A hybrid Intrusion Detection System based on Sparse autoencoder and Deep Neural Network
A large number of attacks are launched daily in the era of the internet and with a large number of users. Nowadays, effective detection of numerous attacks using the Intrusion Detection System (IDS) is an emerging research technique. Machine learning methodologies show effective results in intrusion...
Gespeichert in:
| Veröffentlicht in: | Computer communications Jg. 180; S. 77 - 88 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.12.2021
|
| Schlagworte: | |
| ISSN: | 0140-3664 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A large number of attacks are launched daily in the era of the internet and with a large number of users. Nowadays, effective detection of numerous attacks using the Intrusion Detection System (IDS) is an emerging research technique. Machine learning methodologies show effective results in intrusion detection system. We proposed a two-stage hybrid methodology for intrusion detection. In the first stage, the unsupervised Sparse autoencoder (SAE) with smoothed l1 regularization. We employ smoothed l1 regularization to enforce a sparsity of autoencoder. The smoothed l1 regularization is indeed able to learn sparse representations of features. In the second stage, the Deep Neural Network (DNN) was used to predict and classify attacks. The classifier classifies multi attack classification from the extracted features. Unsupervised SAE was optimized to train an efficient model. The experimental results demonstrate that proposed model better than the conventional models in terms of overall performance in detection rate and low false positive rate. The proposed model was assessed on the datasets KDDCup99, NSL-KDD and UNSW-NB15. The model attained the accuracy 99.98% , and detection rate 99.99% on UNSW-NB15 dataset. |
|---|---|
| AbstractList | A large number of attacks are launched daily in the era of the internet and with a large number of users. Nowadays, effective detection of numerous attacks using the Intrusion Detection System (IDS) is an emerging research technique. Machine learning methodologies show effective results in intrusion detection system. We proposed a two-stage hybrid methodology for intrusion detection. In the first stage, the unsupervised Sparse autoencoder (SAE) with smoothed l1 regularization. We employ smoothed l1 regularization to enforce a sparsity of autoencoder. The smoothed l1 regularization is indeed able to learn sparse representations of features. In the second stage, the Deep Neural Network (DNN) was used to predict and classify attacks. The classifier classifies multi attack classification from the extracted features. Unsupervised SAE was optimized to train an efficient model. The experimental results demonstrate that proposed model better than the conventional models in terms of overall performance in detection rate and low false positive rate. The proposed model was assessed on the datasets KDDCup99, NSL-KDD and UNSW-NB15. The model attained the accuracy 99.98% , and detection rate 99.99% on UNSW-NB15 dataset. |
| Author | Narayana Rao, K. P.V.G.D., Prasad Reddy Venkata Rao, K. |
| Author_xml | – sequence: 1 givenname: K. surname: Narayana Rao fullname: Narayana Rao, K. email: narayanarao2@gmail.com – sequence: 2 givenname: K. surname: Venkata Rao fullname: Venkata Rao, K. email: professor_venkat@yahoo.com – sequence: 3 givenname: Prasad Reddy surname: P.V.G.D. fullname: P.V.G.D., Prasad Reddy email: prof.prasadreddy@gmail.com |
| BookMark | eNqFkM9OwzAMh3MYEtvgDTjkBVqcpu0WDkjT-DdpggMgjlGauCJja6YkBe3tSTVOHECy9LMPn2V_EzLqXIeEXDDIGbD6cpNrt0uVF1CwHOY5FPWIjIGVkPG6Lk_JJIQNAJSzGR-TtwV9PzTeGrrqou-DdR29wYg6Dt3zIUTc0UYFNHSY98oHpKqPDjvtDHqqOpMA3NNH7L3apohfzn-ckZNWbQOe_-SUvN7dviwfsvXT_Wq5WGeaQx2zotacG42VwkLxCivRQFUJVc5YIYRmwFmrlWLIBRe1Eo3RVdkWFUMjoOSGT8nVca_2LgSPrdQ2quH46JXdSgZy0CI38qhFDlokzGXSkuDyF7z3dqf84T_s-ohheuzTopdB2-QDjfVJnDTO_r3gG_1Gg6U |
| CitedBy_id | crossref_primary_10_3390_electronics13091711 crossref_primary_10_3390_s24227257 crossref_primary_10_3390_s25010130 crossref_primary_10_3390_iot4030016 crossref_primary_10_1016_j_compeleceng_2025_110318 crossref_primary_10_1016_j_eswa_2023_121758 crossref_primary_10_1007_s10207_023_00682_2 crossref_primary_10_1007_s10586_024_04616_y crossref_primary_10_1109_ACCESS_2024_3360691 crossref_primary_10_1016_j_cose_2023_103419 crossref_primary_10_3390_app12052351 crossref_primary_10_1007_s10586_024_04487_3 crossref_primary_10_1049_wss2_12100 crossref_primary_10_1109_IOTM_001_2100179 crossref_primary_10_3390_sym15030568 crossref_primary_10_1016_j_future_2022_02_011 crossref_primary_10_3233_JIFS_220444 crossref_primary_10_1007_s11220_023_00428_3 crossref_primary_10_1016_j_future_2024_04_005 crossref_primary_10_3390_e25050820 crossref_primary_10_3390_electronics12173731 crossref_primary_10_1007_s10586_024_04673_3 crossref_primary_10_1016_j_entcom_2023_100632 crossref_primary_10_1109_ACCESS_2023_3306452 crossref_primary_10_1155_2022_7364704 crossref_primary_10_4218_etrij_2023_0506 crossref_primary_10_1007_s11042_023_17300_x crossref_primary_10_1016_j_compeleceng_2024_109863 crossref_primary_10_1007_s10207_023_00725_8 crossref_primary_10_1016_j_meadig_2025_100015 crossref_primary_10_1016_j_comcom_2022_03_009 crossref_primary_10_1007_s11042_024_19516_x crossref_primary_10_1080_01431161_2024_2313995 crossref_primary_10_1109_ACCESS_2022_3221400 crossref_primary_10_1155_int_8884584 crossref_primary_10_1016_j_comcom_2022_07_027 crossref_primary_10_1016_j_cose_2025_104539 crossref_primary_10_1016_j_atech_2024_100433 crossref_primary_10_1007_s10207_023_00694_y crossref_primary_10_1016_j_asoc_2025_113498 crossref_primary_10_1109_ACCESS_2023_3277397 crossref_primary_10_1007_s12083_025_02093_7 crossref_primary_10_1093_comjnl_bxae051 crossref_primary_10_1007_s00500_023_09408_x crossref_primary_10_1016_j_compchemeng_2023_108359 crossref_primary_10_32604_cmc_2022_026457 crossref_primary_10_1016_j_iswa_2025_200543 crossref_primary_10_1016_j_comnet_2025_111436 crossref_primary_10_1016_j_asoc_2023_110907 crossref_primary_10_1016_j_cose_2023_103432 crossref_primary_10_1016_j_knosys_2022_109557 crossref_primary_10_3390_fi16010025 crossref_primary_10_48084_etasr_11034 crossref_primary_10_1016_j_comcom_2022_09_007 crossref_primary_10_1002_cpe_7952 crossref_primary_10_48084_etasr_11113 crossref_primary_10_1016_j_future_2024_107531 crossref_primary_10_1016_j_cose_2025_104367 crossref_primary_10_1016_j_cose_2024_103893 crossref_primary_10_1016_j_asoc_2025_113420 crossref_primary_10_3233_JIFS_236400 crossref_primary_10_1016_j_jnca_2022_103560 crossref_primary_10_1080_23307706_2023_2212684 crossref_primary_10_3233_IDT_220215 crossref_primary_10_1007_s11276_023_03495_2 |
| Cites_doi | 10.3390/s17091967 10.1007/s00521-015-1964-2 10.1016/S0167-4048(02)00514-X 10.1007/s00521-016-2418-1 10.1016/j.eswa.2012.07.009 10.1016/j.eswa.2014.11.009 10.1109/TETCI.2017.2772792 10.1109/ACCESS.2017.2762418 10.1137/100818327 10.1109/ACCESS.2018.2869577 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.comcom.2021.08.026 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 88 |
| ExternalDocumentID | 10_1016_j_comcom_2021_08_026 S0140366421003285 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SSH SST SSV SSZ T5K WH7 ZMT ~G- 07C 29F 77I 9DU AAQXK AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD F0J FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW TAE UHS VH1 VOH WUQ XPP ZY4 ~HD |
| ID | FETCH-LOGICAL-c306t-26c33dce5ae2a35e59b0559a471299c1031fcaa1e39396a9bdc54f251ed9043d3 |
| ISICitedReferencesCount | 76 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704054300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0140-3664 |
| IngestDate | Tue Nov 18 22:24:22 EST 2025 Sat Nov 29 07:20:47 EST 2025 Sun Apr 06 06:54:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Intrusion Detection Feature selection Sparse autoencoder Deep Neural Network |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-26c33dce5ae2a35e59b0559a471299c1031fcaa1e39396a9bdc54f251ed9043d3 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_comcom_2021_08_026 crossref_primary_10_1016_j_comcom_2021_08_026 elsevier_sciencedirect_doi_10_1016_j_comcom_2021_08_026 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 2021-12-00 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer communications |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Beck, Teboulle (b23) 2012 Farahnakian, Heikkonen (b14) 2018 Mirza, Cosan (b19) 2018 Reddy, Ramadevi, Sunitha (b5) 2016 Scholar, Rao, P.V.G.D (b7) 2019 Yin, Zhu, Fei, He (b9) 2017 Moustafa, Slay (b26) 2015 Li, Ma, Jiao (b35) 2015; 9 Scarfone, Mell (b1) 2007 Vinayakumar, Alazab, Soman, Poornachandran, Al-Nemrat, Venkatraman (b13) 2019 Yang, Zheng, Wu, Yang, Wang (b31) 2020 Khan, Gumaei, Derhab, Hussain (b20) 2019 Koc, Mazzuchi, Sarkani (b4) 2012 Kim, Kim, Thu, Kim (b10) 2016 (b12) 2019 Zhang, Chen (b16) 2017 Lopez-Martin, Carro, Sanchez-Esguevillas, Lloret (b28) 2017 Stolfo, Fan, Lee, Prodromidis, Chan (b25) 2000 Faraj Al-Janabi, Saeed (b6) 2011 Niyaz, Sun, Javaid, Alam (b15) 2015 Aslahi-Shahri others (b18) 2016 Liao, Vemuri (b3) 2002 Eesa, Orman, Abdulazeez Brifcani (b34) 2015; 42 Nguyen, Nguyen, Choi, Kim (b8) 2018 Ashok, Lakshmi, Rani, Kumar (b36) 2011 Baig, Awais, El-Alfy (b30) 2017 Rezvy, Petridis, Lasebae, Zebin (b22) 2019 Vinayakumar, Soman, Poornachandrany (b32) 2017 Le, Kim, Kim (b11) 2017 Krizhevsky, Hinton (b24) 2010 Kevric, Jukic, Subasi (b29) 2017 El-Alfy, Al-Utaibi (b2) 2017 Li, Zhang (b33) 2019 Al-Qatf, Lasheng, Al-Habib, Al-Sabahi (b21) 2018 Potluri, Henry, Diedrich (b17) 2017 Shone, Ngoc, Phai, Shi (b27) 2018 Baig (10.1016/j.comcom.2021.08.026_b30) 2017 Stolfo (10.1016/j.comcom.2021.08.026_b25) 2000 Al-Qatf (10.1016/j.comcom.2021.08.026_b21) 2018 Nguyen (10.1016/j.comcom.2021.08.026_b8) 2018 Li (10.1016/j.comcom.2021.08.026_b35) 2015; 9 Shone (10.1016/j.comcom.2021.08.026_b27) 2018 Vinayakumar (10.1016/j.comcom.2021.08.026_b32) 2017 Scarfone (10.1016/j.comcom.2021.08.026_b1) 2007 (10.1016/j.comcom.2021.08.026_b12) 2019 Krizhevsky (10.1016/j.comcom.2021.08.026_b24) 2010 Aslahi-Shahri others (10.1016/j.comcom.2021.08.026_b18) 2016 Vinayakumar (10.1016/j.comcom.2021.08.026_b13) 2019 Moustafa (10.1016/j.comcom.2021.08.026_b26) 2015 Kevric (10.1016/j.comcom.2021.08.026_b29) 2017 Rezvy (10.1016/j.comcom.2021.08.026_b22) 2019 Lopez-Martin (10.1016/j.comcom.2021.08.026_b28) 2017 Khan (10.1016/j.comcom.2021.08.026_b20) 2019 Yang (10.1016/j.comcom.2021.08.026_b31) 2020 Zhang (10.1016/j.comcom.2021.08.026_b16) 2017 Eesa (10.1016/j.comcom.2021.08.026_b34) 2015; 42 Scholar (10.1016/j.comcom.2021.08.026_b7) 2019 El-Alfy (10.1016/j.comcom.2021.08.026_b2) 2017 Faraj Al-Janabi (10.1016/j.comcom.2021.08.026_b6) 2011 Farahnakian (10.1016/j.comcom.2021.08.026_b14) 2018 Liao (10.1016/j.comcom.2021.08.026_b3) 2002 Yin (10.1016/j.comcom.2021.08.026_b9) 2017 Reddy (10.1016/j.comcom.2021.08.026_b5) 2016 Mirza (10.1016/j.comcom.2021.08.026_b19) 2018 Koc (10.1016/j.comcom.2021.08.026_b4) 2012 Le (10.1016/j.comcom.2021.08.026_b11) 2017 Beck (10.1016/j.comcom.2021.08.026_b23) 2012 Ashok (10.1016/j.comcom.2021.08.026_b36) 2011 Potluri (10.1016/j.comcom.2021.08.026_b17) 2017 Kim (10.1016/j.comcom.2021.08.026_b10) 2016 Niyaz (10.1016/j.comcom.2021.08.026_b15) 2015 Li (10.1016/j.comcom.2021.08.026_b33) 2019 |
| References_xml | – year: 2000 ident: b25 article-title: Cost-based modeling for fraud and intrusion detection: Results from the JAM project – year: 2012 ident: b4 article-title: A network intrusion detection system based on a Hidden Naïve Bayes multiclass classifier publication-title: Expert Syst. Appl. – year: 2019 ident: b13 article-title: Deep learning approach for intelligent intrusion detection system publication-title: IEEE Access – year: 2010 ident: b24 article-title: Convolutional deep belief networks on cifar-10 – year: 2018 ident: b19 article-title: Computer network intrusion detection using sequential LSTM Neural Networks autoencoders – year: 2019 ident: b7 article-title: A comprehensive survey of machine learning for intrusion detection publication-title: Int. J. Res. Advent Technol. – year: 2015 ident: b26 article-title: UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set) – year: 2016 ident: b5 article-title: Effective discriminant function for intrusion detection using SVM – year: 2011 ident: b6 article-title: A neural network based anomaly intrusion detection system – year: 2017 ident: b28 article-title: Conditional variational autoencoder for prediction and feature recovery applied to intrusion detection in iot publication-title: Sensors (Switzerland) – year: 2016 ident: b18 article-title: A hybrid method consisting of GA and SVM for intrusion detection system publication-title: Neural Comput. Appl. – year: 2019 ident: b33 article-title: An intrusion detection model based on multi-scale CNN – year: 2015 ident: b15 article-title: A deep learning approach for network intrusion detection system – year: 2002 ident: b3 article-title: Use of k-nearest neighbor classifier for intrusion detection publication-title: Comput. Secur. – year: 2020 ident: b31 article-title: Network intrusion detection based on supervised adversarial variational auto-encoder with regularization publication-title: IEEE Access – year: 2016 ident: b10 article-title: Long short term memory recurrent neural network classifier for intrusion detection – year: 2017 ident: b30 article-title: A multiclass cascade of artificial neural network for network intrusion detection – volume: 42 start-page: 2670 year: 2015 end-page: 2679 ident: b34 article-title: A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems publication-title: Expert Syst. Appl. – start-page: 23 year: 2011 end-page: 27 ident: b36 article-title: Optimized feature selection with k-means clustered triangle SVM for Intrusion Detection publication-title: 2011 Third International Conference on Advanced Computing – year: 2017 ident: b2 article-title: Learning mechanisms or anomaly-based intruson detection: Updated review – year: 2017 ident: b17 article-title: Evaluation of hybrid deep learning techniques for ensuring security in networked control systems – year: 2018 ident: b21 article-title: Deep learning approach combining sparse autoencoder with SVM for network intrusion detection publication-title: IEEE Access – year: 2018 ident: b14 article-title: A deep auto-encoder based approach for intrusion detection system – year: 2017 ident: b11 article-title: An effective intrusion detection classifier using long short-term memory with gradient descent optimization – volume: 9 start-page: 205 year: 2015 end-page: 216 ident: b35 article-title: A hybrid malicious code detection method based on deep learning publication-title: Int. J. Secur. Appl. – year: 2017 ident: b32 article-title: Applying convolutional neural network for network intrusion detection – year: 2012 ident: b23 article-title: Smoothing and first order methods: A unified framework publication-title: SIAM J. Optim. – year: 2018 ident: b8 article-title: Design and implementation of intrusion detection system using convolutional neural network for DoS detection – year: 2019 ident: b12 article-title: An intrusion detection model based on deep long short term recurrent neural network publication-title: Int. J. Eng. Adv. Technol. – year: 2019 ident: b20 article-title: TSDL: A two-stage deep learning model for efficient network intrusion detection publication-title: IEEE Access – year: 2018 ident: b27 article-title: A deep learning approach to network intrusion detection publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – year: 2017 ident: b29 article-title: An effective combining classifier approach using tree algorithms for network intrusion detection publication-title: Neural Comput. Appl. – year: 2007 ident: b1 article-title: Guide to intrusion detection and prevention systems (IDPS) publication-title: Natl. Inst. Stand. Technol. – year: 2017 ident: b16 article-title: Deep learning based intelligent intrusion detection – year: 2019 ident: b22 article-title: Intrusion detection and classification with autoencoded deep neural network – year: 2017 ident: b9 article-title: A deep learning approach for intrusion detection using recurrent neural networks publication-title: IEEE Access – year: 2010 ident: 10.1016/j.comcom.2021.08.026_b24 – year: 2017 ident: 10.1016/j.comcom.2021.08.026_b28 article-title: Conditional variational autoencoder for prediction and feature recovery applied to intrusion detection in iot publication-title: Sensors (Switzerland) doi: 10.3390/s17091967 – start-page: 23 year: 2011 ident: 10.1016/j.comcom.2021.08.026_b36 article-title: Optimized feature selection with k-means clustered triangle SVM for Intrusion Detection – year: 2016 ident: 10.1016/j.comcom.2021.08.026_b18 article-title: A hybrid method consisting of GA and SVM for intrusion detection system publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1964-2 – year: 2019 ident: 10.1016/j.comcom.2021.08.026_b22 – year: 2017 ident: 10.1016/j.comcom.2021.08.026_b30 – year: 2002 ident: 10.1016/j.comcom.2021.08.026_b3 article-title: Use of k-nearest neighbor classifier for intrusion detection publication-title: Comput. Secur. doi: 10.1016/S0167-4048(02)00514-X – year: 2017 ident: 10.1016/j.comcom.2021.08.026_b11 – year: 2019 ident: 10.1016/j.comcom.2021.08.026_b12 article-title: An intrusion detection model based on deep long short term recurrent neural network publication-title: Int. J. Eng. Adv. Technol. – year: 2017 ident: 10.1016/j.comcom.2021.08.026_b2 – year: 2011 ident: 10.1016/j.comcom.2021.08.026_b6 – year: 2015 ident: 10.1016/j.comcom.2021.08.026_b26 – year: 2019 ident: 10.1016/j.comcom.2021.08.026_b7 article-title: A comprehensive survey of machine learning for intrusion detection publication-title: Int. J. Res. Advent Technol. – year: 2018 ident: 10.1016/j.comcom.2021.08.026_b8 – year: 2020 ident: 10.1016/j.comcom.2021.08.026_b31 article-title: Network intrusion detection based on supervised adversarial variational auto-encoder with regularization publication-title: IEEE Access – year: 2017 ident: 10.1016/j.comcom.2021.08.026_b16 – year: 2017 ident: 10.1016/j.comcom.2021.08.026_b29 article-title: An effective combining classifier approach using tree algorithms for network intrusion detection publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2418-1 – year: 2012 ident: 10.1016/j.comcom.2021.08.026_b4 article-title: A network intrusion detection system based on a Hidden Naïve Bayes multiclass classifier publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.07.009 – year: 2018 ident: 10.1016/j.comcom.2021.08.026_b14 – year: 2000 ident: 10.1016/j.comcom.2021.08.026_b25 – volume: 42 start-page: 2670 issue: 5 year: 2015 ident: 10.1016/j.comcom.2021.08.026_b34 article-title: A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.11.009 – year: 2007 ident: 10.1016/j.comcom.2021.08.026_b1 article-title: Guide to intrusion detection and prevention systems (IDPS) publication-title: Natl. Inst. Stand. Technol. – year: 2019 ident: 10.1016/j.comcom.2021.08.026_b20 article-title: TSDL: A two-stage deep learning model for efficient network intrusion detection publication-title: IEEE Access – year: 2018 ident: 10.1016/j.comcom.2021.08.026_b27 article-title: A deep learning approach to network intrusion detection publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2017.2772792 – year: 2018 ident: 10.1016/j.comcom.2021.08.026_b19 – year: 2017 ident: 10.1016/j.comcom.2021.08.026_b9 article-title: A deep learning approach for intrusion detection using recurrent neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2762418 – year: 2016 ident: 10.1016/j.comcom.2021.08.026_b10 – volume: 9 start-page: 205 issue: 5 year: 2015 ident: 10.1016/j.comcom.2021.08.026_b35 article-title: A hybrid malicious code detection method based on deep learning publication-title: Int. J. Secur. Appl. – year: 2017 ident: 10.1016/j.comcom.2021.08.026_b17 – year: 2012 ident: 10.1016/j.comcom.2021.08.026_b23 article-title: Smoothing and first order methods: A unified framework publication-title: SIAM J. Optim. doi: 10.1137/100818327 – year: 2019 ident: 10.1016/j.comcom.2021.08.026_b13 article-title: Deep learning approach for intelligent intrusion detection system publication-title: IEEE Access – year: 2015 ident: 10.1016/j.comcom.2021.08.026_b15 – year: 2019 ident: 10.1016/j.comcom.2021.08.026_b33 – year: 2017 ident: 10.1016/j.comcom.2021.08.026_b32 – year: 2016 ident: 10.1016/j.comcom.2021.08.026_b5 – year: 2018 ident: 10.1016/j.comcom.2021.08.026_b21 article-title: Deep learning approach combining sparse autoencoder with SVM for network intrusion detection publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2869577 |
| SSID | ssj0004773 |
| Score | 2.5773432 |
| Snippet | A large number of attacks are launched daily in the era of the internet and with a large number of users. Nowadays, effective detection of numerous attacks... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 77 |
| SubjectTerms | Deep Neural Network Feature selection Intrusion Detection Sparse autoencoder |
| Title | A hybrid Intrusion Detection System based on Sparse autoencoder and Deep Neural Network |
| URI | https://dx.doi.org/10.1016/j.comcom.2021.08.026 |
| Volume | 180 |
| WOSCitedRecordID | wos000704054300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0140-3664 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004773 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6Ftgc4oEJBFCjaAzfLUeLXeo8RtOVRRRFtQ27WeL0WlMqNUjdq_z0z3l3HKlEfBy5WYsdrx_Np9tvxzDeMfSy00InKcVkS6cCPdBr7eSkiH5AcQJQgaW5etE-PxHiczmZy0ustXS3M8lxUVXp9Lef_1dS4D41NpbOPMHc7KO7Az2h03KLZcfsgw4-8XzdUhkXBvsUVBcPQqdTatAQ3AuUezV0FvSc4nuPCVntwVV-QoiUJS5jcZD33SLcDDTg2ieJdFutaQVBC-qq8pGXnY1jADVTg_YAmEPu9745MdfUH6jUHJv1p_7D_uXFVkwVcAlVNFlb41gYlgmEnwcPFKdG9J0agfOVoBx1Xabu32Ek3XevOTWThjKxBuT10pUZwNVijnn1rVmtzDV0a21lmRslolIx6bwbJE7YZiFiiQ98cfd2ffVtV1AqTm-D-hiu6bDID_72b9aSmQ1ROttlzu8LgI4OMF6ynq5fsWUd3cof9HHGDEd5ihLcY4QYjvMEIp-8NRngHIxwxwgkj3GCEW4y8YqcH-yefvvi2w4avcKlY-0GiwrBQOgYdQBjrWOYDXGICMhakKYpagJQKYKhDGcoEZF6oOCqREutCDqKwCF-zjeqi0m8YRwaEx2FYIuOOZAlS5nEphM6VkGWcBrssdI8oU1Z-nrqgnGd3GWiX-e1ZcyO_cs_vhXv6maWQhhpmCKk7z3z7yCu9Y09XwH_PNtBaeo9tqWX9-3LxweLpL9tTlCk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+Intrusion+Detection+System+based+on+Sparse+autoencoder+and+Deep+Neural+Network&rft.jtitle=Computer+communications&rft.au=Narayana+Rao%2C+K.&rft.au=Venkata+Rao%2C+K.&rft.au=P.V.G.D.%2C+Prasad+Reddy&rft.date=2021-12-01&rft.issn=0140-3664&rft.volume=180&rft.spage=77&rft.epage=88&rft_id=info:doi/10.1016%2Fj.comcom.2021.08.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_comcom_2021_08_026 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon |