Multi-label feature selection with shared common mode

•A novel embedded-based multi-label feature selection method is proposed.•Our method extracts the shared common mode between features and labels.•Our method uses Non-negative Matrix Factorization to enhance the interpretability.•An optimization algorithm is proposed for our method.•Numerous experime...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Pattern recognition Ročník 104; s. 107344
Hlavní autori: Hu, Liang, Li, Yonghao, Gao, Wanfu, Zhang, Ping, Hu, Juncheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.08.2020
Predmet:
ISSN:0031-3203, 1873-5142
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A novel embedded-based multi-label feature selection method is proposed.•Our method extracts the shared common mode between features and labels.•Our method uses Non-negative Matrix Factorization to enhance the interpretability.•An optimization algorithm is proposed for our method.•Numerous experiments are conducted to demonstrate the superiority of our method. Multi-label feature selection plays an indispensable role in multi-label learning, which eliminates irrelevant and redundant features while retaining relevant features. Most of existing multi-label feature selection methods employ two strategies to construct feature selection models: extracting label correlations to guide feature selection process and maintaining the consistency between the feature matrix and the reduced low-dimensional feature matrix. However, the data information is described by two data matrices: the feature matrix and the label matrix. Previous methods devote attention to either of the two data matrices. To address this issue, we propose a novel feature selection method named Feature Selection considering Shared Common Mode between features and labels (SCMFS). First, we utilize Coupled Matrix Factorization (CMF) to extract the shared common mode between the feature matrix and the label matrix, considering the comprehensive data information in the two matrices. Additionally, Non-negative Matrix Factorization (NMF) is adopted to enhance the interpretability for feature selection. Extensive experiments are implemented on fifteen real-world benchmark data sets for multiple evaluation metrics, the experimental results demonstrate the classification superiority of the proposed method.
AbstractList •A novel embedded-based multi-label feature selection method is proposed.•Our method extracts the shared common mode between features and labels.•Our method uses Non-negative Matrix Factorization to enhance the interpretability.•An optimization algorithm is proposed for our method.•Numerous experiments are conducted to demonstrate the superiority of our method. Multi-label feature selection plays an indispensable role in multi-label learning, which eliminates irrelevant and redundant features while retaining relevant features. Most of existing multi-label feature selection methods employ two strategies to construct feature selection models: extracting label correlations to guide feature selection process and maintaining the consistency between the feature matrix and the reduced low-dimensional feature matrix. However, the data information is described by two data matrices: the feature matrix and the label matrix. Previous methods devote attention to either of the two data matrices. To address this issue, we propose a novel feature selection method named Feature Selection considering Shared Common Mode between features and labels (SCMFS). First, we utilize Coupled Matrix Factorization (CMF) to extract the shared common mode between the feature matrix and the label matrix, considering the comprehensive data information in the two matrices. Additionally, Non-negative Matrix Factorization (NMF) is adopted to enhance the interpretability for feature selection. Extensive experiments are implemented on fifteen real-world benchmark data sets for multiple evaluation metrics, the experimental results demonstrate the classification superiority of the proposed method.
ArticleNumber 107344
Author Gao, Wanfu
Hu, Liang
Hu, Juncheng
Li, Yonghao
Zhang, Ping
Author_xml – sequence: 1
  givenname: Liang
  surname: Hu
  fullname: Hu, Liang
  organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China
– sequence: 2
  givenname: Yonghao
  surname: Li
  fullname: Li, Yonghao
  email: yonghao17@mails.jlu.edu.cn
  organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China
– sequence: 3
  givenname: Wanfu
  surname: Gao
  fullname: Gao, Wanfu
  email: gaowf@jlu.edu.cn
  organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China
– sequence: 4
  givenname: Ping
  surname: Zhang
  fullname: Zhang, Ping
  email: zhangping18@mails.jlu.edu.cn
  organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China
– sequence: 5
  givenname: Juncheng
  surname: Hu
  fullname: Hu, Juncheng
  email: jchu19@mails.jlu.edu.cn
  organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China
BookMark eNqFkMtOwzAQRS1UJNrCH7DID6T4kYfLAglVvKQiNrC2JvaYukriynZB_D2JwooFrEa6o3M1cxZk1vseCblkdMUoq672qwMk7d9XnPIxqkVRnJA5k7XIS1bwGZlTKlguOBVnZBHjnlJWD4s5KZ-PbXJ5Cw22mUVIx4BZxBZ1cr7PPl3aZXEHAU2mfdcNUecNnpNTC23Ei5-5JG_3d6-bx3z78vC0ud3mWtAq5XxtrBFrAbVFyhqQRnINtiygKgWW3CCtkVppGq2NtlQiyDVUKCUXuqlRLMn11KuDjzGgVdolGC9LAVyrGFWjALVXkwA1ClCTgAEufsGH4DoIX_9hNxOGw2MfDoOK2mGv0bgwWFHGu78LvgFcLnpP
CitedBy_id crossref_primary_10_1016_j_ins_2023_119525
crossref_primary_10_1016_j_patcog_2025_111941
crossref_primary_10_1007_s10489_023_05188_x
crossref_primary_10_1016_j_knosys_2024_111789
crossref_primary_10_1007_s00521_024_10822_x
crossref_primary_10_1007_s10489_022_03425_3
crossref_primary_10_1016_j_knosys_2022_108256
crossref_primary_10_1016_j_patcog_2021_108419
crossref_primary_10_1016_j_patcog_2021_108259
crossref_primary_10_1016_j_patcog_2023_109900
crossref_primary_10_1109_JBHI_2023_3302657
crossref_primary_10_1016_j_eswa_2023_122884
crossref_primary_10_1016_j_engappai_2025_112007
crossref_primary_10_1007_s11227_022_04451_1
crossref_primary_10_1016_j_patcog_2022_109074
crossref_primary_10_1109_TNNLS_2023_3241921
crossref_primary_10_1016_j_patcog_2021_108169
crossref_primary_10_1007_s10489_020_02129_w
crossref_primary_10_1016_j_knosys_2020_106621
crossref_primary_10_1016_j_asoc_2025_113047
crossref_primary_10_1016_j_patcog_2022_109111
crossref_primary_10_1007_s00521_022_07924_9
crossref_primary_10_1007_s10115_025_02532_0
crossref_primary_10_1016_j_engappai_2023_107310
crossref_primary_10_1016_j_knosys_2021_107924
crossref_primary_10_1016_j_patcog_2023_109899
crossref_primary_10_1016_j_eswa_2023_122730
crossref_primary_10_1007_s13042_024_02426_7
crossref_primary_10_1016_j_neucom_2024_128392
crossref_primary_10_1016_j_patcog_2023_110154
crossref_primary_10_1109_ACCESS_2020_3015755
crossref_primary_10_1371_journal_pone_0296108
crossref_primary_10_1109_TFUZZ_2021_3053844
crossref_primary_10_3390_e23121617
crossref_primary_10_1007_s10489_022_04343_0
crossref_primary_10_1016_j_patcog_2022_109120
crossref_primary_10_1016_j_neucom_2021_02_005
crossref_primary_10_1007_s00500_023_07916_4
crossref_primary_10_1016_j_ins_2024_120662
crossref_primary_10_1007_s10489_021_02799_0
crossref_primary_10_1016_j_ins_2024_121113
crossref_primary_10_1016_j_ins_2024_120501
crossref_primary_10_3390_math11030782
crossref_primary_10_1016_j_ipm_2023_103633
crossref_primary_10_1016_j_eswa_2024_123198
crossref_primary_10_1016_j_neucom_2025_129371
crossref_primary_10_1016_j_knosys_2022_109119
crossref_primary_10_1016_j_patcog_2025_111477
crossref_primary_10_1109_TNNLS_2024_3382911
crossref_primary_10_1007_s10115_022_01747_9
crossref_primary_10_1109_TNNLS_2021_3105142
crossref_primary_10_1016_j_asoc_2025_113852
crossref_primary_10_1016_j_ipm_2025_104151
crossref_primary_10_1016_j_patcog_2021_108149
crossref_primary_10_1016_j_aej_2025_08_007
crossref_primary_10_1016_j_inffus_2024_102813
crossref_primary_10_1109_TNSRE_2024_3355488
crossref_primary_10_1016_j_knosys_2025_113062
crossref_primary_10_1109_ACCESS_2024_3411095
crossref_primary_10_1016_j_energy_2020_119174
crossref_primary_10_1016_j_knosys_2023_111363
Cites_doi 10.1016/j.patcog.2017.01.014
10.1016/j.ins.2009.06.010
10.1109/TKDE.2016.2563436
10.1016/j.eswa.2018.05.029
10.1016/j.patcog.2016.11.003
10.1109/TPAMI.2014.2339815
10.1016/j.patcog.2017.09.036
10.1109/TKDE.2017.2785795
10.1109/TKDE.2016.2515613
10.1109/TKDE.2018.2847685
10.1109/TCYB.2017.2663838
10.1038/44565
10.1016/j.patcog.2018.02.020
10.1016/j.asoc.2017.11.006
10.1016/j.patcog.2015.04.009
10.1016/j.ins.2014.05.042
10.1109/TPAMI.2005.159
10.1145/2601434
10.1109/TNNLS.2017.2740341
10.1145/3136625
10.1186/1471-2105-10-246
10.1016/j.eswa.2013.09.023
10.1016/j.patcog.2019.06.004
10.1109/TCYB.2013.2265601
10.1109/TNNLS.2016.2551724
10.1109/TKDE.2013.39
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2020.107344
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2020_107344
S0031320320301473
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-29dfd393a7fe01ba8d82caf54a653e52de07e0f8dbccdcf08ea89a6e8823cb7e3
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000532701300017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Nov 29 07:30:55 EST 2025
Tue Nov 18 22:14:16 EST 2025
Fri Feb 23 02:47:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-label learning
Feature selection
Non-negative matrix factorization
Coupled matrix factorization
Classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-29dfd393a7fe01ba8d82caf54a653e52de07e0f8dbccdcf08ea89a6e8823cb7e3
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2020_107344
crossref_primary_10_1016_j_patcog_2020_107344
elsevier_sciencedirect_doi_10_1016_j_patcog_2020_107344
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Nie, Li (bib0031) 2018; 29
Hong, Wang, Gao, Tao, Li, Wu (bib0005) 2014; 44
Nie, Huang, Cai, Ding (bib0006) 2010
Lee, Kim (bib0024) 2015; 48
Bolón-Canedo, Sánchez-Marono, Alonso-Betanzos, Benítez, Herrera (bib0008) 2014; 282
Rodrigues, Pereira, Nakamura, Costa, Yang, Souza, Papa (bib0010) 2014; 41
Gao, Hu, Zhang (bib0001) 2018; 79
Peng, Long, Ding (bib0007) 2005; 27
Gao, Hu, Zhang, Wang (bib0009) 2018; 110
Lee, Seung (bib0014) 1999; 401
Huang, Li, Huang, Wu (bib0002) 2018; 48
Yu, Yu, Tresp (bib0037) 2005
M.L. Zhang, J.M. Pena, V. Robles, Feature selection for multi-label naive bayes classification, Inf. Sci. 179(19) 3218–3229.
Van Deun, Smilde, van der Werf, Kiers, Van Mechelen (bib0013) 2009; 10
Mafarja, Mirjalili (bib0011) 2018; 62
Yan, Yang, Yang (bib0015) 2016; 28
Zhang, Zhou (bib0038) 2014; 26
Xu, Wang, An, Wei, Ruan (bib0018) 2018
Sheikhpour, Sarram, Gharaghani, Chahooki (bib0023) 2017; 64
Essid, Ozerov (bib0020) 2014
Zhang, Wu (bib0036) 2014; 37
Kashef, Nezamabadi-pour, Nikpour (bib0033) 2018; 8
