Multi-label feature selection with shared common mode
•A novel embedded-based multi-label feature selection method is proposed.•Our method extracts the shared common mode between features and labels.•Our method uses Non-negative Matrix Factorization to enhance the interpretability.•An optimization algorithm is proposed for our method.•Numerous experime...
Uložené v:
| Vydané v: | Pattern recognition Ročník 104; s. 107344 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.08.2020
|
| Predmet: | |
| ISSN: | 0031-3203, 1873-5142 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •A novel embedded-based multi-label feature selection method is proposed.•Our method extracts the shared common mode between features and labels.•Our method uses Non-negative Matrix Factorization to enhance the interpretability.•An optimization algorithm is proposed for our method.•Numerous experiments are conducted to demonstrate the superiority of our method.
Multi-label feature selection plays an indispensable role in multi-label learning, which eliminates irrelevant and redundant features while retaining relevant features. Most of existing multi-label feature selection methods employ two strategies to construct feature selection models: extracting label correlations to guide feature selection process and maintaining the consistency between the feature matrix and the reduced low-dimensional feature matrix. However, the data information is described by two data matrices: the feature matrix and the label matrix. Previous methods devote attention to either of the two data matrices. To address this issue, we propose a novel feature selection method named Feature Selection considering Shared Common Mode between features and labels (SCMFS). First, we utilize Coupled Matrix Factorization (CMF) to extract the shared common mode between the feature matrix and the label matrix, considering the comprehensive data information in the two matrices. Additionally, Non-negative Matrix Factorization (NMF) is adopted to enhance the interpretability for feature selection. Extensive experiments are implemented on fifteen real-world benchmark data sets for multiple evaluation metrics, the experimental results demonstrate the classification superiority of the proposed method. |
|---|---|
| AbstractList | •A novel embedded-based multi-label feature selection method is proposed.•Our method extracts the shared common mode between features and labels.•Our method uses Non-negative Matrix Factorization to enhance the interpretability.•An optimization algorithm is proposed for our method.•Numerous experiments are conducted to demonstrate the superiority of our method.
Multi-label feature selection plays an indispensable role in multi-label learning, which eliminates irrelevant and redundant features while retaining relevant features. Most of existing multi-label feature selection methods employ two strategies to construct feature selection models: extracting label correlations to guide feature selection process and maintaining the consistency between the feature matrix and the reduced low-dimensional feature matrix. However, the data information is described by two data matrices: the feature matrix and the label matrix. Previous methods devote attention to either of the two data matrices. To address this issue, we propose a novel feature selection method named Feature Selection considering Shared Common Mode between features and labels (SCMFS). First, we utilize Coupled Matrix Factorization (CMF) to extract the shared common mode between the feature matrix and the label matrix, considering the comprehensive data information in the two matrices. Additionally, Non-negative Matrix Factorization (NMF) is adopted to enhance the interpretability for feature selection. Extensive experiments are implemented on fifteen real-world benchmark data sets for multiple evaluation metrics, the experimental results demonstrate the classification superiority of the proposed method. |
| ArticleNumber | 107344 |
| Author | Gao, Wanfu Hu, Liang Hu, Juncheng Li, Yonghao Zhang, Ping |
| Author_xml | – sequence: 1 givenname: Liang surname: Hu fullname: Hu, Liang organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China – sequence: 2 givenname: Yonghao surname: Li fullname: Li, Yonghao email: yonghao17@mails.jlu.edu.cn organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China – sequence: 3 givenname: Wanfu surname: Gao fullname: Gao, Wanfu email: gaowf@jlu.edu.cn organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China – sequence: 4 givenname: Ping surname: Zhang fullname: Zhang, Ping email: zhangping18@mails.jlu.edu.cn organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China – sequence: 5 givenname: Juncheng surname: Hu fullname: Hu, Juncheng email: jchu19@mails.jlu.edu.cn organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China |
| BookMark | eNqFkMtOwzAQRS1UJNrCH7DID6T4kYfLAglVvKQiNrC2JvaYukriynZB_D2JwooFrEa6o3M1cxZk1vseCblkdMUoq672qwMk7d9XnPIxqkVRnJA5k7XIS1bwGZlTKlguOBVnZBHjnlJWD4s5KZ-PbXJ5Cw22mUVIx4BZxBZ1cr7PPl3aZXEHAU2mfdcNUecNnpNTC23Ei5-5JG_3d6-bx3z78vC0ud3mWtAq5XxtrBFrAbVFyhqQRnINtiygKgWW3CCtkVppGq2NtlQiyDVUKCUXuqlRLMn11KuDjzGgVdolGC9LAVyrGFWjALVXkwA1ClCTgAEufsGH4DoIX_9hNxOGw2MfDoOK2mGv0bgwWFHGu78LvgFcLnpP |
| CitedBy_id | crossref_primary_10_1016_j_ins_2023_119525 crossref_primary_10_1016_j_patcog_2025_111941 crossref_primary_10_1007_s10489_023_05188_x crossref_primary_10_1016_j_knosys_2024_111789 crossref_primary_10_1007_s00521_024_10822_x crossref_primary_10_1007_s10489_022_03425_3 crossref_primary_10_1016_j_knosys_2022_108256 crossref_primary_10_1016_j_patcog_2021_108419 crossref_primary_10_1016_j_patcog_2021_108259 crossref_primary_10_1016_j_patcog_2023_109900 crossref_primary_10_1109_JBHI_2023_3302657 crossref_primary_10_1016_j_eswa_2023_122884 crossref_primary_10_1016_j_engappai_2025_112007 crossref_primary_10_1007_s11227_022_04451_1 crossref_primary_10_1016_j_patcog_2022_109074 crossref_primary_10_1109_TNNLS_2023_3241921 crossref_primary_10_1016_j_patcog_2021_108169 crossref_primary_10_1007_s10489_020_02129_w crossref_primary_10_1016_j_knosys_2020_106621 crossref_primary_10_1016_j_asoc_2025_113047 crossref_primary_10_1016_j_patcog_2022_109111 crossref_primary_10_1007_s00521_022_07924_9 crossref_primary_10_1007_s10115_025_02532_0 crossref_primary_10_1016_j_engappai_2023_107310 crossref_primary_10_1016_j_knosys_2021_107924 crossref_primary_10_1016_j_patcog_2023_109899 crossref_primary_10_1016_j_eswa_2023_122730 crossref_primary_10_1007_s13042_024_02426_7 crossref_primary_10_1016_j_neucom_2024_128392 crossref_primary_10_1016_j_patcog_2023_110154 crossref_primary_10_1109_ACCESS_2020_3015755 crossref_primary_10_1371_journal_pone_0296108 crossref_primary_10_1109_TFUZZ_2021_3053844 crossref_primary_10_3390_e23121617 crossref_primary_10_1007_s10489_022_04343_0 crossref_primary_10_1016_j_patcog_2022_109120 crossref_primary_10_1016_j_neucom_2021_02_005 crossref_primary_10_1007_s00500_023_07916_4 crossref_primary_10_1016_j_ins_2024_120662 crossref_primary_10_1007_s10489_021_02799_0 crossref_primary_10_1016_j_ins_2024_121113 crossref_primary_10_1016_j_ins_2024_120501 crossref_primary_10_3390_math11030782 crossref_primary_10_1016_j_ipm_2023_103633 crossref_primary_10_1016_j_eswa_2024_123198 crossref_primary_10_1016_j_neucom_2025_129371 crossref_primary_10_1016_j_knosys_2022_109119 crossref_primary_10_1016_j_patcog_2025_111477 crossref_primary_10_1109_TNNLS_2024_3382911 crossref_primary_10_1007_s10115_022_01747_9 crossref_primary_10_1109_TNNLS_2021_3105142 crossref_primary_10_1016_j_asoc_2025_113852 crossref_primary_10_1016_j_ipm_2025_104151 crossref_primary_10_1016_j_patcog_2021_108149 crossref_primary_10_1016_j_aej_2025_08_007 crossref_primary_10_1016_j_inffus_2024_102813 crossref_primary_10_1109_TNSRE_2024_3355488 crossref_primary_10_1016_j_knosys_2025_113062 crossref_primary_10_1109_ACCESS_2024_3411095 crossref_primary_10_1016_j_energy_2020_119174 crossref_primary_10_1016_j_knosys_2023_111363 |
