Rapid and simultaneous analysis of monoiodoacetic acid and inorganic iodine in drinking water by capillary electrophoresis-inductively coupled plasma mass spectrometry
Determination of monoiodoacetic acid and inorganic iodine in drinking water by capillary electrophoresis combined with inductively coupled plasma mass spectrometry. [Display omitted] •A simple method was developed to determination of MIAA and inorganic iodine.•This method is fast, efficient, conveni...
Saved in:
| Published in: | Microchemical journal Vol. 203; p. 110809 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.08.2024
|
| Subjects: | |
| ISSN: | 0026-265X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Determination of monoiodoacetic acid and inorganic iodine in drinking water by capillary electrophoresis combined with inductively coupled plasma mass spectrometry.
[Display omitted]
•A simple method was developed to determination of MIAA and inorganic iodine.•This method is fast, efficient, convenient and environmentally friendly.•It is applicable to monitor the environmental risk of drinking water.
Monoiodoacetic acid (MIAA) is a disinfection by-product formed during water disinfection through the oxidation of iodide, followed by a reaction with natural organic matter. It exhibits high toxicity and strong mutagenicity and is potentially carcinogenic to humans. Therefore, the simultaneous detection of MIAA and inorganic iodine can enable the safety assessment of drinking water and expand the study of the dynamic transformation process between the two forms. Currently, there is a lack of efficient and rapid universal screening methods for MIAA and inorganic iodine. In this work, a simple and efficient method was developed to combine capillary electrophoresis with inductively coupled plasma mass spectrometry using a spray-efficient nebulizer interface for the speciation analysis of I− , IO3− , and MIAA. The method is based on qualitative analysis of retention time and quantitative determination using peak area. The detection limits of the three iodine forms were 0.16 μg L−1, 0.40 μg L−1, and 1.22 μg L−1, respectively. By coupling two instruments, the method combines the advantages of rapidity and accuracy with high injection efficiency. It is also more environmentally friendly as it does not require complex pre-treatment and avoids the use of toxic organic compounds. The accuracy of this method has been validated through the incorporation of authentic samples, paving the way for its deployment in the risk assessment of substantial volumes of drinking water and the expansion of the novel approach for further investigation into the genesis and transformation of MIAA. |
|---|---|
| AbstractList | Determination of monoiodoacetic acid and inorganic iodine in drinking water by capillary electrophoresis combined with inductively coupled plasma mass spectrometry.
[Display omitted]
•A simple method was developed to determination of MIAA and inorganic iodine.•This method is fast, efficient, convenient and environmentally friendly.•It is applicable to monitor the environmental risk of drinking water.
Monoiodoacetic acid (MIAA) is a disinfection by-product formed during water disinfection through the oxidation of iodide, followed by a reaction with natural organic matter. It exhibits high toxicity and strong mutagenicity and is potentially carcinogenic to humans. Therefore, the simultaneous detection of MIAA and inorganic iodine can enable the safety assessment of drinking water and expand the study of the dynamic transformation process between the two forms. Currently, there is a lack of efficient and rapid universal screening methods for MIAA and inorganic iodine. In this work, a simple and efficient method was developed to combine capillary electrophoresis with inductively coupled plasma mass spectrometry using a spray-efficient nebulizer interface for the speciation analysis of I− , IO3− , and MIAA. The method is based on qualitative analysis of retention time and quantitative determination using peak area. The detection limits of the three iodine forms were 0.16 μg L−1, 0.40 μg L−1, and 1.22 μg L−1, respectively. By coupling two instruments, the method combines the advantages of rapidity and accuracy with high injection efficiency. It is also more environmentally friendly as it does not require complex pre-treatment and avoids the use of toxic organic compounds. The accuracy of this method has been validated through the incorporation of authentic samples, paving the way for its deployment in the risk assessment of substantial volumes of drinking water and the expansion of the novel approach for further investigation into the genesis and transformation of MIAA. |
| ArticleNumber | 110809 |
| Author | Pang, Zhengqin Zheng, Chengbin Wu, Yuke Zhang, Jinyi Wang, Xi |
| Author_xml | – sequence: 1 givenname: Yuke surname: Wu fullname: Wu, Yuke – sequence: 2 givenname: Xi surname: Wang fullname: Wang, Xi – sequence: 3 givenname: Zhengqin surname: Pang fullname: Pang, Zhengqin – sequence: 4 givenname: Jinyi surname: Zhang fullname: Zhang, Jinyi email: jinyizhang@scu.edu – sequence: 5 givenname: Chengbin orcidid: 0000-0002-7496-8335 surname: Zheng fullname: Zheng, Chengbin email: abinscu@scu.edu.cn |
| BookMark | eNqFkE1uFDEQRr0IEkngBln4Aj2UnbZnhgUSiviTIiEhkLJrVdvVSQ1uu2V7guZEXDMeJisWsLL0ud5n17sQZzFFEuJKwUqBsm92q5ldTm6lQfcrpWAD2zNxDqBtp625eykuStkBwNpodS5-f8OFvcToZeF5HypGSvvSAgyHwkWmSc4pJk4-oaPKTqJ7BjimfI-xRe2WI7VA-szxJ8d7-QsrZTkepGsPhID5ICmQqzktDylTq-44-r2r_EihTaX9EsjLJWCZUc5YiizLn_mZaj68Ei8mDIVeP5-X4sfHD99vPne3Xz99uXl_27lrsLXTOPa0RTMZo623artBsMroEVQP4xq3x7UdWEvO6d5MXtNIMCJtoDd6ba4vRX_qbQ5LyTQNS-a5_X5QMBwFD7vhJHg4Ch5Oghv29i_MccXKKdaMHP4HvzvB1BZ7ZMpDcUzRkefcDAw-8b8LngBp-KMz |
| CitedBy_id | crossref_primary_10_1021_acssensors_5c01101 crossref_primary_10_1016_j_microc_2024_110932 crossref_primary_10_1016_j_diamond_2025_112723 crossref_primary_10_1016_j_talanta_2025_127729 |
| Cites_doi | 10.1021/acs.analchem.1c00839 10.1002/jssc.201600415 10.1016/S0026-265X(00)00062-X 10.1080/05704928.2021.1897991 10.1021/es060353j 10.1016/j.microc.2020.105401 10.1016/j.watres.2016.03.051 10.1016/j.jhazmat.2024.133729 10.1016/j.teac.2018.03.001 10.1016/S0021-9673(98)01036-X 10.1016/S0026-265X(03)00055-9 10.1016/0584-8547(96)01517-0 10.1021/es801169k 10.1016/j.chemosphere.2019.125793 10.1016/j.chemosphere.2018.01.124 10.1007/s00216-016-9773-8 10.1002/elps.200700241 10.1016/j.jes.2017.04.021 10.1016/j.microc.2019.104088 10.1016/j.sab.2021.106211 10.1016/j.trac.2022.116811 10.1016/j.watres.2015.10.002 10.1016/j.microc.2024.110480 10.1007/s002160101080 10.1007/s00216-021-03290-y 10.1016/j.talanta.2008.11.040 10.1016/j.jes.2017.04.014 10.1016/j.chemosphere.2014.07.048 10.1021/es9914590 10.1039/C7AY00583K 10.1016/j.aca.2022.340161 10.1016/j.chroma.2008.09.033 10.1002/jssc.201700455 10.1016/j.microc.2013.07.012 10.2116/analsci.26.497 10.1021/es051602r 10.1016/S0021-9673(04)01029-5 10.1016/j.microc.2022.107997 10.1016/S0021-9673(99)00873-0 10.1002/rcm.3547 10.1029/2001WR000622 10.1021/acs.analchem.8b00015 10.1002/jssc.201100944 10.1016/j.aca.2011.07.040 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.microc.2024.110809 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| ExternalDocumentID | 10_1016_j_microc_2024_110809 S0026265X24009214 |
| GroupedDBID | --K --M -~X .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXKI AAXUO AAYJJ ABFNM ABJNI ABMAC ABXDB ACDAQ ACGFS ACKIV ACNNM ACRLP ADBBV ADECG ADEZE ADFGL ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJQLL AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HZ~ IHE J1W KOM M35 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SPC SPCBC SSK SSZ T5K WH7 WUQ XPP YNT YQT ZGI ZMT ZXP ~02 ~G- 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c306t-2ab4e9a5f5526d6198a06152b0140b7a90752c066ecc245fd2ebe0bae80452753 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001246854700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0026-265X |
| IngestDate | Tue Nov 18 22:37:55 EST 2025 Sat Nov 29 03:23:07 EST 2025 Sat Sep 07 15:50:26 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Capillary electrophoresis-inductively coupled plasma mass spectrometry Speciation analysis Monoiodoacetic acid Iodine |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-2ab4e9a5f5526d6198a06152b0140b7a90752c066ecc245fd2ebe0bae80452753 |
| ORCID | 0000-0002-7496-8335 |
| ParticipantIDs | crossref_primary_10_1016_j_microc_2024_110809 crossref_citationtrail_10_1016_j_microc_2024_110809 elsevier_sciencedirect_doi_10_1016_j_microc_2024_110809 |
| PublicationCentury | 2000 |
| PublicationDate | August 2024 2024-08-00 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Microchemical journal |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Gao, Zhong (b0155) 2022; 414 Zhang, Phung, Smejkal, Guijt, Breadmore (b0145) 2018; 18 Zhao, Fujii, Yan, Harada, Koizumi (b0080) 2015; 119 Chen, Fu, Wu, Wang, Wang (b0205) 2017; 40 Liu, Han, Kong, Zhang, Lv, Yuan (b0230) 2022; 57 Zhong, Li, Shao, Zhu, Liu, Deng, Mo (b0130) 2017; 9 J.E. Moran, S.D. Oktay, P.H. Santschi, Sources of iodine and iodine 129 in rivers, Water Resour. Res. 38 (2002) 24-21-24-10. Tůma (b0165) 2022; 1225 Richardson, Fasano, Ellington, Crumley, Buettner, Evans, Blount, Silva, Waite, Luther, McKague, Miltner, Wagner, Plewa (b0060) 2008; 42 Lau, Becalski (b0120) 2008; 22 Yang, Xu, Zheng, Xu, Wang, Xu, Chen, Fu (b0195) 2009; 78 Zhou, Lin, Long, Xu, Wang, Xian, Xia, Hou, Zheng (b0215) 2021; 180 Ding, Meng, Zhang, Yu, An, Hu, Yang (b0045) 2013; 15 Hu, Gong, Ma, Tao, Xian (b0095) 2018; 198 Verrey, Louyer, Thomas, Baurès (b0110) 2013; 110 Xue, Donovan, Shi, Yang, Hua, Inniss, Eichholz (b0125) 2016; 408 Shishehbore, Sheibani, Jokar (b0020) 2010; 26 Krasner, Weinberg, Richardson, Pastor, Chinn, Sclimenti, Onstad, Thruston (b0040) 2006; 40 Bichsel, von Gunten (b0005) 2000; 34 Nonose, Matsuda, Fudagawa, Kubota (b0225) 1996; 51 Wagner, Plewa (b0055) 2017; 58 Zhu, Zhang (b0035) 2016; 96 Shuai, Yang, Qiu, Wu, Zhu, Pokhrel, Fu, Ye, Lin, Yang (b0200) 2016; 39 Cemeli, Wagner, Anderson, Richardson, Plewa (b0025) 2006; 40 Plewa, Wagner, Richardson (b0050) 2017; 58 Chen, Wang, Jiang (b0220) 2007; 28 Kaljurand, Mazina-Šinkar (b0160) 2022; 157 Wang, Gong, Xian (b0085) 2020; 247 Kubáň, Makarõtševa, Kiplagat, Kaljurand (b0185) 2012; 35 Below, Kahlert (b0010) 2001; 371 Sarrión, Santos, Galceran (b0070) 1999; 859 Martı́nez, Borrull, Calull (b0175) 1999; 835 Liu, Mou (b0105) 2003; 75 Liu, Cheng, Ji, Shen, Yuan, Wang, Zhang, Liu, Zhou (b0190) 2020; 159 National Disease Control and Prevention Administration. Administration Survey Report on Iodine Content in Drinking Water in China. http://www.nhc.gov.cn/jkj/s5874/201905/bb1da1f5e47040e8820b9378e6db4bd3.shtml (2024-5-13). Standards for drinking water quality, State Administration for Market Regulation of China; Standardization administration of China, 2022, pp. 16. Yang, Ma, Chen, Peng, Luo, He (b0115) 2022; 183 Zhang, Zhu, Aranda-Rodriguez, Feng (b0180) 2011; 706 Voeten, Ventouri, Haselberg, Somsen (b0140) 2018; 90 Paull, Barron (b0100) 2004; 1046 Li, Ma, Yang, He, Chen (b0135) 2024; 467 Ma, Wu, Shen, Jiao, Cao, Ye (b0170) 2024; 200 Majidi (b0210) 2000; 66 Tobolkina, Rudaz (b0150) 2021; 93 Cardador, Serrano, Gallego (b0075) 2008; 1209 Franco, Pádua, Rodriguez, Silva, Libânio, Pereira, Silva, Santanta Júnior, Rocha, Camargo, Mourão, Rodrigues (b0090) 2019; 150 Pan, Zhang, Li (b0030) 2016; 88 Zhang (10.1016/j.microc.2024.110809_b0145) 2018; 18 Chen (10.1016/j.microc.2024.110809_b0205) 2017; 40 Hu (10.1016/j.microc.2024.110809_b0095) 2018; 198 Bichsel (10.1016/j.microc.2024.110809_b0005) 2000; 34 Cardador (10.1016/j.microc.2024.110809_b0075) 2008; 1209 10.1016/j.microc.2024.110809_b0015 Liu (10.1016/j.microc.2024.110809_b0230) 2022; 57 10.1016/j.microc.2024.110809_b0235 Li (10.1016/j.microc.2024.110809_b0135) 2024; 467 Cemeli (10.1016/j.microc.2024.110809_b0025) 2006; 40 Ding (10.1016/j.microc.2024.110809_b0045) 2013; 15 Nonose (10.1016/j.microc.2024.110809_b0225) 1996; 51 Sarrión (10.1016/j.microc.2024.110809_b0070) 1999; 859 Majidi (10.1016/j.microc.2024.110809_b0210) 2000; 66 Ma (10.1016/j.microc.2024.110809_b0170) 2024; 200 Shishehbore (10.1016/j.microc.2024.110809_b0020) 2010; 26 Richardson (10.1016/j.microc.2024.110809_b0060) 2008; 42 Wagner (10.1016/j.microc.2024.110809_b0055) 2017; 58 Krasner (10.1016/j.microc.2024.110809_b0040) 2006; 40 Zhao (10.1016/j.microc.2024.110809_b0080) 2015; 119 Verrey (10.1016/j.microc.2024.110809_b0110) 2013; 110 Yang (10.1016/j.microc.2024.110809_b0195) 2009; 78 Below (10.1016/j.microc.2024.110809_b0010) 2001; 371 Zhu (10.1016/j.microc.2024.110809_b0035) 2016; 96 Voeten (10.1016/j.microc.2024.110809_b0140) 2018; 90 Shuai (10.1016/j.microc.2024.110809_b0200) 2016; 39 Franco (10.1016/j.microc.2024.110809_b0090) 2019; 150 Martı́nez (10.1016/j.microc.2024.110809_b0175) 1999; 835 Tůma (10.1016/j.microc.2024.110809_b0165) 2022; 1225 Zhang (10.1016/j.microc.2024.110809_b0180) 2011; 706 Yang (10.1016/j.microc.2024.110809_b0115) 2022; 183 Zhou (10.1016/j.microc.2024.110809_b0215) 2021; 180 Pan (10.1016/j.microc.2024.110809_b0030) 2016; 88 Gao (10.1016/j.microc.2024.110809_b0155) 2022; 414 10.1016/j.microc.2024.110809_b0065 Wang (10.1016/j.microc.2024.110809_b0085) 2020; 247 Kaljurand (10.1016/j.microc.2024.110809_b0160) 2022; 157 Zhong (10.1016/j.microc.2024.110809_b0130) 2017; 9 Tobolkina (10.1016/j.microc.2024.110809_b0150) 2021; 93 Xue (10.1016/j.microc.2024.110809_b0125) 2016; 408 Kubáň (10.1016/j.microc.2024.110809_b0185) 2012; 35 Lau (10.1016/j.microc.2024.110809_b0120) 2008; 22 Chen (10.1016/j.microc.2024.110809_b0220) 2007; 28 Plewa (10.1016/j.microc.2024.110809_b0050) 2017; 58 Paull (10.1016/j.microc.2024.110809_b0100) 2004; 1046 Liu (10.1016/j.microc.2024.110809_b0190) 2020; 159 Liu (10.1016/j.microc.2024.110809_b0105) 2003; 75 |
| References_xml | – volume: 183 year: 2022 ident: b0115 article-title: Determining haloacetic acids in drinking water by one-pump column-switching ion chromatography: An online and cost-effective tool for matrix removal and sample enrichment publication-title: Microchem. J. – volume: 40 start-page: 3898 year: 2017 end-page: 3904 ident: b0205 article-title: Simultaneous detection of zinc dimethyldithiocarbamate and zinc ethylenebisdithiocarbamate in cabbage leaves by capillary electrophoresis with inductively coupled plasma mass spectrometry publication-title: J. Sep. Sci. – volume: 34 start-page: 2784 year: 2000 end-page: 2791 ident: b0005 article-title: Formation of Iodo-Trihalomethanes during Disinfection and Oxidation of Iodide-Containing Waters publication-title: Environ. Sci. Tech. – volume: 90 start-page: 1464 year: 2018 end-page: 1481 ident: b0140 article-title: Capillary Electrophoresis: Trends and Recent Advances publication-title: Anal. Chem. – reference: Standards for drinking water quality, State Administration for Market Regulation of China; Standardization administration of China, 2022, pp. 16. – volume: 247 year: 2020 ident: b0085 article-title: Formation of haloacetic acids from different organic precursors in swimming pool water during chlorination publication-title: Chemosphere – volume: 9 start-page: 2425 year: 2017 end-page: 2432 ident: b0130 article-title: Amino-functionalized graphene oxide/neutral alumina nanocomposite based solid-phase extraction coupled with ion chromatography-mass spectrometry for the determination of trace haloacetic acids in drinking water publication-title: Anal. Methods – volume: 1209 start-page: 61 year: 2008 end-page: 69 ident: b0075 article-title: Simultaneous liquid–liquid microextraction/methylation for the determination of haloacetic acids in drinking waters by headspace gas chromatography publication-title: J. Chromatogr. A – volume: 22 start-page: 1787 year: 2008 end-page: 1791 ident: b0120 article-title: Determination of iodoacetic acid using liquid chromatography/electrospray tandem mass spectrometry publication-title: Rapid Commun. Mass Spectrom. – volume: 57 start-page: 461 year: 2022 end-page: 489 ident: b0230 article-title: Organic matrix effects in inductively coupled plasma mass spectrometry: a tutorial review publication-title: Appl. Spectrosc. Rev. – volume: 40 start-page: 1878 year: 2006 end-page: 1883 ident: b0025 article-title: Modulation of the Cytotoxicity and Genotoxicity of the Drinking Water Disinfection Byproduct Iodoacetic Acid by Suppressors of Oxidative Stress publication-title: Environ. Sci. Tech. – volume: 28 start-page: 4227 year: 2007 end-page: 4232 ident: b0220 article-title: Determination of iodine and bromine compounds in foodstuffs by CE-inductively coupled plasma MS publication-title: Electrophoresis – volume: 408 start-page: 6613 year: 2016 end-page: 6622 ident: b0125 article-title: Rapid simultaneous analysis of 17 haloacetic acids and related halogenated water contaminants by high-performance ion chromatography-tandem mass spectrometry publication-title: Anal. Bioanal. Chem. – volume: 51 start-page: 1551 year: 1996 end-page: 1565 ident: b0225 article-title: Signal enhancement effect of halogen matrix in electrothermal vaporization-inductively coupled plasma-mass spectrometry publication-title: Spectrochim. Acta B at. Spectrosc. – volume: 1046 start-page: 1 year: 2004 end-page: 9 ident: b0100 article-title: Using ion chromatography to monitor haloacetic acids in drinking water: a review of current technologies publication-title: J. Chromatogr. A – volume: 110 start-page: 608 year: 2013 end-page: 613 ident: b0110 article-title: Direct determination of trace-level haloacetic acids in drinking water by two-dimensional ion chromatography with suppressed conductivity publication-title: Microchem. J. – volume: 39 start-page: 3239 year: 2016 end-page: 3245 ident: b0200 article-title: Determination of arsenic species in Solanum Lyratum Thunb using capillary electrophoresis with inductively coupled plasma mass spectrometry publication-title: J. Sep. Sci. – volume: 15 start-page: 1424 year: 2013 end-page: 1429 ident: b0045 article-title: Occurrence, profiling and prioritization of halogenated disinfection by-products in drinking water of China publication-title: Environ. Sci.: Processes Impacts – volume: 40 start-page: 7175 year: 2006 end-page: 7185 ident: b0040 article-title: Occurrence of a New Generation of Disinfection Byproducts publication-title: Environ. Sci. Tech. – volume: 58 start-page: 64 year: 2017 end-page: 76 ident: b0055 article-title: CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review publication-title: J. Environ. Sci. – volume: 75 start-page: 79 year: 2003 end-page: 86 ident: b0105 article-title: Simultaneous determination of trace level bromate and chlorinated haloacetic acids in bottled drinking water by ion chromatography publication-title: Microchem. J. – volume: 42 start-page: 8330 year: 2008 end-page: 8338 ident: b0060 article-title: Occurrence and Mammalian Cell Toxicity of Iodinated Disinfection Byproducts in Drinking Water publication-title: Environ. Sci. Tech. – volume: 18 start-page: 1 year: 2018 end-page: 10 ident: b0145 article-title: Recent trends in capillary and micro-chip electrophoretic instrumentation for field-analysis publication-title: Trends Environ. Anal. Chem. – volume: 200 year: 2024 ident: b0170 article-title: One-step admicelle to cyclodextrin sweeping of toxic aristolochic acids by capillary electrophoresis publication-title: Microchem. J. – volume: 706 start-page: 176 year: 2011 end-page: 183 ident: b0180 article-title: Pressure-assisted electrokinetic injection for on-line enrichment in capillary electrophoresis–mass spectrometry: A sensitive method for measurement of ten haloacetic acids in drinking water publication-title: Anal. Chim. Acta – volume: 58 start-page: 208 year: 2017 end-page: 216 ident: b0050 article-title: TIC-Tox: A preliminary discussion on identifying the forcing agents of DBP-mediated toxicity of disinfected water publication-title: J. Environ. Sci. – volume: 859 start-page: 159 year: 1999 end-page: 171 ident: b0070 article-title: Solid-phase microextraction coupled with gas chromatography–ion trap mass spectrometry for the analysis of haloacetic acids in water publication-title: J. Chromatogr. A – volume: 835 start-page: 187 year: 1999 end-page: 196 ident: b0175 article-title: Evaluation of different electrolyte systems and on-line preconcentrations for the analysis of haloacetic acids by capillary zone electrophoresis publication-title: J. Chromatogr. A – volume: 157 year: 2022 ident: b0160 article-title: Portable capillary electrophoresis as a green analytical technology publication-title: TrAC Trends Anal. Chem. – volume: 26 start-page: 497 year: 2010 end-page: 501 ident: b0020 article-title: Kinetic Spectrophotometric Determination of Trace Amounts of Iodide in Food samples publication-title: Anal. Sci. – volume: 414 start-page: 115 year: 2022 end-page: 130 ident: b0155 article-title: Recent (2018–2020) development in capillary electrophoresis publication-title: Anal. Bioanal. Chem. – volume: 35 start-page: 666 year: 2012 end-page: 673 ident: b0185 article-title: Determination of five priority haloacetic acids by capillary electrophoresis with contactless conductivity detection and solid phase extraction preconcentration publication-title: J. Sep. Sci. – volume: 96 start-page: 166 year: 2016 end-page: 176 ident: b0035 article-title: Modeling the formation of TOCl, TOBr and TOI during chlor(am)ination of drinking water publication-title: Water Res. – volume: 159 year: 2020 ident: b0190 article-title: Determination and generating study on monoiodoacetic acid and diiodoacetic acid in water by liquid chromatography-inductively coupled plasma mass spectrometry publication-title: Microchem. J. – volume: 88 start-page: 60 year: 2016 end-page: 68 ident: b0030 article-title: Identification, toxicity and control of iodinated disinfection byproducts in cooking with simulated chlor(am)inated tap water and iodized table salt publication-title: Water Res. – volume: 119 start-page: 711 year: 2015 end-page: 718 ident: b0080 article-title: Pentafluorobenzyl esterification of haloacetic acids in tap water for simple and sensitive analysis by gas chromatography/mass spectrometry with negative chemical ionization publication-title: Chemosphere – volume: 371 start-page: 431 year: 2001 end-page: 436 ident: b0010 article-title: Determination of iodide in urine by ion-pair chromatography with electrochemical detection publication-title: Fresenius J. Anal. Chem. – volume: 467 year: 2024 ident: b0135 article-title: Enhanced detection of monoiodoacetic acid at ng/L level by ion chromatography with novel derivatization-free pretreatment publication-title: J. Hazard. Mater. – volume: 150 year: 2019 ident: b0090 article-title: A simple liquid-liquid extraction-gas chromatography-mass spectrometry method for the determination of haloacetic acids in environmental samples: Application in water with Microcystis aeruginosa cells publication-title: Microchem. J. – volume: 180 year: 2021 ident: b0215 article-title: Simultaneous total and speciation analysis of rhenium by capillary electrophoresis-inductively coupled plasma mass spectrometry publication-title: Spectrochim. Acta B at. Spectrosc. – reference: J.E. Moran, S.D. Oktay, P.H. Santschi, Sources of iodine and iodine 129 in rivers, Water Resour. Res. 38 (2002) 24-21-24-10. – volume: 66 start-page: 3 year: 2000 end-page: 16 ident: b0210 article-title: Capillary electrophoresis inductively coupled plasma mass spectrometry publication-title: Microchem. J. – volume: 198 start-page: 147 year: 2018 end-page: 153 ident: b0095 article-title: Simultaneous determination of iodinated haloacetic acids and aromatic iodinated disinfection byproducts in waters with a new SPE-HPLC-MS/MS method publication-title: Chemosphere – volume: 93 start-page: 8107 year: 2021 end-page: 8115 ident: b0150 article-title: Capillary Electrophoresis Instruments for Medical Applications and Falsified Drug Analysis/Quality Control in Developing Countries publication-title: Anal. Chem. – volume: 1225 year: 2022 ident: b0165 article-title: Monitoring of biologically active substances in clinical samples by capillary and microchip electrophoresis with contactless conductivity detection: A review publication-title: Anal. Chim. Acta – reference: National Disease Control and Prevention Administration. Administration Survey Report on Iodine Content in Drinking Water in China. http://www.nhc.gov.cn/jkj/s5874/201905/bb1da1f5e47040e8820b9378e6db4bd3.shtml (2024-5-13). – volume: 78 start-page: 471 year: 2009 end-page: 476 ident: b0195 article-title: Speciation analysis of arsenic in Mya arenaria Linnaeus and Shrimp with capillary electrophoresis-inductively coupled plasma mass spectrometry publication-title: Talanta – volume: 93 start-page: 8107 year: 2021 ident: 10.1016/j.microc.2024.110809_b0150 article-title: Capillary Electrophoresis Instruments for Medical Applications and Falsified Drug Analysis/Quality Control in Developing Countries publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c00839 – volume: 39 start-page: 3239 year: 2016 ident: 10.1016/j.microc.2024.110809_b0200 article-title: Determination of arsenic species in Solanum Lyratum Thunb using capillary electrophoresis with inductively coupled plasma mass spectrometry publication-title: J. Sep. Sci. doi: 10.1002/jssc.201600415 – volume: 66 start-page: 3 year: 2000 ident: 10.1016/j.microc.2024.110809_b0210 article-title: Capillary electrophoresis inductively coupled plasma mass spectrometry publication-title: Microchem. J. doi: 10.1016/S0026-265X(00)00062-X – volume: 57 start-page: 461 year: 2022 ident: 10.1016/j.microc.2024.110809_b0230 article-title: Organic matrix effects in inductively coupled plasma mass spectrometry: a tutorial review publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2021.1897991 – volume: 40 start-page: 7175 year: 2006 ident: 10.1016/j.microc.2024.110809_b0040 article-title: Occurrence of a New Generation of Disinfection Byproducts publication-title: Environ. Sci. Tech. doi: 10.1021/es060353j – volume: 159 year: 2020 ident: 10.1016/j.microc.2024.110809_b0190 article-title: Determination and generating study on monoiodoacetic acid and diiodoacetic acid in water by liquid chromatography-inductively coupled plasma mass spectrometry publication-title: Microchem. J. doi: 10.1016/j.microc.2020.105401 – volume: 96 start-page: 166 year: 2016 ident: 10.1016/j.microc.2024.110809_b0035 article-title: Modeling the formation of TOCl, TOBr and TOI during chlor(am)ination of drinking water publication-title: Water Res. doi: 10.1016/j.watres.2016.03.051 – volume: 467 year: 2024 ident: 10.1016/j.microc.2024.110809_b0135 article-title: Enhanced detection of monoiodoacetic acid at ng/L level by ion chromatography with novel derivatization-free pretreatment publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2024.133729 – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.microc.2024.110809_b0145 article-title: Recent trends in capillary and micro-chip electrophoretic instrumentation for field-analysis publication-title: Trends Environ. Anal. Chem. doi: 10.1016/j.teac.2018.03.001 – volume: 835 start-page: 187 year: 1999 ident: 10.1016/j.microc.2024.110809_b0175 article-title: Evaluation of different electrolyte systems and on-line preconcentrations for the analysis of haloacetic acids by capillary zone electrophoresis publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(98)01036-X – ident: 10.1016/j.microc.2024.110809_b0235 – volume: 75 start-page: 79 year: 2003 ident: 10.1016/j.microc.2024.110809_b0105 article-title: Simultaneous determination of trace level bromate and chlorinated haloacetic acids in bottled drinking water by ion chromatography publication-title: Microchem. J. doi: 10.1016/S0026-265X(03)00055-9 – ident: 10.1016/j.microc.2024.110809_b0065 – volume: 51 start-page: 1551 year: 1996 ident: 10.1016/j.microc.2024.110809_b0225 article-title: Signal enhancement effect of halogen matrix in electrothermal vaporization-inductively coupled plasma-mass spectrometry publication-title: Spectrochim. Acta B at. Spectrosc. doi: 10.1016/0584-8547(96)01517-0 – volume: 42 start-page: 8330 year: 2008 ident: 10.1016/j.microc.2024.110809_b0060 article-title: Occurrence and Mammalian Cell Toxicity of Iodinated Disinfection Byproducts in Drinking Water publication-title: Environ. Sci. Tech. doi: 10.1021/es801169k – volume: 247 year: 2020 ident: 10.1016/j.microc.2024.110809_b0085 article-title: Formation of haloacetic acids from different organic precursors in swimming pool water during chlorination publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125793 – volume: 198 start-page: 147 year: 2018 ident: 10.1016/j.microc.2024.110809_b0095 article-title: Simultaneous determination of iodinated haloacetic acids and aromatic iodinated disinfection byproducts in waters with a new SPE-HPLC-MS/MS method publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.01.124 – volume: 408 start-page: 6613 year: 2016 ident: 10.1016/j.microc.2024.110809_b0125 article-title: Rapid simultaneous analysis of 17 haloacetic acids and related halogenated water contaminants by high-performance ion chromatography-tandem mass spectrometry publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-016-9773-8 – volume: 28 start-page: 4227 year: 2007 ident: 10.1016/j.microc.2024.110809_b0220 article-title: Determination of iodine and bromine compounds in foodstuffs by CE-inductively coupled plasma MS publication-title: Electrophoresis doi: 10.1002/elps.200700241 – volume: 15 start-page: 1424 year: 2013 ident: 10.1016/j.microc.2024.110809_b0045 article-title: Occurrence, profiling and prioritization of halogenated disinfection by-products in drinking water of China publication-title: Environ. Sci.: Processes Impacts – volume: 58 start-page: 64 year: 2017 ident: 10.1016/j.microc.2024.110809_b0055 article-title: CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2017.04.021 – volume: 150 year: 2019 ident: 10.1016/j.microc.2024.110809_b0090 article-title: A simple liquid-liquid extraction-gas chromatography-mass spectrometry method for the determination of haloacetic acids in environmental samples: Application in water with Microcystis aeruginosa cells publication-title: Microchem. J. doi: 10.1016/j.microc.2019.104088 – volume: 180 year: 2021 ident: 10.1016/j.microc.2024.110809_b0215 article-title: Simultaneous total and speciation analysis of rhenium by capillary electrophoresis-inductively coupled plasma mass spectrometry publication-title: Spectrochim. Acta B at. Spectrosc. doi: 10.1016/j.sab.2021.106211 – volume: 157 year: 2022 ident: 10.1016/j.microc.2024.110809_b0160 article-title: Portable capillary electrophoresis as a green analytical technology publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2022.116811 – volume: 88 start-page: 60 year: 2016 ident: 10.1016/j.microc.2024.110809_b0030 article-title: Identification, toxicity and control of iodinated disinfection byproducts in cooking with simulated chlor(am)inated tap water and iodized table salt publication-title: Water Res. doi: 10.1016/j.watres.2015.10.002 – volume: 200 year: 2024 ident: 10.1016/j.microc.2024.110809_b0170 article-title: One-step admicelle to cyclodextrin sweeping of toxic aristolochic acids by capillary electrophoresis publication-title: Microchem. J. doi: 10.1016/j.microc.2024.110480 – volume: 371 start-page: 431 year: 2001 ident: 10.1016/j.microc.2024.110809_b0010 article-title: Determination of iodide in urine by ion-pair chromatography with electrochemical detection publication-title: Fresenius J. Anal. Chem. doi: 10.1007/s002160101080 – volume: 414 start-page: 115 year: 2022 ident: 10.1016/j.microc.2024.110809_b0155 article-title: Recent (2018–2020) development in capillary electrophoresis publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-021-03290-y – volume: 78 start-page: 471 year: 2009 ident: 10.1016/j.microc.2024.110809_b0195 article-title: Speciation analysis of arsenic in Mya arenaria Linnaeus and Shrimp with capillary electrophoresis-inductively coupled plasma mass spectrometry publication-title: Talanta doi: 10.1016/j.talanta.2008.11.040 – volume: 58 start-page: 208 year: 2017 ident: 10.1016/j.microc.2024.110809_b0050 article-title: TIC-Tox: A preliminary discussion on identifying the forcing agents of DBP-mediated toxicity of disinfected water publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2017.04.014 – volume: 119 start-page: 711 year: 2015 ident: 10.1016/j.microc.2024.110809_b0080 article-title: Pentafluorobenzyl esterification of haloacetic acids in tap water for simple and sensitive analysis by gas chromatography/mass spectrometry with negative chemical ionization publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.07.048 – volume: 34 start-page: 2784 year: 2000 ident: 10.1016/j.microc.2024.110809_b0005 article-title: Formation of Iodo-Trihalomethanes during Disinfection and Oxidation of Iodide-Containing Waters publication-title: Environ. Sci. Tech. doi: 10.1021/es9914590 – volume: 9 start-page: 2425 year: 2017 ident: 10.1016/j.microc.2024.110809_b0130 article-title: Amino-functionalized graphene oxide/neutral alumina nanocomposite based solid-phase extraction coupled with ion chromatography-mass spectrometry for the determination of trace haloacetic acids in drinking water publication-title: Anal. Methods doi: 10.1039/C7AY00583K – volume: 1225 year: 2022 ident: 10.1016/j.microc.2024.110809_b0165 article-title: Monitoring of biologically active substances in clinical samples by capillary and microchip electrophoresis with contactless conductivity detection: A review publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2022.340161 – volume: 1209 start-page: 61 year: 2008 ident: 10.1016/j.microc.2024.110809_b0075 article-title: Simultaneous liquid–liquid microextraction/methylation for the determination of haloacetic acids in drinking waters by headspace gas chromatography publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2008.09.033 – volume: 40 start-page: 3898 year: 2017 ident: 10.1016/j.microc.2024.110809_b0205 article-title: Simultaneous detection of zinc dimethyldithiocarbamate and zinc ethylenebisdithiocarbamate in cabbage leaves by capillary electrophoresis with inductively coupled plasma mass spectrometry publication-title: J. Sep. Sci. doi: 10.1002/jssc.201700455 – volume: 110 start-page: 608 year: 2013 ident: 10.1016/j.microc.2024.110809_b0110 article-title: Direct determination of trace-level haloacetic acids in drinking water by two-dimensional ion chromatography with suppressed conductivity publication-title: Microchem. J. doi: 10.1016/j.microc.2013.07.012 – volume: 26 start-page: 497 year: 2010 ident: 10.1016/j.microc.2024.110809_b0020 article-title: Kinetic Spectrophotometric Determination of Trace Amounts of Iodide in Food samples publication-title: Anal. Sci. doi: 10.2116/analsci.26.497 – volume: 40 start-page: 1878 year: 2006 ident: 10.1016/j.microc.2024.110809_b0025 article-title: Modulation of the Cytotoxicity and Genotoxicity of the Drinking Water Disinfection Byproduct Iodoacetic Acid by Suppressors of Oxidative Stress publication-title: Environ. Sci. Tech. doi: 10.1021/es051602r – volume: 1046 start-page: 1 year: 2004 ident: 10.1016/j.microc.2024.110809_b0100 article-title: Using ion chromatography to monitor haloacetic acids in drinking water: a review of current technologies publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(04)01029-5 – volume: 183 year: 2022 ident: 10.1016/j.microc.2024.110809_b0115 article-title: Determining haloacetic acids in drinking water by one-pump column-switching ion chromatography: An online and cost-effective tool for matrix removal and sample enrichment publication-title: Microchem. J. doi: 10.1016/j.microc.2022.107997 – volume: 859 start-page: 159 year: 1999 ident: 10.1016/j.microc.2024.110809_b0070 article-title: Solid-phase microextraction coupled with gas chromatography–ion trap mass spectrometry for the analysis of haloacetic acids in water publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(99)00873-0 – volume: 22 start-page: 1787 year: 2008 ident: 10.1016/j.microc.2024.110809_b0120 article-title: Determination of iodoacetic acid using liquid chromatography/electrospray tandem mass spectrometry publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.3547 – ident: 10.1016/j.microc.2024.110809_b0015 doi: 10.1029/2001WR000622 – volume: 90 start-page: 1464 year: 2018 ident: 10.1016/j.microc.2024.110809_b0140 article-title: Capillary Electrophoresis: Trends and Recent Advances publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b00015 – volume: 35 start-page: 666 year: 2012 ident: 10.1016/j.microc.2024.110809_b0185 article-title: Determination of five priority haloacetic acids by capillary electrophoresis with contactless conductivity detection and solid phase extraction preconcentration publication-title: J. Sep. Sci. doi: 10.1002/jssc.201100944 – volume: 706 start-page: 176 year: 2011 ident: 10.1016/j.microc.2024.110809_b0180 article-title: Pressure-assisted electrokinetic injection for on-line enrichment in capillary electrophoresis–mass spectrometry: A sensitive method for measurement of ten haloacetic acids in drinking water publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2011.07.040 |
| SSID | ssj0007521 |
| Score | 2.4393027 |
| Snippet | Determination of monoiodoacetic acid and inorganic iodine in drinking water by capillary electrophoresis combined with inductively coupled plasma mass... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110809 |
| SubjectTerms | Capillary electrophoresis-inductively coupled plasma mass spectrometry Iodine Monoiodoacetic acid Speciation analysis |
| Title | Rapid and simultaneous analysis of monoiodoacetic acid and inorganic iodine in drinking water by capillary electrophoresis-inductively coupled plasma mass spectrometry |
| URI | https://dx.doi.org/10.1016/j.microc.2024.110809 |
| Volume | 203 |
| WOSCitedRecordID | wos001246854700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0026-265X databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007521 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKB4IXBAPEgCE_8Ba56tw4l8dp2rRNMCE0UMRL5DgO82iT0DZj_UX8B34dx3ZuZaiwB16iyvEtOV_t7zjngtAbH_ZAd5ImJEwYIy6njHBgIcTfg-pjltHEBHv-9NY_OwuiKHw_GPxsfGGupn6eB9fXYflfRQ1lIGztOnsLcbedQgH8BqHDFcQO138S_AdeKhN_1VkobS7Ic6nNXHkv-gjMpVCgj3IhTbxWUTdQuU3yJBy4q2w8kXRusys437mOpwhsVcAAAB7txWtz6JQXBSjtakFAv6_M-jmFWkVVToHNlkDPZ9yZAUl3jFunjo-wXHfEfqetAkUTuqD_lHq7qMw2UX3tviLVZ9yR6j6A2ZLPFzL_8k21gG-Pw09VvlL9Ew7qtvZ1nceBR6jHov6qTceT3rqrnRlMmIWbW4I9nbgczcyjjPQAo676egTu33bG1l6xMYW7jG0vse4ltr3cQVvUZ2EwRFv7J4fRacsDfEZtvsZ69o3jprEuvDmbPxOjHtk5f4Qe1loK3rfoeowGMt9G92ze0tU2un_QpAl8gn4YvGGAD-7jDTd4w0WG1_GGNd5MgxZv2OINCnCDN2zwhpMVbvGGN-AN13jDFm9Y4w338fYUfTw6PD84JnX2DyJAjV0SyhNXhpxljFEvBT0_4Jp-00SfCSQ-D_ULFsCYYRGiLstSCuvROOEy0FkCQAt_hoZ5kcvnCAfJxMsk3dOJC13grIFIA0mllH7KUuEFO2jSvPpY1KHxdYaWabxJ8DuItK1KGxrmL_X9RqpxTW8tbY0BqhtbvrjlSC_Rg-5_9AoNl_NK7qK74mqpFvPXNU5_ASDf0pg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+and+simultaneous+analysis+of+monoiodoacetic+acid+and+inorganic+iodine+in+drinking+water+by+capillary+electrophoresis-inductively+coupled+plasma+mass+spectrometry&rft.jtitle=Microchemical+journal&rft.au=Wu%2C+Yuke&rft.au=Wang%2C+Xi&rft.au=Pang%2C+Zhengqin&rft.au=Zhang%2C+Jinyi&rft.date=2024-08-01&rft.issn=0026-265X&rft.volume=203&rft.spage=110809&rft_id=info:doi/10.1016%2Fj.microc.2024.110809&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_microc_2024_110809 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-265X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-265X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-265X&client=summon |