Klimt, Yang (bib0034) 2004
Tang, Kay, He (bib0004) 2016; 28
Cai, Nie, Huang (bib0016) 2013
Zhu, Kwok, Zhou (bib0019) 2017; 30
Jian, Li, Shu, Liu (bib0012) 2016
Pang, Nie, Han, Li (bib0029) 2018; 31
Lee, Kim (bib0026) 2017; 66
Gui, Sun, Ji, Tao, Tan (bib0021) 2017; 28
Zhang, Liu, Gao (bib0025) 2019; 95
Braytee, Liu, Catchpoole, Kennedy (bib0028) 2017
Huang, Nie, Huang, Ding (bib0030) 2014; 8
Zhu, Xu, Hu, Zhang, Zhao (bib0003) 2018; 74
Li, Cheng, Wang, Morstatter, Trevino, Tang, Liu (bib0022) 2018; 50
Tsoumakas, Spyromitros-Xioufis, Vilcek, Vlahavas (bib0032) 2011; 12
Ding, Zhou, He, Zha (bib0017) 2006
Lee, Kim (bib0027) 2018
Ueda, Saito (bib0035) 2003
Lee (10.1016/j.patcog.2020.107344_bib0014) 1999; 401
Yu (10.1016/j.patcog.2020.107344_bib0037) 2005
Tsoumakas (10.1016/j.patcog.2020.107344_bib0032) 2011; 12
Zhang (10.1016/j.patcog.2020.107344_bib0036) 2014; 37
Li (10.1016/j.patcog.2020.107344_bib0022) 2018; 50
Lee (10.1016/j.patcog.2020.107344_bib0026) 2017; 66
Van Deun (10.1016/j.patcog.2020.107344_bib0013) 2009; 10
Lee (10.1016/j.patcog.2020.107344_bib0027) 2018
Zhang (10.1016/j.patcog.2020.107344_bib0025) 2019; 95
Nie (10.1016/j.patcog.2020.107344_bib0006) 2010
Jian (10.1016/j.patcog.2020.107344_bib0012) 2016
Ueda (10.1016/j.patcog.2020.107344_bib0035) 2003
10.1016/j.patcog.2020.107344_bib0039
Zhu (10.1016/j.patcog.2020.107344_bib0003) 2018; 74
Peng (10.1016/j.patcog.2020.107344_bib0007) 2005; 27
Xu (10.1016/j.patcog.2020.107344_bib0018) 2018
Braytee (10.1016/j.patcog.2020.107344_bib0028) 2017
Yan (10.1016/j.patcog.2020.107344_bib0015) 2016; 28
Bolón-Canedo (10.1016/j.patcog.2020.107344_bib0008) 2014; 282
Zhang (10.1016/j.patcog.2020.107344_bib0031) 2018; 29
Gui (10.1016/j.patcog.2020.107344_bib0021) 2017; 28
Pang (10.1016/j.patcog.2020.107344_bib0029) 2018; 31
Hong (10.1016/j.patcog.2020.107344_bib0005) 2014; 44
Rodrigues (10.1016/j.patcog.2020.107344_bib0010) 2014; 41
Huang (10.1016/j.patcog.2020.107344_bib0030) 2014; 8
Lee (10.1016/j.patcog.2020.107344_bib0024) 2015; 48
Mafarja (10.1016/j.patcog.2020.107344_bib0011) 2018; 62
Kashef (10.1016/j.patcog.2020.107344_bib0033) 2018; 8
Sheikhpour (10.1016/j.patcog.2020.107344_bib0023) 2017; 64
Tang (10.1016/j.patcog.2020.107344_bib0004) 2016; 28
Cai (10.1016/j.patcog.2020.107344_bib0016) 2013
Gao (10.1016/j.patcog.2020.107344_bib0001) 2018; 79
Huang (10.1016/j.patcog.2020.107344_bib0002) 2018; 48
Ding (10.1016/j.patcog.2020.107344_bib0017) 2006
Klimt (10.1016/j.patcog.2020.107344_bib0034) 2004
Zhu (10.1016/j.patcog.2020.107344_bib0019) 2017; 30
Essid (10.1016/j.patcog.2020.107344_bib0020) 2014
Gao (10.1016/j.patcog.2020.107344_bib0009) 2018; 110
Zhang (10.1016/j.patcog.2020.107344_bib0038) 2014; 26
References_xml – volume: 95
  start-page: 72
  year: 2019
  end-page: 82
  ident: bib0025
  article-title: Distinguishing two types of labels for multi-label feature selection
  publication-title: Pattern Recognit.
– volume: 29
  start-page: 3913
  year: 2018
  end-page: 3918
  ident: bib0031
  article-title: Self-weighted supervised discriminative feature selection
  publication-title: IEEE Trans. Neural. Netw. Learn. Syst.
– volume: 26
  start-page: 1819
  year: 2014
  end-page: 1837
  ident: bib0038
  article-title: A review on multi-label learning algorithms
  publication-title: IEEE Trans. Knowl. Data. Eng.
– year: 2014
  ident: bib0020
  article-title: A tutorial on nonnegative matrix factorisation with applications to audiovisual content analysis, IEEE International Conference on Multimedia and Expo
– volume: 12
  start-page: 2411
  year: 2011
  end-page: 2414
  ident: bib0032
  article-title: Mulan: a java library for multi-label learning
  publication-title: Journal of Machine Learning Research
– start-page: 783
  year: 2018
  end-page: 792
  ident: bib0018
  article-title: Semi-supervised multi-label feature selection by preserving feature-label space consistency
  publication-title: Proceedings of the 27th ACM International Conference on Information and Knowledge Management
– volume: 31
  start-page: 880
  year: 2018
  end-page: 893
  ident: bib0029
  article-title: Efficient feature selection via
  publication-title: IEEE Trans. Knowl. Data. Eng.
– start-page: 1813
  year: 2010
  end-page: 1821
  ident: bib0006
  article-title: Efficient and robust feature selection via joint
  publication-title: Advances in neural information processing systems
– volume: 48
  start-page: 2761
  year: 2015
  end-page: 2771
  ident: bib0024
  article-title: Fast multi-label feature selection based on information-theoretic feature ranking
  publication-title: Pattern Recognit.
– volume: 10
  start-page: 246
  year: 2009
  ident: bib0013
  article-title: A structured overview of simultaneous component based data integration
  publication-title: BMC Bioinformatics
– volume: 30
  start-page: 1081
  year: 2017
  end-page: 1094
  ident: bib0019
  article-title: Multi-label learning with global and local label correlation
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 1627
  year: 2016
  end-page: 1633
  ident: bib0012
  article-title: Multi-label informed feature selection
  publication-title: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI)
– volume: 28
  start-page: 1327
  year: 2016
  end-page: 1339
  ident: bib0015
  article-title: Robust joint feature weights learning framework
  publication-title: IEEE Trans. Knowl. Data. Eng.
– start-page: 1
  year: 2018
  end-page: 15
  ident: bib0027
  article-title: Scalable multilabel learning based on feature and label dimensionality reduction
  publication-title: Complexity
– volume: 8
  start-page: 11
  year: 2014
  ident: bib0030
  article-title: Robust manifold nonnegative matrix factorization
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
– volume: 74
  start-page: 488
  year: 2018
  end-page: 502
  ident: bib0003
  article-title: Multi-label feature selection with missing labels
  publication-title: Pattern Recognit.
– start-page: 281
  year: 2006
  end-page: 288
  ident: bib0017
  article-title: R 1-pca: rotational invariant l 1-norm principal component analysis for robust subspace factorization
  publication-title: Proceedings of the 23rd international conference on Machine learning
– volume: 401
  start-page: 788
  year: 1999
  ident: bib0014
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– volume: 28
  start-page: 1490
  year: 2017
  end-page: 1507
  ident: bib0021
  article-title: Feature selection based on structured sparsity: acomprehensive study
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 50
  start-page: 94
  year: 2018
  ident: bib0022
  article-title: Feature selection: a data perspective
  publication-title: ACM Computing Surveys (CSUR)
– volume: 282
  start-page: 111
  year: 2014
  end-page: 135
  ident: bib0008
  article-title: A review of microarray datasets and applied feature selection methods
  publication-title: Inf. Sci.
– volume: 41
  start-page: 2250
  year: 2014
  end-page: 2258
  ident: bib0010
  article-title: A wrapper approach for feature selection based on bat algorithm and optimum-path forest
  publication-title: Expert Syst. Appl.
– start-page: 258
  year: 2005
  end-page: 265
  ident: bib0037
  article-title: Multi-label informed latent semantic indexing
  publication-title: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval
– volume: 62
  start-page: 441
  year: 2018
  end-page: 453
  ident: bib0011
  article-title: Whale optimization approaches for wrapper feature selection
  publication-title: Appl Soft Comput
– volume: 48
  start-page: 876
  year: 2018
  end-page: 889
  ident: bib0002
  article-title: Joint feature selection and classification for multilabel learning
  publication-title: IEEE Trans. Cybern.
– volume: 28
  start-page: 2508
  year: 2016
  end-page: 2521
  ident: bib0004
  article-title: Toward optimal feature selection in naive bayes for text categorization
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 44
  start-page: 669
  year: 2014
  end-page: 680
  ident: bib0005
  article-title: Image annotation by multiple-instance learning with discriminative feature mapping and selection
  publication-title: IEEE Trans. Cybern.
– start-page: 217
  year: 2004
  end-page: 226
  ident: bib0034
  article-title: The enron corpus: A new dataset for email classification research
  publication-title: Proceedings of theEuropean Conference on Machine Learning
– start-page: 737
  year: 2003
  end-page: 744
  ident: bib0035
  article-title: Parametric mixture models for multi-labeled text
  publication-title: Advances in neural information processing systems
– start-page: 1649
  year: 2017
  end-page: 1656
  ident: bib0028
  article-title: Multi-label feature selection using correlation information
  publication-title: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management
– volume: 37
  start-page: 107
  year: 2014
  end-page: 120
  ident: bib0036
  article-title: Lift: multi-label learning with label-specific features
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 79
  start-page: 328
  year: 2018
  end-page: 339
  ident: bib0001
  article-title: Class-specific mutual information variation for feature selection
  publication-title: Pattern Recognit.
– volume: 66
  start-page: 342
  year: 2017
  end-page: 352
  ident: bib0026
  article-title: Scls: multi-label feature selection based on scalable criterion for large label set
  publication-title: Pattern Recognit.
– volume: 8
  start-page: e1240
  year: 2018
  ident: bib0033
  article-title: Multilabel feature selection: a comprehensive review and guiding experiments
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 110
  start-page: 11
  year: 2018
  end-page: 19
  ident: bib0009
  article-title: Feature selection by integrating two groups of feature evaluation criteria
  publication-title: Expert Syst. Appl.
– volume: 64
  start-page: 141
  year: 2017
  end-page: 158
  ident: bib0023
  article-title: A survey on semi-supervised feature selection methods
  publication-title: Pattern Recognit.
– year: 2013
  ident: bib0016
  article-title: Exact top-k feature selection via l2, 0-norm constraint
  publication-title: Proceedings of the twenty-third international joint conference on artificial intelligence
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: bib0007
  article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence
– reference: M.L. Zhang, J.M. Pena, V. Robles, Feature selection for multi-label naive bayes classification, Inf. Sci. 179(19) 3218–3229.
– volume: 66
  start-page: 342
  year: 2017
  ident: 10.1016/j.patcog.2020.107344_bib0026
  article-title: Scls: multi-label feature selection based on scalable criterion for large label set
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.01.014
– ident: 10.1016/j.patcog.2020.107344_bib0039
  doi: 10.1016/j.ins.2009.06.010
– volume: 28
  start-page: 2508
  issue: 9
  year: 2016
  ident: 10.1016/j.patcog.2020.107344_bib0004
  article-title: Toward optimal feature selection in naive bayes for text categorization
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2563436
– volume: 110
  start-page: 11
  year: 2018
  ident: 10.1016/j.patcog.2020.107344_bib0009
  article-title: Feature selection by integrating two groups of feature evaluation criteria
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.05.029
– volume: 64
  start-page: 141
  year: 2017
  ident: 10.1016/j.patcog.2020.107344_bib0023
  article-title: A survey on semi-supervised feature selection methods
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.11.003
– volume: 37
  start-page: 107
  issue: 1
  year: 2014
  ident: 10.1016/j.patcog.2020.107344_bib0036
  article-title: Lift: multi-label learning with label-specific features
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2339815
– volume: 74
  start-page: 488
  year: 2018
  ident: 10.1016/j.patcog.2020.107344_bib0003
  article-title: Multi-label feature selection with missing labels
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.09.036
– volume: 30
  start-page: 1081
  issue: 6
  year: 2017
  ident: 10.1016/j.patcog.2020.107344_bib0019
  article-title: Multi-label learning with global and local label correlation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2785795
– volume: 28
  start-page: 1327
  issue: 5
  year: 2016
  ident: 10.1016/j.patcog.2020.107344_bib0015
  article-title: Robust joint feature weights learning framework
  publication-title: IEEE Trans. Knowl. Data. Eng.
  doi: 10.1109/TKDE.2016.2515613
– volume: 31
  start-page: 880
  issue: 5
  year: 2018
  ident: 10.1016/j.patcog.2020.107344_bib0029
  article-title: Efficient feature selection via l_{2, 0}-norm constrained sparse regression
  publication-title: IEEE Trans. Knowl. Data. Eng.
  doi: 10.1109/TKDE.2018.2847685
– volume: 48
  start-page: 876
  issue: 3
  year: 2018
  ident: 10.1016/j.patcog.2020.107344_bib0002
  article-title: Joint feature selection and classification for multilabel learning
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2663838
– volume: 12
  start-page: 2411
  issue: 7
  year: 2011
  ident: 10.1016/j.patcog.2020.107344_bib0032
  article-title: Mulan: a java library for multi-label learning
  publication-title: Journal of Machine Learning Research
– start-page: 1649
  year: 2017
  ident: 10.1016/j.patcog.2020.107344_bib0028
  article-title: Multi-label feature selection using correlation information
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: 10.1016/j.patcog.2020.107344_bib0014
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 79
  start-page: 328
  year: 2018
  ident: 10.1016/j.patcog.2020.107344_bib0001
  article-title: Class-specific mutual information variation for feature selection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.02.020
– volume: 62
  start-page: 441
  year: 2018
  ident: 10.1016/j.patcog.2020.107344_bib0011
  article-title: Whale optimization approaches for wrapper feature selection
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.11.006
– volume: 48
  start-page: 2761
  issue: 9
  year: 2015
  ident: 10.1016/j.patcog.2020.107344_bib0024
  article-title: Fast multi-label feature selection based on information-theoretic feature ranking
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.04.009
– volume: 282
  start-page: 111
  year: 2014
  ident: 10.1016/j.patcog.2020.107344_bib0008
  article-title: A review of microarray datasets and applied feature selection methods
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.05.042
– start-page: 783
  year: 2018
  ident: 10.1016/j.patcog.2020.107344_bib0018
  article-title: Semi-supervised multi-label feature selection by preserving feature-label space consistency
– volume: 8
  start-page: e1240
  issue: 2
  year: 2018
  ident: 10.1016/j.patcog.2020.107344_bib0033
  article-title: Multilabel feature selection: a comprehensive review and guiding experiments
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 10.1016/j.patcog.2020.107344_bib0007
  article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence
  doi: 10.1109/TPAMI.2005.159
– volume: 8
  start-page: 11
  issue: 3
  year: 2014
  ident: 10.1016/j.patcog.2020.107344_bib0030
  article-title: Robust manifold nonnegative matrix factorization
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
  doi: 10.1145/2601434
– volume: 29
  start-page: 3913
  issue: 8
  year: 2018
  ident: 10.1016/j.patcog.2020.107344_bib0031
  article-title: Self-weighted supervised discriminative feature selection
  publication-title: IEEE Trans. Neural. Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2740341
– start-page: 258
  year: 2005
  ident: 10.1016/j.patcog.2020.107344_bib0037
  article-title: Multi-label informed latent semantic indexing
– year: 2014
  ident: 10.1016/j.patcog.2020.107344_bib0020
– volume: 50
  start-page: 94
  issue: 6
  year: 2018
  ident: 10.1016/j.patcog.2020.107344_bib0022
  article-title: Feature selection: a data perspective
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3136625
– start-page: 217
  year: 2004
  ident: 10.1016/j.patcog.2020.107344_bib0034
  article-title: The enron corpus: A new dataset for email classification research
– start-page: 1
  year: 2018
  ident: 10.1016/j.patcog.2020.107344_bib0027
  article-title: Scalable multilabel learning based on feature and label dimensionality reduction
  publication-title: Complexity
– volume: 10
  start-page: 246
  issue: 1
  year: 2009
  ident: 10.1016/j.patcog.2020.107344_bib0013
  article-title: A structured overview of simultaneous component based data integration
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-246
– start-page: 1813
  year: 2010
  ident: 10.1016/j.patcog.2020.107344_bib0006
  article-title: Efficient and robust feature selection via joint l2, 1-norms minimization
– volume: 41
  start-page: 2250
  issue: 5
  year: 2014
  ident: 10.1016/j.patcog.2020.107344_bib0010
  article-title: A wrapper approach for feature selection based on bat algorithm and optimum-path forest
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.09.023
– start-page: 281
  year: 2006
  ident: 10.1016/j.patcog.2020.107344_bib0017
  article-title: R 1-pca: rotational invariant l 1-norm principal component analysis for robust subspace factorization
– volume: 95
  start-page: 72
  year: 2019
  ident: 10.1016/j.patcog.2020.107344_bib0025
  article-title: Distinguishing two types of labels for multi-label feature selection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.06.004
– volume: 44
  start-page: 669
  issue: 5
  year: 2014
  ident: 10.1016/j.patcog.2020.107344_bib0005
  article-title: Image annotation by multiple-instance learning with discriminative feature mapping and selection
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2265601
– volume: 28
  start-page: 1490
  issue: 7
  year: 2017
  ident: 10.1016/j.patcog.2020.107344_bib0021
  article-title: Feature selection based on structured sparsity: acomprehensive study
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2551724
– volume: 26
  start-page: 1819
  issue: 8
  year: 2014
  ident: 10.1016/j.patcog.2020.107344_bib0038
  article-title: A review on multi-label learning algorithms
  publication-title: IEEE Trans. Knowl. Data. Eng.
  doi: 10.1109/TKDE.2013.39
– start-page: 737
  year: 2003
  ident: 10.1016/j.patcog.2020.107344_bib0035
  article-title: Parametric mixture models for multi-labeled text
– start-page: 1627
  year: 2016
  ident: 10.1016/j.patcog.2020.107344_bib0012
  article-title: Multi-label informed feature selection
– year: 2013
  ident: 10.1016/j.patcog.2020.107344_bib0016
  article-title: Exact top-k feature selection via l2, 0-norm constraint
SSID ssj0017142
Score 2.5692377
Snippet •A novel embedded-based multi-label feature selection method is proposed.•Our method extracts the shared common mode between features and labels.•Our method...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107344
SubjectTerms Classification
Coupled matrix factorization
Feature selection
Multi-label learning
Non-negative matrix factorization
Title Multi-label feature selection with shared common mode
URI https://dx.doi.org/10.1016/j.patcog.2020.107344
Volume 104
WOSCitedRecordID wos000532701300017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JTxsxFLZo6KEXltKKXT70hhzNjMdjzxEhECCEcgA1nEaOFyhCk4gkiJ_P8zKTQCpaDlys0cib_FlvsT-_h9AvWrJBUSSOxKAZya2yRIDVQKxQ3DCmbWp91pILfnkp-v2yF3Nsjn06AV7X4vm5HH0q1PAPwHZPZz8Ad9sp_IBvAB1KgB3K_wLeP6klAK55OLDGx-08GPtsNw7pQEm_87RzGB1m5ZPhzNuoPR9y0z1zidyi2U396TT48TLqO8fk8XSAm2F9eyeHLZtH-hPY37K204Wj6V6jLeNhQzajurUClKaEZgl9JUCTfE4Egj9JQ0jHBekcDgruuyPQMsPbrhugO6v-Ohj2GyXVUgcbVtp9FXqpXC9V6OULWs44K0UHLR-eHffP2-sknuYhbHycffOG0hP9Fmfzdxtlzu64WkMr0WHAhwHodbRk6u9otUnGgaNs3kBsDnccccct7tjhjgPuOOCOHe4_0PXJ8dXRKYk5MYgC525CslJbTUsquTVJOpBCi0xJy3JZMGpYpk3CTWKFHiillU2EkaKUhQFHiqoBN_Qn6tTD2mwiLBOeSQ0aL1Xgg1MhmbRlyiRLdZHlMt9CtFmFSsWA8S5vyUP1HgZbiLStRiFgyj_q82aBq2j0BWOugl3zbsvtD460g77NtvQu6kwep2YPfVVPkz_jx_24ZV4ATsJ4uw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-label+feature+selection+with+shared+common+mode&rft.jtitle=Pattern+recognition&rft.au=Hu%2C+Liang&rft.au=Li%2C+Yonghao&rft.au=Gao%2C+Wanfu&rft.au=Zhang%2C+Ping&rft.date=2020-08-01&rft.issn=0031-3203&rft.volume=104&rft.spage=107344&rft_id=info:doi/10.1016%2Fj.patcog.2020.107344&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2020_107344
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon