.2008.11.040
10.1016/j.jes.2017.04.014
10.1016/j.chemosphere.2014.07.048
10.1021/es9914590
10.1039/C7AY00583K
10.1016/j.aca.2022.340161
10.1016/j.chroma.2008.09.033
10.1002/jssc.201700455
10.1016/j.microc.2013.07.012
10.2116/analsci.26.497
10.1021/es051602r
10.1016/S0021-9673(04)01029-5
10.1016/j.microc.2022.107997
10.1016/S0021-9673(99)00873-0
10.1002/rcm.3547
10.1029/2001WR000622
10.1021/acs.analchem.8b00015
10.1002/jssc.201100944
10.1016/j.aca.2011.07.040
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.microc.2024.110809
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
ExternalDocumentID 10_1016_j_microc_2024_110809
S0026265X24009214
GroupedDBID --K
--M
-~X
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXKI
AAXUO
AAYJJ
ABFNM
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACKIV
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJQLL
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMU
HVGLF
HZ~
IHE
J1W
KOM
M35
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
WH7
WUQ
XPP
YNT
YQT
ZGI
ZMT
ZXP
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-2ab4e9a5f5526d6198a06152b0140b7a90752c066ecc245fd2ebe0bae80452753
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001246854700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0026-265X
IngestDate Tue Nov 18 22:37:55 EST 2025
Sat Nov 29 03:23:07 EST 2025
Sat Sep 07 15:50:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Capillary electrophoresis-inductively coupled plasma mass spectrometry
Speciation analysis
Monoiodoacetic acid
Iodine
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-2ab4e9a5f5526d6198a06152b0140b7a90752c066ecc245fd2ebe0bae80452753
ORCID 0000-0002-7496-8335
ParticipantIDs crossref_primary_10_1016_j_microc_2024_110809
crossref_citationtrail_10_1016_j_microc_2024_110809
elsevier_sciencedirect_doi_10_1016_j_microc_2024_110809
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Microchemical journal
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gao, Zhong (b0155) 2022; 414
Zhang, Phung, Smejkal, Guijt, Breadmore (b0145) 2018; 18
Zhao, Fujii, Yan, Harada, Koizumi (b0080) 2015; 119
Chen, Fu, Wu, Wang, Wang (b0205) 2017; 40
Liu, Han, Kong, Zhang, Lv, Yuan (b0230) 2022; 57
Zhong, Li, Shao, Zhu, Liu, Deng, Mo (b0130) 2017; 9
J.E. Moran, S.D. Oktay, P.H. Santschi, Sources of iodine and iodine 129 in rivers, Water Resour. Res. 38 (2002) 24-21-24-10.
Tůma (b0165) 2022; 1225
Richardson, Fasano, Ellington, Crumley, Buettner, Evans, Blount, Silva, Waite, Luther, McKague, Miltner, Wagner, Plewa (b0060) 2008; 42
Lau, Becalski (b0120) 2008; 22
Yang, Xu, Zheng, Xu, Wang, Xu, Chen, Fu (b0195) 2009; 78
Zhou, Lin, Long, Xu, Wang, Xian, Xia, Hou, Zheng (b0215) 2021; 180
Ding, Meng, Zhang, Yu, An, Hu, Yang (b0045) 2013; 15
Hu, Gong, Ma, Tao, Xian (b0095) 2018; 198
Verrey, Louyer, Thomas, Baurès (b0110) 2013; 110
Xue, Donovan, Shi, Yang, Hua, Inniss, Eichholz (b0125) 2016; 408
Shishehbore, Sheibani, Jokar (b0020) 2010; 26
Krasner, Weinberg, Richardson, Pastor, Chinn, Sclimenti, Onstad, Thruston (b0040) 2006; 40
Bichsel, von Gunten (b0005) 2000; 34
Nonose, Matsuda, Fudagawa, Kubota (b0225) 1996; 51
Wagner, Plewa (b0055) 2017; 58
Zhu, Zhang (b0035) 2016; 96
Shuai, Yang, Qiu, Wu, Zhu, Pokhrel, Fu, Ye, Lin, Yang (b0200) 2016; 39
Cemeli, Wagner, Anderson, Richardson, Plewa (b0025) 2006; 40
Plewa, Wagner, Richardson (b0050) 2017; 58
Chen, Wang, Jiang (b0220) 2007; 28
Kaljurand, Mazina-Šinkar (b0160) 2022; 157
Wang, Gong, Xian (b0085) 2020; 247
Kubáň, Makarõtševa, Kiplagat, Kaljurand (b0185) 2012; 35
Below, Kahlert (b0010) 2001; 371
Sarrión, Santos, Galceran (b0070) 1999; 859
Martı́nez, Borrull, Calull (b0175) 1999; 835
Liu, Mou (b0105) 2003; 75
Liu, Cheng, Ji, Shen, Yuan, Wang, Zhang, Liu, Zhou (b0190) 2020; 159
National Disease Control and Prevention Administration. Administration Survey Report on Iodine Content in Drinking Water in China. http://www.nhc.gov.cn/jkj/s5874/201905/bb1da1f5e47040e8820b9378e6db4bd3.shtml (2024-5-13).
Standards for drinking water quality, State Administration for Market Regulation of China; Standardization administration of China, 2022, pp. 16.
Yang, Ma, Chen, Peng, Luo, He (b0115) 2022; 183
Zhang, Zhu, Aranda-Rodriguez, Feng (b0180) 2011; 706
Voeten, Ventouri, Haselberg, Somsen (b0140) 2018; 90
Paull, Barron (b0100) 2004; 1046
Li, Ma, Yang, He, Chen (b0135) 2024; 467
Ma, Wu, Shen, Jiao, Cao, Ye (b0170) 2024; 200
Majidi (b0210) 2000; 66
Tobolkina, Rudaz (b0150) 2021; 93
Cardador, Serrano, Gallego (b0075) 2008; 1209
Franco, Pádua, Rodriguez, Silva, Libânio, Pereira, Silva, Santanta Júnior, Rocha, Camargo, Mourão, Rodrigues (b0090) 2019; 150
Pan, Zhang, Li (b0030) 2016; 88
Zhang (10.1016/j.microc.2024.110809_b0145) 2018; 18
Chen (10.1016/j.microc.2024.110809_b0205) 2017; 40
Hu (10.1016/j.microc.2024.110809_b0095) 2018; 198
Bichsel (10.1016/j.microc.2024.110809_b0005) 2000; 34
Cardador (10.1016/j.microc.2024.110809_b0075) 2008; 1209
10.1016/j.microc.2024.110809_b0015
Liu (10.1016/j.microc.2024.110809_b0230) 2022; 57
10.1016/j.microc.2024.110809_b0235
Li (10.1016/j.microc.2024.110809_b0135) 2024; 467
Cemeli (10.1016/j.microc.2024.110809_b0025) 2006; 40
Ding (10.1016/j.microc.2024.110809_b0045) 2013; 15
Nonose (10.1016/j.microc.2024.110809_b0225) 1996; 51
Sarrión (10.1016/j.microc.2024.110809_b0070) 1999; 859
Majidi (10.1016/j.microc.2024.110809_b0210) 2000; 66
Ma (10.1016/j.microc.2024.110809_b0170) 2024; 200
Shishehbore (10.1016/j.microc.2024.110809_b0020) 2010; 26
Richardson (10.1016/j.microc.2024.110809_b0060) 2008; 42
Wagner (10.1016/j.microc.2024.110809_b0055) 2017; 58
Krasner (10.1016/j.microc.2024.110809_b0040) 2006; 40
Zhao (10.1016/j.microc.2024.110809_b0080) 2015; 119
Verrey (10.1016/j.microc.2024.110809_b0110) 2013; 110
Yang (10.1016/j.microc.2024.110809_b0195) 2009; 78
Below (10.1016/j.microc.2024.110809_b0010) 2001; 371
Zhu (10.1016/j.microc.2024.110809_b0035) 2016; 96
Voeten (10.1016/j.microc.2024.110809_b0140) 2018; 90
Shuai (10.1016/j.microc.2024.110809_b0200) 2016; 39
Franco (10.1016/j.microc.2024.110809_b0090) 2019; 150
Martı́nez (10.1016/j.microc.2024.110809_b0175) 1999; 835
Tůma (10.1016/j.microc.2024.110809_b0165) 2022; 1225
Zhang (10.1016/j.microc.2024.110809_b0180) 2011; 706
Yang (10.1016/j.microc.2024.110809_b0115) 2022; 183
Zhou (10.1016/j.microc.2024.110809_b0215) 2021; 180
Pan (10.1016/j.microc.2024.110809_b0030) 2016; 88
Gao (10.1016/j.microc.2024.110809_b0155) 2022; 414
10.1016/j.microc.2024.110809_b0065
Wang (10.1016/j.microc.2024.110809_b0085) 2020; 247
Kaljurand (10.1016/j.microc.2024.110809_b0160) 2022; 157
Zhong (10.1016/j.microc.2024.110809_b0130) 2017; 9
Tobolkina (10.1016/j.microc.2024.110809_b0150) 2021; 93
Xue (10.1016/j.microc.2024.110809_b0125) 2016; 408
Kubáň (10.1016/j.microc.2024.110809_b0185) 2012; 35
Lau (10.1016/j.microc.2024.110809_b0120) 2008; 22
Chen (10.1016/j.microc.2024.110809_b0220) 2007; 28
Plewa (10.1016/j.microc.2024.110809_b0050) 2017; 58
Paull (10.1016/j.microc.2024.110809_b0100) 2004; 1046
Liu (10.1016/j.microc.2024.110809_b0190) 2020; 159
Liu (10.1016/j.microc.2024.110809_b0105) 2003; 75
References_xml – volume: 183
  year: 2022
  ident: b0115
  article-title: Determining haloacetic acids in drinking water by one-pump column-switching ion chromatography: An online and cost-effective tool for matrix removal and sample enrichment
  publication-title: Microchem. J.
– volume: 40
  start-page: 3898
  year: 2017
  end-page: 3904
  ident: b0205
  article-title: Simultaneous detection of zinc dimethyldithiocarbamate and zinc ethylenebisdithiocarbamate in cabbage leaves by capillary electrophoresis with inductively coupled plasma mass spectrometry
  publication-title: J. Sep. Sci.
– volume: 34
  start-page: 2784
  year: 2000
  end-page: 2791
  ident: b0005
  article-title: Formation of Iodo-Trihalomethanes during Disinfection and Oxidation of Iodide-Containing Waters
  publication-title: Environ. Sci. Tech.
– volume: 90
  start-page: 1464
  year: 2018
  end-page: 1481
  ident: b0140
  article-title: Capillary Electrophoresis: Trends and Recent Advances
  publication-title: Anal. Chem.
– reference: Standards for drinking water quality, State Administration for Market Regulation of China; Standardization administration of China, 2022, pp. 16.
– volume: 247
  year: 2020
  ident: b0085
  article-title: Formation of haloacetic acids from different organic precursors in swimming pool water during chlorination
  publication-title: Chemosphere
– volume: 9
  start-page: 2425
  year: 2017
  end-page: 2432
  ident: b0130
  article-title: Amino-functionalized graphene oxide/neutral alumina nanocomposite based solid-phase extraction coupled with ion chromatography-mass spectrometry for the determination of trace haloacetic acids in drinking water
  publication-title: Anal. Methods
– volume: 1209
  start-page: 61
  year: 2008
  end-page: 69
  ident: b0075
  article-title: Simultaneous liquid–liquid microextraction/methylation for the determination of haloacetic acids in drinking waters by headspace gas chromatography
  publication-title: J. Chromatogr. A
– volume: 22
  start-page: 1787
  year: 2008
  end-page: 1791
  ident: b0120
  article-title: Determination of iodoacetic acid using liquid chromatography/electrospray tandem mass spectrometry
  publication-title: Rapid Commun. Mass Spectrom.
– volume: 57
  start-page: 461
  year: 2022
  end-page: 489
  ident: b0230
  article-title: Organic matrix effects in inductively coupled plasma mass spectrometry: a tutorial review
  publication-title: Appl. Spectrosc. Rev.
– volume: 40
  start-page: 1878
  year: 2006
  end-page: 1883
  ident: b0025
  article-title: Modulation of the Cytotoxicity and Genotoxicity of the Drinking Water Disinfection Byproduct Iodoacetic Acid by Suppressors of Oxidative Stress
  publication-title: Environ. Sci. Tech.
– volume: 28
  start-page: 4227
  year: 2007
  end-page: 4232
  ident: b0220
  article-title: Determination of iodine and bromine compounds in foodstuffs by CE-inductively coupled plasma MS
  publication-title: Electrophoresis
– volume: 408
  start-page: 6613
  year: 2016
  end-page: 6622
  ident: b0125
  article-title: Rapid simultaneous analysis of 17 haloacetic acids and related halogenated water contaminants by high-performance ion chromatography-tandem mass spectrometry
  publication-title: Anal. Bioanal. Chem.
– volume: 51
  start-page: 1551
  year: 1996
  end-page: 1565
  ident: b0225
  article-title: Signal enhancement effect of halogen matrix in electrothermal vaporization-inductively coupled plasma-mass spectrometry
  publication-title: Spectrochim. Acta B at. Spectrosc.
– volume: 1046
  start-page: 1
  year: 2004
  end-page: 9
  ident: b0100
  article-title: Using ion chromatography to monitor haloacetic acids in drinking water: a review of current technologies
  publication-title: J. Chromatogr. A
– volume: 110
  start-page: 608
  year: 2013
  end-page: 613
  ident: b0110
  article-title: Direct determination of trace-level haloacetic acids in drinking water by two-dimensional ion chromatography with suppressed conductivity
  publication-title: Microchem. J.
– volume: 39
  start-page: 3239
  year: 2016
  end-page: 3245
  ident: b0200
  article-title: Determination of arsenic species in Solanum Lyratum Thunb using capillary electrophoresis with inductively coupled plasma mass spectrometry
  publication-title: J. Sep. Sci.
– volume: 15
  start-page: 1424
  year: 2013
  end-page: 1429
  ident: b0045
  article-title: Occurrence, profiling and prioritization of halogenated disinfection by-products in drinking water of China
  publication-title: Environ. Sci.: Processes Impacts
– volume: 40
  start-page: 7175
  year: 2006
  end-page: 7185
  ident: b0040
  article-title: Occurrence of a New Generation of Disinfection Byproducts
  publication-title: Environ. Sci. Tech.
– volume: 58
  start-page: 64
  year: 2017
  end-page: 76
  ident: b0055
  article-title: CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review
  publication-title: J. Environ. Sci.
– volume: 75
  start-page: 79
  year: 2003
  end-page: 86
  ident: b0105
  article-title: Simultaneous determination of trace level bromate and chlorinated haloacetic acids in bottled drinking water by ion chromatography
  publication-title: Microchem. J.
– volume: 42
  start-page: 8330
  year: 2008
  end-page: 8338
  ident: b0060
  article-title: Occurrence and Mammalian Cell Toxicity of Iodinated Disinfection Byproducts in Drinking Water
  publication-title: Environ. Sci. Tech.
– volume: 18
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0145
  article-title: Recent trends in capillary and micro-chip electrophoretic instrumentation for field-analysis
  publication-title: Trends Environ. Anal. Chem.
– volume: 200
  year: 2024
  ident: b0170
  article-title: One-step admicelle to cyclodextrin sweeping of toxic aristolochic acids by capillary electrophoresis
  publication-title: Microchem. J.
– volume: 706
  start-page: 176
  year: 2011
  end-page: 183
  ident: b0180
  article-title: Pressure-assisted electrokinetic injection for on-line enrichment in capillary electrophoresis–mass spectrometry: A sensitive method for measurement of ten haloacetic acids in drinking water
  publication-title: Anal. Chim. Acta
– volume: 58
  start-page: 208
  year: 2017
  end-page: 216
  ident: b0050
  article-title: TIC-Tox: A preliminary discussion on identifying the forcing agents of DBP-mediated toxicity of disinfected water
  publication-title: J. Environ. Sci.
– volume: 859
  start-page: 159
  year: 1999
  end-page: 171
  ident: b0070
  article-title: Solid-phase microextraction coupled with gas chromatography–ion trap mass spectrometry for the analysis of haloacetic acids in water
  publication-title: J. Chromatogr. A
– volume: 835
  start-page: 187
  year: 1999
  end-page: 196
  ident: b0175
  article-title: Evaluation of different electrolyte systems and on-line preconcentrations for the analysis of haloacetic acids by capillary zone electrophoresis
  publication-title: J. Chromatogr. A
– volume: 157
  year: 2022
  ident: b0160
  article-title: Portable capillary electrophoresis as a green analytical technology
  publication-title: TrAC Trends Anal. Chem.
– volume: 26
  start-page: 497
  year: 2010
  end-page: 501
  ident: b0020
  article-title: Kinetic Spectrophotometric Determination of Trace Amounts of Iodide in Food samples
  publication-title: Anal. Sci.
– volume: 414
  start-page: 115
  year: 2022
  end-page: 130
  ident: b0155
  article-title: Recent (2018–2020) development in capillary electrophoresis
  publication-title: Anal. Bioanal. Chem.
– volume: 35
  start-page: 666
  year: 2012
  end-page: 673
  ident: b0185
  article-title: Determination of five priority haloacetic acids by capillary electrophoresis with contactless conductivity detection and solid phase extraction preconcentration
  publication-title: J. Sep. Sci.
– volume: 96
  start-page: 166
  year: 2016
  end-page: 176
  ident: b0035
  article-title: Modeling the formation of TOCl, TOBr and TOI during chlor(am)ination of drinking water
  publication-title: Water Res.
– volume: 159
  year: 2020
  ident: b0190
  article-title: Determination and generating study on monoiodoacetic acid and diiodoacetic acid in water by liquid chromatography-inductively coupled plasma mass spectrometry
  publication-title: Microchem. J.
– volume: 88
  start-page: 60
  year: 2016
  end-page: 68
  ident: b0030
  article-title: Identification, toxicity and control of iodinated disinfection byproducts in cooking with simulated chlor(am)inated tap water and iodized table salt
  publication-title: Water Res.
– volume: 119
  start-page: 711
  year: 2015
  end-page: 718
  ident: b0080
  article-title: Pentafluorobenzyl esterification of haloacetic acids in tap water for simple and sensitive analysis by gas chromatography/mass spectrometry with negative chemical ionization
  publication-title: Chemosphere
– volume: 371
  start-page: 431
  year: 2001
  end-page: 436
  ident: b0010
  article-title: Determination of iodide in urine by ion-pair chromatography with electrochemical detection
  publication-title: Fresenius J. Anal. Chem.
– volume: 467
  year: 2024
  ident: b0135
  article-title: Enhanced detection of monoiodoacetic acid at ng/L level by ion chromatography with novel derivatization-free pretreatment
  publication-title: J. Hazard. Mater.
– volume: 150
  year: 2019
  ident: b0090
  article-title: A simple liquid-liquid extraction-gas chromatography-mass spectrometry method for the determination of haloacetic acids in environmental samples: Application in water with Microcystis aeruginosa cells
  publication-title: Microchem. J.
– volume: 180
  year: 2021
  ident: b0215
  article-title: Simultaneous total and speciation analysis of rhenium by capillary electrophoresis-inductively coupled plasma mass spectrometry
  publication-title: Spectrochim. Acta B at. Spectrosc.
– reference: J.E. Moran, S.D. Oktay, P.H. Santschi, Sources of iodine and iodine 129 in rivers, Water Resour. Res. 38 (2002) 24-21-24-10.
– volume: 66
  start-page: 3
  year: 2000
  end-page: 16
  ident: b0210
  article-title: Capillary electrophoresis inductively coupled plasma mass spectrometry
  publication-title: Microchem. J.
– volume: 198
  start-page: 147
  year: 2018
  end-page: 153
  ident: b0095
  article-title: Simultaneous determination of iodinated haloacetic acids and aromatic iodinated disinfection byproducts in waters with a new SPE-HPLC-MS/MS method
  publication-title: Chemosphere
– volume: 93
  start-page: 8107
  year: 2021
  end-page: 8115
  ident: b0150
  article-title: Capillary Electrophoresis Instruments for Medical Applications and Falsified Drug Analysis/Quality Control in Developing Countries
  publication-title: Anal. Chem.
– volume: 1225
  year: 2022
  ident: b0165
  article-title: Monitoring of biologically active substances in clinical samples by capillary and microchip electrophoresis with contactless conductivity detection: A review
  publication-title: Anal. Chim. Acta
– reference: National Disease Control and Prevention Administration. Administration Survey Report on Iodine Content in Drinking Water in China. http://www.nhc.gov.cn/jkj/s5874/201905/bb1da1f5e47040e8820b9378e6db4bd3.shtml (2024-5-13).
– volume: 78
  start-page: 471
  year: 2009
  end-page: 476
  ident: b0195
  article-title: Speciation analysis of arsenic in Mya arenaria Linnaeus and Shrimp with capillary electrophoresis-inductively coupled plasma mass spectrometry
  publication-title: Talanta
– volume: 93
  start-page: 8107
  year: 2021
  ident: 10.1016/j.microc.2024.110809_b0150
  article-title: Capillary Electrophoresis Instruments for Medical Applications and Falsified Drug Analysis/Quality Control in Developing Countries
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c00839
– volume: 39
  start-page: 3239
  year: 2016
  ident: 10.1016/j.microc.2024.110809_b0200
  article-title: Determination of arsenic species in Solanum Lyratum Thunb using capillary electrophoresis with inductively coupled plasma mass spectrometry
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.201600415
– volume: 66
  start-page: 3
  year: 2000
  ident: 10.1016/j.microc.2024.110809_b0210
  article-title: Capillary electrophoresis inductively coupled plasma mass spectrometry
  publication-title: Microchem. J.
  doi: 10.1016/S0026-265X(00)00062-X
– volume: 57
  start-page: 461
  year: 2022
  ident: 10.1016/j.microc.2024.110809_b0230
  article-title: Organic matrix effects in inductively coupled plasma mass spectrometry: a tutorial review
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2021.1897991
– volume: 40
  start-page: 7175
  year: 2006
  ident: 10.1016/j.microc.2024.110809_b0040
  article-title: Occurrence of a New Generation of Disinfection Byproducts
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/es060353j
– volume: 159
  year: 2020
  ident: 10.1016/j.microc.2024.110809_b0190
  article-title: Determination and generating study on monoiodoacetic acid and diiodoacetic acid in water by liquid chromatography-inductively coupled plasma mass spectrometry
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2020.105401
– volume: 96
  start-page: 166
  year: 2016
  ident: 10.1016/j.microc.2024.110809_b0035
  article-title: Modeling the formation of TOCl, TOBr and TOI during chlor(am)ination of drinking water
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.03.051
– volume: 467
  year: 2024
  ident: 10.1016/j.microc.2024.110809_b0135
  article-title: Enhanced detection of monoiodoacetic acid at ng/L level by ion chromatography with novel derivatization-free pretreatment
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2024.133729
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.microc.2024.110809_b0145
  article-title: Recent trends in capillary and micro-chip electrophoretic instrumentation for field-analysis
  publication-title: Trends Environ. Anal. Chem.
  doi: 10.1016/j.teac.2018.03.001
– volume: 835
  start-page: 187
  year: 1999
  ident: 10.1016/j.microc.2024.110809_b0175
  article-title: Evaluation of different electrolyte systems and on-line preconcentrations for the analysis of haloacetic acids by capillary zone electrophoresis
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(98)01036-X
– ident: 10.1016/j.microc.2024.110809_b0235
– volume: 75
  start-page: 79
  year: 2003
  ident: 10.1016/j.microc.2024.110809_b0105
  article-title: Simultaneous determination of trace level bromate and chlorinated haloacetic acids in bottled drinking water by ion chromatography
  publication-title: Microchem. J.
  doi: 10.1016/S0026-265X(03)00055-9
– ident: 10.1016/j.microc.2024.110809_b0065
– volume: 51
  start-page: 1551
  year: 1996
  ident: 10.1016/j.microc.2024.110809_b0225
  article-title: Signal enhancement effect of halogen matrix in electrothermal vaporization-inductively coupled plasma-mass spectrometry
  publication-title: Spectrochim. Acta B at. Spectrosc.
  doi: 10.1016/0584-8547(96)01517-0
– volume: 42
  start-page: 8330
  year: 2008
  ident: 10.1016/j.microc.2024.110809_b0060
  article-title: Occurrence and Mammalian Cell Toxicity of Iodinated Disinfection Byproducts in Drinking Water
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/es801169k
– volume: 247
  year: 2020
  ident: 10.1016/j.microc.2024.110809_b0085
  article-title: Formation of haloacetic acids from different organic precursors in swimming pool water during chlorination
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125793
– volume: 198
  start-page: 147
  year: 2018
  ident: 10.1016/j.microc.2024.110809_b0095
  article-title: Simultaneous determination of iodinated haloacetic acids and aromatic iodinated disinfection byproducts in waters with a new SPE-HPLC-MS/MS method
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.01.124
– volume: 408
  start-page: 6613
  year: 2016
  ident: 10.1016/j.microc.2024.110809_b0125
  article-title: Rapid simultaneous analysis of 17 haloacetic acids and related halogenated water contaminants by high-performance ion chromatography-tandem mass spectrometry
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-016-9773-8
– volume: 28
  start-page: 4227
  year: 2007
  ident: 10.1016/j.microc.2024.110809_b0220
  article-title: Determination of iodine and bromine compounds in foodstuffs by CE-inductively coupled plasma MS
  publication-title: Electrophoresis
  doi: 10.1002/elps.200700241
– volume: 15
  start-page: 1424
  year: 2013
  ident: 10.1016/j.microc.2024.110809_b0045
  article-title: Occurrence, profiling and prioritization of halogenated disinfection by-products in drinking water of China
  publication-title: Environ. Sci.: Processes Impacts
– volume: 58
  start-page: 64
  year: 2017
  ident: 10.1016/j.microc.2024.110809_b0055
  article-title: CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2017.04.021
– volume: 150
  year: 2019
  ident: 10.1016/j.microc.2024.110809_b0090
  article-title: A simple liquid-liquid extraction-gas chromatography-mass spectrometry method for the determination of haloacetic acids in environmental samples: Application in water with Microcystis aeruginosa cells
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2019.104088
– volume: 180
  year: 2021
  ident: 10.1016/j.microc.2024.110809_b0215
  article-title: Simultaneous total and speciation analysis of rhenium by capillary electrophoresis-inductively coupled plasma mass spectrometry
  publication-title: Spectrochim. Acta B at. Spectrosc.
  doi: 10.1016/j.sab.2021.106211
– volume: 157
  year: 2022
  ident: 10.1016/j.microc.2024.110809_b0160
  article-title: Portable capillary electrophoresis as a green analytical technology
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2022.116811
– volume: 88
  start-page: 60
  year: 2016
  ident: 10.1016/j.microc.2024.110809_b0030
  article-title: Identification, toxicity and control of iodinated disinfection byproducts in cooking with simulated chlor(am)inated tap water and iodized table salt
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.10.002
– volume: 200
  year: 2024
  ident: 10.1016/j.microc.2024.110809_b0170
  article-title: One-step admicelle to cyclodextrin sweeping of toxic aristolochic acids by capillary electrophoresis
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2024.110480
– volume: 371
  start-page: 431
  year: 2001
  ident: 10.1016/j.microc.2024.110809_b0010
  article-title: Determination of iodide in urine by ion-pair chromatography with electrochemical detection
  publication-title: Fresenius J. Anal. Chem.
  doi: 10.1007/s002160101080
– volume: 414
  start-page: 115
  year: 2022
  ident: 10.1016/j.microc.2024.110809_b0155
  article-title: Recent (2018–2020) development in capillary electrophoresis
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-021-03290-y
– volume: 78
  start-page: 471
  year: 2009
  ident: 10.1016/j.microc.2024.110809_b0195
  article-title: Speciation analysis of arsenic in Mya arenaria Linnaeus and Shrimp with capillary electrophoresis-inductively coupled plasma mass spectrometry
  publication-title: Talanta
  doi: 10.1016/j.talanta.2008.11.040
– volume: 58
  start-page: 208
  year: 2017
  ident: 10.1016/j.microc.2024.110809_b0050
  article-title: TIC-Tox: A preliminary discussion on identifying the forcing agents of DBP-mediated toxicity of disinfected water
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2017.04.014
– volume: 119
  start-page: 711
  year: 2015
  ident: 10.1016/j.microc.2024.110809_b0080
  article-title: Pentafluorobenzyl esterification of haloacetic acids in tap water for simple and sensitive analysis by gas chromatography/mass spectrometry with negative chemical ionization
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.07.048
– volume: 34
  start-page: 2784
  year: 2000
  ident: 10.1016/j.microc.2024.110809_b0005
  article-title: Formation of Iodo-Trihalomethanes during Disinfection and Oxidation of Iodide-Containing Waters
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/es9914590
– volume: 9
  start-page: 2425
  year: 2017
  ident: 10.1016/j.microc.2024.110809_b0130
  article-title: Amino-functionalized graphene oxide/neutral alumina nanocomposite based solid-phase extraction coupled with ion chromatography-mass spectrometry for the determination of trace haloacetic acids in drinking water
  publication-title: Anal. Methods
  doi: 10.1039/C7AY00583K
– volume: 1225
  year: 2022
  ident: 10.1016/j.microc.2024.110809_b0165
  article-title: Monitoring of biologically active substances in clinical samples by capillary and microchip electrophoresis with contactless conductivity detection: A review
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2022.340161
– volume: 1209
  start-page: 61
  year: 2008
  ident: 10.1016/j.microc.2024.110809_b0075
  article-title: Simultaneous liquid–liquid microextraction/methylation for the determination of haloacetic acids in drinking waters by headspace gas chromatography
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2008.09.033
– volume: 40
  start-page: 3898
  year: 2017
  ident: 10.1016/j.microc.2024.110809_b0205
  article-title: Simultaneous detection of zinc dimethyldithiocarbamate and zinc ethylenebisdithiocarbamate in cabbage leaves by capillary electrophoresis with inductively coupled plasma mass spectrometry
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.201700455
– volume: 110
  start-page: 608
  year: 2013
  ident: 10.1016/j.microc.2024.110809_b0110
  article-title: Direct determination of trace-level haloacetic acids in drinking water by two-dimensional ion chromatography with suppressed conductivity
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2013.07.012
– volume: 26
  start-page: 497
  year: 2010
  ident: 10.1016/j.microc.2024.110809_b0020
  article-title: Kinetic Spectrophotometric Determination of Trace Amounts of Iodide in Food samples
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.26.497
– volume: 40
  start-page: 1878
  year: 2006
  ident: 10.1016/j.microc.2024.110809_b0025
  article-title: Modulation of the Cytotoxicity and Genotoxicity of the Drinking Water Disinfection Byproduct Iodoacetic Acid by Suppressors of Oxidative Stress
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/es051602r
– volume: 1046
  start-page: 1
  year: 2004
  ident: 10.1016/j.microc.2024.110809_b0100
  article-title: Using ion chromatography to monitor haloacetic acids in drinking water: a review of current technologies
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(04)01029-5
– volume: 183
  year: 2022
  ident: 10.1016/j.microc.2024.110809_b0115
  article-title: Determining haloacetic acids in drinking water by one-pump column-switching ion chromatography: An online and cost-effective tool for matrix removal and sample enrichment
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2022.107997
– volume: 859
  start-page: 159
  year: 1999
  ident: 10.1016/j.microc.2024.110809_b0070
  article-title: Solid-phase microextraction coupled with gas chromatography–ion trap mass spectrometry for the analysis of haloacetic acids in water
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(99)00873-0
– volume: 22
  start-page: 1787
  year: 2008
  ident: 10.1016/j.microc.2024.110809_b0120
  article-title: Determination of iodoacetic acid using liquid chromatography/electrospray tandem mass spectrometry
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.3547
– ident: 10.1016/j.microc.2024.110809_b0015
  doi: 10.1029/2001WR000622
– volume: 90
  start-page: 1464
  year: 2018
  ident: 10.1016/j.microc.2024.110809_b0140
  article-title: Capillary Electrophoresis: Trends and Recent Advances
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b00015
– volume: 35
  start-page: 666
  year: 2012
  ident: 10.1016/j.microc.2024.110809_b0185
  article-title: Determination of five priority haloacetic acids by capillary electrophoresis with contactless conductivity detection and solid phase extraction preconcentration
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.201100944
– volume: 706
  start-page: 176
  year: 2011
  ident: 10.1016/j.microc.2024.110809_b0180
  article-title: Pressure-assisted electrokinetic injection for on-line enrichment in capillary electrophoresis–mass spectrometry: A sensitive method for measurement of ten haloacetic acids in drinking water
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2011.07.040
SSID ssj0007521
Score 2.4393027
Snippet Determination of monoiodoacetic acid and inorganic iodine in drinking water by capillary electrophoresis combined with inductively coupled plasma mass...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110809
SubjectTerms Capillary electrophoresis-inductively coupled plasma mass spectrometry
Iodine
Monoiodoacetic acid
Speciation analysis
Title Rapid and simultaneous analysis of monoiodoacetic acid and inorganic iodine in drinking water by capillary electrophoresis-inductively coupled plasma mass spectrometry
URI https://dx.doi.org/10.1016/j.microc.2024.110809
Volume 203
WOSCitedRecordID wos001246854700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0026-265X
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007521
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKB4IXBAPEgCE_8Ba56tw4l8dp2rRNMCE0UMRL5DgO82iT0DZj_UX8B34dx3ZuZaiwB16iyvEtOV_t7zjngtAbH_ZAd5ImJEwYIy6njHBgIcTfg-pjltHEBHv-9NY_OwuiKHw_GPxsfGGupn6eB9fXYflfRQ1lIGztOnsLcbedQgH8BqHDFcQO138S_AdeKhN_1VkobS7Ic6nNXHkv-gjMpVCgj3IhTbxWUTdQuU3yJBy4q2w8kXRusys437mOpwhsVcAAAB7txWtz6JQXBSjtakFAv6_M-jmFWkVVToHNlkDPZ9yZAUl3jFunjo-wXHfEfqetAkUTuqD_lHq7qMw2UX3tviLVZ9yR6j6A2ZLPFzL_8k21gG-Pw09VvlL9Ew7qtvZ1nceBR6jHov6qTceT3rqrnRlMmIWbW4I9nbgczcyjjPQAo676egTu33bG1l6xMYW7jG0vse4ltr3cQVvUZ2EwRFv7J4fRacsDfEZtvsZ69o3jprEuvDmbPxOjHtk5f4Qe1loK3rfoeowGMt9G92ze0tU2un_QpAl8gn4YvGGAD-7jDTd4w0WG1_GGNd5MgxZv2OINCnCDN2zwhpMVbvGGN-AN13jDFm9Y4w338fYUfTw6PD84JnX2DyJAjV0SyhNXhpxljFEvBT0_4Jp-00SfCSQ-D_ULFsCYYRGiLstSCuvROOEy0FkCQAt_hoZ5kcvnCAfJxMsk3dOJC13grIFIA0mllH7KUuEFO2jSvPpY1KHxdYaWabxJ8DuItK1KGxrmL_X9RqpxTW8tbY0BqhtbvrjlSC_Rg-5_9AoNl_NK7qK74mqpFvPXNU5_ASDf0pg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+and+simultaneous+analysis+of+monoiodoacetic+acid+and+inorganic+iodine+in+drinking+water+by+capillary+electrophoresis-inductively+coupled+plasma+mass+spectrometry&rft.jtitle=Microchemical+journal&rft.au=Wu%2C+Yuke&rft.au=Wang%2C+Xi&rft.au=Pang%2C+Zhengqin&rft.au=Zhang%2C+Jinyi&rft.date=2024-08-01&rft.issn=0026-265X&rft.volume=203&rft.spage=110809&rft_id=info:doi/10.1016%2Fj.microc.2024.110809&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_microc_2024_110809
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-265X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-265X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-265X&client=summon