| Cites_doi | 10.1016/j.patcog.2017.01.014 10.1016/j.ins.2009.06.010 10.1109/TKDE.2016.2563436 10.1016/j.eswa.2018.05.029 10.1016/j.patcog.2016.11.003 10.1109/TPAMI.2014.2339815 10.1016/j.patcog.2017.09.036 10.1109/TKDE.2017.2785795 10.1109/TKDE.2016.2515613 10.1109/TKDE.2018.2847685 10.1109/TCYB.2017.2663838 10.1038/44565 10.1016/j.patcog.2018.02.020 10.1016/j.asoc.2017.11.006 10.1016/j.patcog.2015.04.009 10.1016/j.ins.2014.05.042 10.1109/TPAMI.2005.159 10.1145/2601434 10.1109/TNNLS.2017.2740341 10.1145/3136625 10.1186/1471-2105-10-246 10.1016/j.eswa.2013.09.023 10.1016/j.patcog.2019.06.004 10.1109/TCYB.2013.2265601 10.1109/TNNLS.2016.2551724 10.1109/TKDE.2013.39 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patcog.2020.107344 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| ExternalDocumentID | 10_1016_j_patcog_2020_107344 S0031320320301473 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-29dfd393a7fe01ba8d82caf54a653e52de07e0f8dbccdcf08ea89a6e8823cb7e3 |
| ISICitedReferencesCount | 76 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000532701300017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Sat Nov 29 07:30:55 EST 2025 Tue Nov 18 22:14:16 EST 2025 Fri Feb 23 02:47:18 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-label learning Feature selection Non-negative matrix factorization Coupled matrix factorization Classification |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-29dfd393a7fe01ba8d82caf54a653e52de07e0f8dbccdcf08ea89a6e8823cb7e3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2020_107344 crossref_primary_10_1016_j_patcog_2020_107344 elsevier_sciencedirect_doi_10_1016_j_patcog_2020_107344 |
| PublicationCentury | 2000 |
| PublicationDate | August 2020 2020-08-00 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhang, Nie, Li (bib0031) 2018; 29 Hong, Wang, Gao, Tao, Li, Wu (bib0005) 2014; 44 Nie, Huang, Cai, Ding (bib0006) 2010 Lee, Kim (bib0024) 2015; 48 Bolón-Canedo, Sánchez-Marono, Alonso-Betanzos, Benítez, Herrera (bib0008) 2014; 282 Rodrigues, Pereira, Nakamura, Costa, Yang, Souza, Papa (bib0010) 2014; 41 Gao, Hu, Zhang (bib0001) 2018; 79 Peng, Long, Ding (bib0007) 2005; 27 Gao, Hu, Zhang, Wang (bib0009) 2018; 110 Lee, Seung (bib0014) 1999; 401 Huang, Li, Huang, Wu (bib0002) 2018; 48 Yu, Yu, Tresp (bib0037) 2005 M.L. Zhang, J.M. Pena, V. Robles, Feature selection for multi-label naive bayes classification, Inf. Sci. 179(19) 3218–3229. Van Deun, Smilde, van der Werf, Kiers, Van Mechelen (bib0013) 2009; 10 Mafarja, Mirjalili (bib0011) 2018; 62 Yan, Yang, Yang (bib0015) 2016; 28 Zhang, Zhou (bib0038) 2014; 26 Xu, Wang, An, Wei, Ruan (bib0018) 2018 Sheikhpour, Sarram, Gharaghani, Chahooki (bib0023) 2017; 64 Essid, Ozerov (bib0020) 2014 Zhang, Wu (bib0036) 2014; 37 Kashef, Nezamabadi-pour, Nikpour (bib0033) 2018; 8 Klimt, Yang (bib0034) 2004 Tang, Kay, He (bib0004) 2016; 28 Cai, Nie, Huang (bib0016) 2013 Zhu, Kwok, Zhou (bib0019) 2017; 30 Jian, Li, Shu, Liu (bib0012) 2016 Pang, Nie, Han, Li (bib0029) 2018; 31 Lee, Kim (bib0026) 2017; 66 Gui, Sun, Ji, Tao, Tan (bib0021) 2017; 28 Zhang, Liu, Gao (bib0025) 2019; 95 Braytee, Liu, Catchpoole, Kennedy (bib0028) 2017 Huang, Nie, Huang, Ding (bib0030) 2014; 8 Zhu, Xu, Hu, Zhang, Zhao (bib0003) 2018; 74 Li, Cheng, Wang, Morstatter, Trevino, Tang, Liu (bib0022) 2018; 50 Tsoumakas, Spyromitros-Xioufis, Vilcek, Vlahavas (bib0032) 2011; 12 Ding, Zhou, He, Zha (bib0017) 2006 Lee, Kim (bib0027) 2018 Ueda, Saito (bib0035) 2003 Lee (10.1016/j.patcog.2020.107344_bib0014) 1999; 401 Yu (10.1016/j.patcog.2020.107344_bib0037) 2005 Tsoumakas (10.1016/j.patcog.2020.107344_bib0032) 2011; 12 Zhang (10.1016/j.patcog.2020.107344_bib0036) 2014; 37 Li (10.1016/j.patcog.2020.107344_bib0022) 2018; 50 Lee (10.1016/j.patcog.2020.107344_bib0026) 2017; 66 Van Deun (10.1016/j.patcog.2020.107344_bib0013) 2009; 10 Lee (10.1016/j.patcog.2020.107344_bib0027) 2018 Zhang (10.1016/j.patcog.2020.107344_bib0025) 2019; 95 Nie (10.1016/j.patcog.2020.107344_bib0006) 2010 Jian (10.1016/j.patcog.2020.107344_bib0012) 2016 Ueda (10.1016/j.patcog.2020.107344_bib0035) 2003 10.1016/j.patcog.2020.107344_bib0039 Zhu (10.1016/j.patcog.2020.107344_bib0003) 2018; 74 Peng (10.1016/j.patcog.2020.107344_bib0007) 2005; 27 Xu (10.1016/j.patcog.2020.107344_bib0018) 2018 Braytee (10.1016/j.patcog.2020.107344_bib0028) 2017 Yan (10.1016/j.patcog.2020.107344_bib0015) 2016; 28 Bolón-Canedo (10.1016/j.patcog.2020.107344_bib0008) 2014; 282 Zhang (10.1016/j.patcog.2020.107344_bib0031) 2018; 29 Gui (10.1016/j.patcog.2020.107344_bib0021) 2017; 28 Pang (10.1016/j.patcog.2020.107344_bib0029) 2018; 31 Hong (10.1016/j.patcog.2020.107344_bib0005) 2014; 44 Rodrigues (10.1016/j.patcog.2020.107344_bib0010) 2014; 41 Huang (10.1016/j.patcog.2020.107344_bib0030) 2014; 8 Lee (10.1016/j.patcog.2020.107344_bib0024) 2015; 48 Mafarja (10.1016/j.patcog.2020.107344_bib0011) 2018; 62 Kashef (10.1016/j.patcog.2020.107344_bib0033) 2018; 8 Sheikhpour (10.1016/j.patcog.2020.107344_bib0023) 2017; 64 Tang (10.1016/j.patcog.2020.107344_bib0004) 2016; 28 Cai (10.1016/j.patcog.2020.107344_bib0016) 2013 Gao (10.1016/j.patcog.2020.107344_bib0001) 2018; 79 Huang (10.1016/j.patcog.2020.107344_bib0002) 2018; 48 Ding (10.1016/j.patcog.2020.107344_bib0017) 2006 Klimt (10.1016/j.patcog.2020.107344_bib0034) 2004 Zhu (10.1016/j.patcog.2020.107344_bib0019) 2017; 30 Essid (10.1016/j.patcog.2020.107344_bib0020) 2014 Gao (10.1016/j.patcog.2020.107344_bib0009) 2018; 110 Zhang (10.1016/j.patcog.2020.107344_bib0038) 2014; 26 |
| References_xml | – volume: 95 start-page: 72 year: 2019 end-page: 82 ident: bib0025 article-title: Distinguishing two types of labels for multi-label feature selection publication-title: Pattern Recognit. – volume: 29 start-page: 3913 year: 2018 end-page: 3918 ident: bib0031 article-title: Self-weighted supervised discriminative feature selection publication-title: IEEE Trans. Neural. Netw. Learn. Syst. – volume: 26 start-page: 1819 year: 2014 end-page: 1837 ident: bib0038 article-title: A review on multi-label learning algorithms publication-title: IEEE Trans. Knowl. Data. Eng. – year: 2014 ident: bib0020 article-title: A tutorial on nonnegative matrix factorisation with applications to audiovisual content analysis, IEEE International Conference on Multimedia and Expo – volume: 12 start-page: 2411 year: 2011 end-page: 2414 ident: bib0032 article-title: Mulan: a java library for multi-label learning publication-title: Journal of Machine Learning Research – start-page: 783 year: 2018 end-page: 792 ident: bib0018 article-title: Semi-supervised multi-label feature selection by preserving feature-label space consistency publication-title: Proceedings of the 27th ACM International Conference on Information and Knowledge Management – volume: 31 start-page: 880 year: 2018 end-page: 893 ident: bib0029 article-title: Efficient feature selection via publication-title: IEEE Trans. Knowl. Data. Eng. – start-page: 1813 year: 2010 end-page: 1821 ident: bib0006 article-title: Efficient and robust feature selection via joint publication-title: Advances in neural information processing systems – volume: 48 start-page: 2761 year: 2015 end-page: 2771 ident: bib0024 article-title: Fast multi-label feature selection based on information-theoretic feature ranking publication-title: Pattern Recognit. – volume: 10 start-page: 246 year: 2009 ident: bib0013 article-title: A structured overview of simultaneous component based data integration publication-title: BMC Bioinformatics – volume: 30 start-page: 1081 year: 2017 end-page: 1094 ident: bib0019 article-title: Multi-label learning with global and local label correlation publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 1627 year: 2016 end-page: 1633 ident: bib0012 article-title: Multi-label informed feature selection publication-title: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) – volume: 28 start-page: 1327 year: 2016 end-page: 1339 ident: bib0015 article-title: Robust joint feature weights learning framework publication-title: IEEE Trans. Knowl. Data. Eng. – start-page: 1 year: 2018 end-page: 15 ident: bib0027 article-title: Scalable multilabel learning based on feature and label dimensionality reduction publication-title: Complexity – volume: 8 start-page: 11 year: 2014 ident: bib0030 article-title: Robust manifold nonnegative matrix factorization publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD) – volume: 74 start-page: 488 year: 2018 end-page: 502 ident: bib0003 article-title: Multi-label feature selection with missing labels publication-title: Pattern Recognit. – start-page: 281 year: 2006 end-page: 288 ident: bib0017 article-title: R 1-pca: rotational invariant l 1-norm principal component analysis for robust subspace factorization publication-title: Proceedings of the 23rd international conference on Machine learning – volume: 401 start-page: 788 year: 1999 ident: bib0014 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature – volume: 28 start-page: 1490 year: 2017 end-page: 1507 ident: bib0021 article-title: Feature selection based on structured sparsity: acomprehensive study publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 50 start-page: 94 year: 2018 ident: bib0022 article-title: Feature selection: a data perspective publication-title: ACM Computing Surveys (CSUR) – volume: 282 start-page: 111 year: 2014 end-page: 135 ident: bib0008 article-title: A review of microarray datasets and applied feature selection methods publication-title: Inf. Sci. – volume: 41 start-page: 2250 year: 2014 end-page: 2258 ident: bib0010 article-title: A wrapper approach for feature selection based on bat algorithm and optimum-path forest publication-title: Expert Syst. Appl. – start-page: 258 year: 2005 end-page: 265 ident: bib0037 article-title: Multi-label informed latent semantic indexing publication-title: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval – volume: 62 start-page: 441 year: 2018 end-page: 453 ident: bib0011 article-title: Whale optimization approaches for wrapper feature selection publication-title: Appl Soft Comput – volume: 48 start-page: 876 year: 2018 end-page: 889 ident: bib0002 article-title: Joint feature selection and classification for multilabel learning publication-title: IEEE Trans. Cybern. – volume: 28 start-page: 2508 year: 2016 end-page: 2521 ident: bib0004 article-title: Toward optimal feature selection in naive bayes for text categorization publication-title: IEEE Trans. Knowl. Data Eng. – volume: 44 start-page: 669 year: 2014 end-page: 680 ident: bib0005 article-title: Image annotation by multiple-instance learning with discriminative feature mapping and selection publication-title: IEEE Trans. Cybern. – start-page: 217 year: 2004 end-page: 226 ident: bib0034 article-title: The enron corpus: A new dataset for email classification research publication-title: Proceedings of theEuropean Conference on Machine Learning – start-page: 737 year: 2003 end-page: 744 ident: bib0035 article-title: Parametric mixture models for multi-labeled text publication-title: Advances in neural information processing systems – start-page: 1649 year: 2017 end-page: 1656 ident: bib0028 article-title: Multi-label feature selection using correlation information publication-title: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management – volume: 37 start-page: 107 year: 2014 end-page: 120 ident: bib0036 article-title: Lift: multi-label learning with label-specific features publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 79 start-page: 328 year: 2018 end-page: 339 ident: bib0001 article-title: Class-specific mutual information variation for feature selection publication-title: Pattern Recognit. – volume: 66 start-page: 342 year: 2017 end-page: 352 ident: bib0026 article-title: Scls: multi-label feature selection based on scalable criterion for large label set publication-title: Pattern Recognit. – volume: 8 start-page: e1240 year: 2018 ident: bib0033 article-title: Multilabel feature selection: a comprehensive review and guiding experiments publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 110 start-page: 11 year: 2018 end-page: 19 ident: bib0009 article-title: Feature selection by integrating two groups of feature evaluation criteria publication-title: Expert Syst. Appl. – volume: 64 start-page: 141 year: 2017 end-page: 158 ident: bib0023 article-title: A survey on semi-supervised feature selection methods publication-title: Pattern Recognit. – year: 2013 ident: bib0016 article-title: Exact top-k feature selection via l2, 0-norm constraint publication-title: Proceedings of the twenty-third international joint conference on artificial intelligence – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: bib0007 article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence – reference: M.L. Zhang, J.M. Pena, V. Robles, Feature selection for multi-label naive bayes classification, Inf. Sci. 179(19) 3218–3229. – volume: 66 start-page: 342 year: 2017 ident: 10.1016/j.patcog.2020.107344_bib0026 article-title: Scls: multi-label feature selection based on scalable criterion for large label set publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.01.014 – ident: 10.1016/j.patcog.2020.107344_bib0039 doi: 10.1016/j.ins.2009.06.010 – volume: 28 start-page: 2508 issue: 9 year: 2016 ident: 10.1016/j.patcog.2020.107344_bib0004 article-title: Toward optimal feature selection in naive bayes for text categorization publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2563436 – volume: 110 start-page: 11 year: 2018 ident: 10.1016/j.patcog.2020.107344_bib0009 article-title: Feature selection by integrating two groups of feature evaluation criteria publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.05.029 – volume: 64 start-page: 141 year: 2017 ident: 10.1016/j.patcog.2020.107344_bib0023 article-title: A survey on semi-supervised feature selection methods publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.11.003 – volume: 37 start-page: 107 issue: 1 year: 2014 ident: 10.1016/j.patcog.2020.107344_bib0036 article-title: Lift: multi-label learning with label-specific features publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2014.2339815 – volume: 74 start-page: 488 year: 2018 ident: 10.1016/j.patcog.2020.107344_bib0003 article-title: Multi-label feature selection with missing labels publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.09.036 – volume: 30 start-page: 1081 issue: 6 year: 2017 ident: 10.1016/j.patcog.2020.107344_bib0019 article-title: Multi-label learning with global and local label correlation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2785795 – volume: 28 start-page: 1327 issue: 5 year: 2016 ident: 10.1016/j.patcog.2020.107344_bib0015 article-title: Robust joint feature weights learning framework publication-title: IEEE Trans. Knowl. Data. Eng. doi: 10.1109/TKDE.2016.2515613 – volume: 31 start-page: 880 issue: 5 year: 2018 ident: 10.1016/j.patcog.2020.107344_bib0029 article-title: Efficient feature selection via l_{2, 0}-norm constrained sparse regression publication-title: IEEE Trans. Knowl. Data. Eng. doi: 10.1109/TKDE.2018.2847685 – volume: 48 start-page: 876 issue: 3 year: 2018 ident: 10.1016/j.patcog.2020.107344_bib0002 article-title: Joint feature selection and classification for multilabel learning publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2663838 – volume: 12 start-page: 2411 issue: 7 year: 2011 ident: 10.1016/j.patcog.2020.107344_bib0032 article-title: Mulan: a java library for multi-label learning publication-title: Journal of Machine Learning Research – start-page: 1649 year: 2017 ident: 10.1016/j.patcog.2020.107344_bib0028 article-title: Multi-label feature selection using correlation information – volume: 401 start-page: 788 issue: 6755 year: 1999 ident: 10.1016/j.patcog.2020.107344_bib0014 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 79 start-page: 328 year: 2018 ident: 10.1016/j.patcog.2020.107344_bib0001 article-title: Class-specific mutual information variation for feature selection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.02.020 – volume: 62 start-page: 441 year: 2018 ident: 10.1016/j.patcog.2020.107344_bib0011 article-title: Whale optimization approaches for wrapper feature selection publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.11.006 – volume: 48 start-page: 2761 issue: 9 year: 2015 ident: 10.1016/j.patcog.2020.107344_bib0024 article-title: Fast multi-label feature selection based on information-theoretic feature ranking publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.04.009 – volume: 282 start-page: 111 year: 2014 ident: 10.1016/j.patcog.2020.107344_bib0008 article-title: A review of microarray datasets and applied feature selection methods publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.05.042 – start-page: 783 year: 2018 ident: 10.1016/j.patcog.2020.107344_bib0018 article-title: Semi-supervised multi-label feature selection by preserving feature-label space consistency – volume: 8 start-page: e1240 issue: 2 year: 2018 ident: 10.1016/j.patcog.2020.107344_bib0033 article-title: Multilabel feature selection: a comprehensive review and guiding experiments publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 10.1016/j.patcog.2020.107344_bib0007 article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence doi: 10.1109/TPAMI.2005.159 – volume: 8 start-page: 11 issue: 3 year: 2014 ident: 10.1016/j.patcog.2020.107344_bib0030 article-title: Robust manifold nonnegative matrix factorization publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD) doi: 10.1145/2601434 – volume: 29 start-page: 3913 issue: 8 year: 2018 ident: 10.1016/j.patcog.2020.107344_bib0031 article-title: Self-weighted supervised discriminative feature selection publication-title: IEEE Trans. Neural. Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2740341 – start-page: 258 year: 2005 ident: 10.1016/j.patcog.2020.107344_bib0037 article-title: Multi-label informed latent semantic indexing – year: 2014 ident: 10.1016/j.patcog.2020.107344_bib0020 – volume: 50 start-page: 94 issue: 6 year: 2018 ident: 10.1016/j.patcog.2020.107344_bib0022 article-title: Feature selection: a data perspective publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3136625 – start-page: 217 year: 2004 ident: 10.1016/j.patcog.2020.107344_bib0034 article-title: The enron corpus: A new dataset for email classification research – start-page: 1 year: 2018 ident: 10.1016/j.patcog.2020.107344_bib0027 article-title: Scalable multilabel learning based on feature and label dimensionality reduction publication-title: Complexity – volume: 10 start-page: 246 issue: 1 year: 2009 ident: 10.1016/j.patcog.2020.107344_bib0013 article-title: A structured overview of simultaneous component based data integration publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-246 – start-page: 1813 year: 2010 ident: 10.1016/j.patcog.2020.107344_bib0006 article-title: Efficient and robust feature selection via joint l2, 1-norms minimization – volume: 41 start-page: 2250 issue: 5 year: 2014 ident: 10.1016/j.patcog.2020.107344_bib0010 article-title: A wrapper approach for feature selection based on bat algorithm and optimum-path forest publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.09.023 – start-page: 281 year: 2006 ident: 10.1016/j.patcog.2020.107344_bib0017 article-title: R 1-pca: rotational invariant l 1-norm principal component analysis for robust subspace factorization – volume: 95 start-page: 72 year: 2019 ident: 10.1016/j.patcog.2020.107344_bib0025 article-title: Distinguishing two types of labels for multi-label feature selection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.06.004 – volume: 44 start-page: 669 issue: 5 year: 2014 ident: 10.1016/j.patcog.2020.107344_bib0005 article-title: Image annotation by multiple-instance learning with discriminative feature mapping and selection publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2265601 – volume: 28 start-page: 1490 issue: 7 year: 2017 ident: 10.1016/j.patcog.2020.107344_bib0021 article-title: Feature selection based on structured sparsity: acomprehensive study publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2551724 – volume: 26 start-page: 1819 issue: 8 year: 2014 ident: 10.1016/j.patcog.2020.107344_bib0038 article-title: A review on multi-label learning algorithms publication-title: IEEE Trans. Knowl. Data. Eng. doi: 10.1109/TKDE.2013.39 – start-page: 737 year: 2003 ident: 10.1016/j.patcog.2020.107344_bib0035 article-title: Parametric mixture models for multi-labeled text – start-page: 1627 year: 2016 ident: 10.1016/j.patcog.2020.107344_bib0012 article-title: Multi-label informed feature selection – year: 2013 ident: 10.1016/j.patcog.2020.107344_bib0016 article-title: Exact top-k feature selection via l2, 0-norm constraint |
| SSID | ssj0017142 |
| Score | 2.5692377 |
| Snippet | •A novel embedded-based multi-label feature selection method is proposed.•Our method extracts the shared common mode between features and labels.•Our method... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107344 |
| SubjectTerms | Classification Coupled matrix factorization Feature selection Multi-label learning Non-negative matrix factorization |
| Title | Multi-label feature selection with shared common mode |
| URI | https://dx.doi.org/10.1016/j.patcog.2020.107344 |
| Volume | 104 |
| WOSCitedRecordID | wos000532701300017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JTxsxFLZo6KEXltKKXT70hhzNjMdjzxEhECCEcgA1nEaOFyhCk4gkiJ_P8zKTQCpaDlys0cib_FlvsT-_h9AvWrJBUSSOxKAZya2yRIDVQKxQ3DCmbWp91pILfnkp-v2yF3Nsjn06AV7X4vm5HH0q1PAPwHZPZz8Ad9sp_IBvAB1KgB3K_wLeP6klAK55OLDGx-08GPtsNw7pQEm_87RzGB1m5ZPhzNuoPR9y0z1zidyi2U396TT48TLqO8fk8XSAm2F9eyeHLZtH-hPY37K204Wj6V6jLeNhQzajurUClKaEZgl9JUCTfE4Egj9JQ0jHBekcDgruuyPQMsPbrhugO6v-Ohj2GyXVUgcbVtp9FXqpXC9V6OULWs44K0UHLR-eHffP2-sknuYhbHycffOG0hP9Fmfzdxtlzu64WkMr0WHAhwHodbRk6u9otUnGgaNs3kBsDnccccct7tjhjgPuOOCOHe4_0PXJ8dXRKYk5MYgC525CslJbTUsquTVJOpBCi0xJy3JZMGpYpk3CTWKFHiillU2EkaKUhQFHiqoBN_Qn6tTD2mwiLBOeSQ0aL1Xgg1MhmbRlyiRLdZHlMt9CtFmFSsWA8S5vyUP1HgZbiLStRiFgyj_q82aBq2j0BWOugl3zbsvtD460g77NtvQu6kwep2YPfVVPkz_jx_24ZV4ATsJ4uw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-label+feature+selection+with+shared+common+mode&rft.jtitle=Pattern+recognition&rft.au=Hu%2C+Liang&rft.au=Li%2C+Yonghao&rft.au=Gao%2C+Wanfu&rft.au=Zhang%2C+Ping&rft.date=2020-08-01&rft.issn=0031-3203&rft.volume=104&rft.spage=107344&rft_id=info:doi/10.1016%2Fj.patcog.2020.107344&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2020_107344 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |