A hybrid Intrusion Detection System based on Sparse autoencoder and Deep Neural Network

A large number of attacks are launched daily in the era of the internet and with a large number of users. Nowadays, effective detection of numerous attacks using the Intrusion Detection System (IDS) is an emerging research technique. Machine learning methodologies show effective results in intrusion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer communications Jg. 180; S. 77 - 88
Hauptverfasser: Narayana Rao, K., Venkata Rao, K., P.V.G.D., Prasad Reddy
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2021
Schlagworte:
ISSN:0140-3664
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A large number of attacks are launched daily in the era of the internet and with a large number of users. Nowadays, effective detection of numerous attacks using the Intrusion Detection System (IDS) is an emerging research technique. Machine learning methodologies show effective results in intrusion detection system. We proposed a two-stage hybrid methodology for intrusion detection. In the first stage, the unsupervised Sparse autoencoder (SAE) with smoothed l1 regularization. We employ smoothed l1 regularization to enforce a sparsity of autoencoder. The smoothed l1 regularization is indeed able to learn sparse representations of features. In the second stage, the Deep Neural Network (DNN) was used to predict and classify attacks. The classifier classifies multi attack classification from the extracted features. Unsupervised SAE was optimized to train an efficient model. The experimental results demonstrate that proposed model better than the conventional models in terms of overall performance in detection rate and low false positive rate. The proposed model was assessed on the datasets KDDCup99, NSL-KDD and UNSW-NB15. The model attained the accuracy 99.98% , and detection rate 99.99% on UNSW-NB15 dataset.
AbstractList A large number of attacks are launched daily in the era of the internet and with a large number of users. Nowadays, effective detection of numerous attacks using the Intrusion Detection System (IDS) is an emerging research technique. Machine learning methodologies show effective results in intrusion detection system. We proposed a two-stage hybrid methodology for intrusion detection. In the first stage, the unsupervised Sparse autoencoder (SAE) with smoothed l1 regularization. We employ smoothed l1 regularization to enforce a sparsity of autoencoder. The smoothed l1 regularization is indeed able to learn sparse representations of features. In the second stage, the Deep Neural Network (DNN) was used to predict and classify attacks. The classifier classifies multi attack classification from the extracted features. Unsupervised SAE was optimized to train an efficient model. The experimental results demonstrate that proposed model better than the conventional models in terms of overall performance in detection rate and low false positive rate. The proposed model was assessed on the datasets KDDCup99, NSL-KDD and UNSW-NB15. The model attained the accuracy 99.98% , and detection rate 99.99% on UNSW-NB15 dataset.
Author Narayana Rao, K.
P.V.G.D., Prasad Reddy
Venkata Rao, K.
Author_xml – sequence: 1
  givenname: K.
  surname: Narayana Rao
  fullname: Narayana Rao, K.
  email: narayanarao2@gmail.com
– sequence: 2
  givenname: K.
  surname: Venkata Rao
  fullname: Venkata Rao, K.
  email: professor_venkat@yahoo.com
– sequence: 3
  givenname: Prasad Reddy
  surname: P.V.G.D.
  fullname: P.V.G.D., Prasad Reddy
  email: prof.prasadreddy@gmail.com
BookMark eNqFkM9OwzAMh3MYEtvgDTjkBVqcpu0WDkjT-DdpggMgjlGauCJja6YkBe3tSTVOHECy9LMPn2V_EzLqXIeEXDDIGbD6cpNrt0uVF1CwHOY5FPWIjIGVkPG6Lk_JJIQNAJSzGR-TtwV9PzTeGrrqou-DdR29wYg6Dt3zIUTc0UYFNHSY98oHpKqPDjvtDHqqOpMA3NNH7L3apohfzn-ckZNWbQOe_-SUvN7dviwfsvXT_Wq5WGeaQx2zotacG42VwkLxCivRQFUJVc5YIYRmwFmrlWLIBRe1Eo3RVdkWFUMjoOSGT8nVca_2LgSPrdQ2quH46JXdSgZy0CI38qhFDlokzGXSkuDyF7z3dqf84T_s-ohheuzTopdB2-QDjfVJnDTO_r3gG_1Gg6U
CitedBy_id crossref_primary_10_3390_electronics13091711
crossref_primary_10_3390_s24227257
crossref_primary_10_3390_s25010130
crossref_primary_10_3390_iot4030016
crossref_primary_10_1016_j_compeleceng_2025_110318
crossref_primary_10_1016_j_eswa_2023_121758
crossref_primary_10_1007_s10207_023_00682_2
crossref_primary_10_1007_s10586_024_04616_y
crossref_primary_10_1109_ACCESS_2024_3360691
crossref_primary_10_1016_j_cose_2023_103419
crossref_primary_10_3390_app12052351
crossref_primary_10_1007_s10586_024_04487_3
crossref_primary_10_1049_wss2_12100
crossref_primary_10_1109_IOTM_001_2100179
crossref_primary_10_3390_sym15030568
crossref_primary_10_1016_j_future_2022_02_011
crossref_primary_10_3233_JIFS_220444
crossref_primary_10_1007_s11220_023_00428_3
crossref_primary_10_1016_j_future_2024_04_005
crossref_primary_10_3390_e25050820
crossref_primary_10_3390_electronics12173731
crossref_primary_10_1007_s10586_024_04673_3
crossref_primary_10_1016_j_entcom_2023_100632
crossref_primary_10_1109_ACCESS_2023_3306452
crossref_primary_10_1155_2022_7364704
crossref_primary_10_4218_etrij_2023_0506
crossref_primary_10_1007_s11042_023_17300_x
crossref_primary_10_1016_j_compeleceng_2024_109863
crossref_primary_10_1007_s10207_023_00725_8
crossref_primary_10_1016_j_meadig_2025_100015
crossref_primary_10_1016_j_comcom_2022_03_009
crossref_primary_10_1007_s11042_024_19516_x
crossref_primary_10_1080_01431161_2024_2313995
crossref_primary_10_1109_ACCESS_2022_3221400
crossref_primary_10_1155_int_8884584
crossref_primary_10_1016_j_comcom_2022_07_027
crossref_primary_10_1016_j_cose_2025_104539
crossref_primary_10_1016_j_atech_2024_100433
crossref_primary_10_1007_s10207_023_00694_y
crossref_primary_10_1016_j_asoc_2025_113498
crossref_primary_10_1109_ACCESS_2023_3277397
crossref_primary_10_1007_s12083_025_02093_7
crossref_primary_10_1093_comjnl_bxae051
crossref_primary_10_1007_s00500_023_09408_x
crossref_primary_10_1016_j_compchemeng_2023_108359
crossref_primary_10_32604_cmc_2022_026457
crossref_primary_10_1016_j_iswa_2025_200543
crossref_primary_10_1016_j_comnet_2025_111436
crossref_primary_10_1016_j_asoc_2023_110907
crossref_primary_10_1016_j_cose_2023_103432
crossref_primary_10_1016_j_knosys_2022_109557
crossref_primary_10_3390_fi16010025
crossref_primary_10_48084_etasr_11034
crossref_primary_10_1016_j_comcom_2022_09_007
crossref_primary_10_1002_cpe_7952
crossref_primary_10_48084_etasr_11113
crossref_primary_10_1016_j_future_2024_107531
crossref_primary_10_1016_j_cose_2025_104367
crossref_primary_10_1016_j_cose_2024_103893
crossref_primary_10_1016_j_asoc_2025_113420
crossref_primary_10_3233_JIFS_236400
crossref_primary_10_1016_j_jnca_2022_103560
crossref_primary_10_1080_23307706_2023_2212684
crossref_primary_10_3233_IDT_220215
crossref_primary_10_1007_s11276_023_03495_2
Cites_doi 10.3390/s17091967
10.1007/s00521-015-1964-2
10.1016/S0167-4048(02)00514-X
10.1007/s00521-016-2418-1
10.1016/j.eswa.2012.07.009
10.1016/j.eswa.2014.11.009
10.1109/TETCI.2017.2772792
10.1109/ACCESS.2017.2762418
10.1137/100818327
10.1109/ACCESS.2018.2869577
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.comcom.2021.08.026
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 88
ExternalDocumentID 10_1016_j_comcom_2021_08_026
S0140366421003285
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
WH7
ZMT
~G-
07C
29F
77I
9DU
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
F0J
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
TAE
UHS
VH1
VOH
WUQ
XPP
ZY4
~HD
ID FETCH-LOGICAL-c306t-26c33dce5ae2a35e59b0559a471299c1031fcaa1e39396a9bdc54f251ed9043d3
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704054300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0140-3664
IngestDate Tue Nov 18 22:24:22 EST 2025
Sat Nov 29 07:20:47 EST 2025
Sun Apr 06 06:54:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Intrusion Detection
Feature selection
Sparse autoencoder
Deep Neural Network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-26c33dce5ae2a35e59b0559a471299c1031fcaa1e39396a9bdc54f251ed9043d3
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_comcom_2021_08_026
crossref_primary_10_1016_j_comcom_2021_08_026
elsevier_sciencedirect_doi_10_1016_j_comcom_2021_08_026
PublicationCentury 2000
PublicationDate 2021-12-01
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer communications
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Beck, Teboulle (b23) 2012
Farahnakian, Heikkonen (b14) 2018
Mirza, Cosan (b19) 2018
Reddy, Ramadevi, Sunitha (b5) 2016
Scholar, Rao, P.V.G.D (b7) 2019
Yin, Zhu, Fei, He (b9) 2017
Moustafa, Slay (b26) 2015
Li, Ma, Jiao (b35) 2015; 9
Scarfone, Mell (b1) 2007
Vinayakumar, Alazab, Soman, Poornachandran, Al-Nemrat, Venkatraman (b13) 2019
Yang, Zheng, Wu, Yang, Wang (b31) 2020
Khan, Gumaei, Derhab, Hussain (b20) 2019
Koc, Mazzuchi, Sarkani (b4) 2012
Kim, Kim, Thu, Kim (b10) 2016
(b12) 2019
Zhang, Chen (b16) 2017
Lopez-Martin, Carro, Sanchez-Esguevillas, Lloret (b28) 2017
Stolfo, Fan, Lee, Prodromidis, Chan (b25) 2000
Faraj Al-Janabi, Saeed (b6) 2011
Niyaz, Sun, Javaid, Alam (b15) 2015
Aslahi-Shahri others (b18) 2016
Liao, Vemuri (b3) 2002
Eesa, Orman, Abdulazeez Brifcani (b34) 2015; 42
Nguyen, Nguyen, Choi, Kim (b8) 2018
Ashok, Lakshmi, Rani, Kumar (b36) 2011
Baig, Awais, El-Alfy (b30) 2017
Rezvy, Petridis, Lasebae, Zebin (b22) 2019
Vinayakumar, Soman, Poornachandrany (b32) 2017
Le, Kim, Kim (b11) 2017
Krizhevsky, Hinton (b24) 2010
Kevric, Jukic, Subasi (b29) 2017
El-Alfy, Al-Utaibi (b2) 2017
Li, Zhang (b33) 2019
Al-Qatf, Lasheng, Al-Habib, Al-Sabahi (b21) 2018
Potluri, Henry, Diedrich (b17) 2017
Shone, Ngoc, Phai, Shi (b27) 2018
Baig (10.1016/j.comcom.2021.08.026_b30) 2017
Stolfo (10.1016/j.comcom.2021.08.026_b25) 2000
Al-Qatf (10.1016/j.comcom.2021.08.026_b21) 2018
Nguyen (10.1016/j.comcom.2021.08.026_b8) 2018
Li (10.1016/j.comcom.2021.08.026_b35) 2015; 9
Shone (10.1016/j.comcom.2021.08.026_b27) 2018
Vinayakumar (10.1016/j.comcom.2021.08.026_b32) 2017
Scarfone (10.1016/j.comcom.2021.08.026_b1) 2007
(10.1016/j.comcom.2021.08.026_b12) 2019
Krizhevsky (10.1016/j.comcom.2021.08.026_b24) 2010
Aslahi-Shahri others (10.1016/j.comcom.2021.08.026_b18) 2016
Vinayakumar (10.1016/j.comcom.2021.08.026_b13) 2019
Moustafa (10.1016/j.comcom.2021.08.026_b26) 2015
Kevric (10.1016/j.comcom.2021.08.026_b29) 2017
Rezvy (10.1016/j.comcom.2021.08.026_b22) 2019
Lopez-Martin (10.1016/j.comcom.2021.08.026_b28) 2017
Khan (10.1016/j.comcom.2021.08.026_b20) 2019
Yang (10.1016/j.comcom.2021.08.026_b31) 2020
Zhang (10.1016/j.comcom.2021.08.026_b16) 2017
Eesa (10.1016/j.comcom.2021.08.026_b34) 2015; 42
Scholar (10.1016/j.comcom.2021.08.026_b7) 2019
El-Alfy (10.1016/j.comcom.2021.08.026_b2) 2017
Faraj Al-Janabi (10.1016/j.comcom.2021.08.026_b6) 2011
Farahnakian (10.1016/j.comcom.2021.08.026_b14) 2018
Liao (10.1016/j.comcom.2021.08.026_b3) 2002
Yin (10.1016/j.comcom.2021.08.026_b9) 2017
Reddy (10.1016/j.comcom.2021.08.026_b5) 2016
Mirza (10.1016/j.comcom.2021.08.026_b19) 2018
Koc (10.1016/j.comcom.2021.08.026_b4) 2012
Le (10.1016/j.comcom.2021.08.026_b11) 2017
Beck (10.1016/j.comcom.2021.08.026_b23) 2012
Ashok (10.1016/j.comcom.2021.08.026_b36) 2011
Potluri (10.1016/j.comcom.2021.08.026_b17) 2017
Kim (10.1016/j.comcom.2021.08.026_b10) 2016
Niyaz (10.1016/j.comcom.2021.08.026_b15) 2015
Li (10.1016/j.comcom.2021.08.026_b33) 2019
References_xml – year: 2000
  ident: b25
  article-title: Cost-based modeling for fraud and intrusion detection: Results from the JAM project
– year: 2012
  ident: b4
  article-title: A network intrusion detection system based on a Hidden Naïve Bayes multiclass classifier
  publication-title: Expert Syst. Appl.
– year: 2019
  ident: b13
  article-title: Deep learning approach for intelligent intrusion detection system
  publication-title: IEEE Access
– year: 2010
  ident: b24
  article-title: Convolutional deep belief networks on cifar-10
– year: 2018
  ident: b19
  article-title: Computer network intrusion detection using sequential LSTM Neural Networks autoencoders
– year: 2019
  ident: b7
  article-title: A comprehensive survey of machine learning for intrusion detection
  publication-title: Int. J. Res. Advent Technol.
– year: 2015
  ident: b26
  article-title: UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)
– year: 2016
  ident: b5
  article-title: Effective discriminant function for intrusion detection using SVM
– year: 2011
  ident: b6
  article-title: A neural network based anomaly intrusion detection system
– year: 2017
  ident: b28
  article-title: Conditional variational autoencoder for prediction and feature recovery applied to intrusion detection in iot
  publication-title: Sensors (Switzerland)
– year: 2016
  ident: b18
  article-title: A hybrid method consisting of GA and SVM for intrusion detection system
  publication-title: Neural Comput. Appl.
– year: 2019
  ident: b33
  article-title: An intrusion detection model based on multi-scale CNN
– year: 2015
  ident: b15
  article-title: A deep learning approach for network intrusion detection system
– year: 2002
  ident: b3
  article-title: Use of k-nearest neighbor classifier for intrusion detection
  publication-title: Comput. Secur.
– year: 2020
  ident: b31
  article-title: Network intrusion detection based on supervised adversarial variational auto-encoder with regularization
  publication-title: IEEE Access
– year: 2016
  ident: b10
  article-title: Long short term memory recurrent neural network classifier for intrusion detection
– year: 2017
  ident: b30
  article-title: A multiclass cascade of artificial neural network for network intrusion detection
– volume: 42
  start-page: 2670
  year: 2015
  end-page: 2679
  ident: b34
  article-title: A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems
  publication-title: Expert Syst. Appl.
– start-page: 23
  year: 2011
  end-page: 27
  ident: b36
  article-title: Optimized feature selection with k-means clustered triangle SVM for Intrusion Detection
  publication-title: 2011 Third International Conference on Advanced Computing
– year: 2017
  ident: b2
  article-title: Learning mechanisms or anomaly-based intruson detection: Updated review
– year: 2017
  ident: b17
  article-title: Evaluation of hybrid deep learning techniques for ensuring security in networked control systems
– year: 2018
  ident: b21
  article-title: Deep learning approach combining sparse autoencoder with SVM for network intrusion detection
  publication-title: IEEE Access
– year: 2018
  ident: b14
  article-title: A deep auto-encoder based approach for intrusion detection system
– year: 2017
  ident: b11
  article-title: An effective intrusion detection classifier using long short-term memory with gradient descent optimization
– volume: 9
  start-page: 205
  year: 2015
  end-page: 216
  ident: b35
  article-title: A hybrid malicious code detection method based on deep learning
  publication-title: Int. J. Secur. Appl.
– year: 2017
  ident: b32
  article-title: Applying convolutional neural network for network intrusion detection
– year: 2012
  ident: b23
  article-title: Smoothing and first order methods: A unified framework
  publication-title: SIAM J. Optim.
– year: 2018
  ident: b8
  article-title: Design and implementation of intrusion detection system using convolutional neural network for DoS detection
– year: 2019
  ident: b12
  article-title: An intrusion detection model based on deep long short term recurrent neural network
  publication-title: Int. J. Eng. Adv. Technol.
– year: 2019
  ident: b20
  article-title: TSDL: A two-stage deep learning model for efficient network intrusion detection
  publication-title: IEEE Access
– year: 2018
  ident: b27
  article-title: A deep learning approach to network intrusion detection
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– year: 2017
  ident: b29
  article-title: An effective combining classifier approach using tree algorithms for network intrusion detection
  publication-title: Neural Comput. Appl.
– year: 2007
  ident: b1
  article-title: Guide to intrusion detection and prevention systems (IDPS)
  publication-title: Natl. Inst. Stand. Technol.
– year: 2017
  ident: b16
  article-title: Deep learning based intelligent intrusion detection
– year: 2019
  ident: b22
  article-title: Intrusion detection and classification with autoencoded deep neural network
– year: 2017
  ident: b9
  article-title: A deep learning approach for intrusion detection using recurrent neural networks
  publication-title: IEEE Access
– year: 2010
  ident: 10.1016/j.comcom.2021.08.026_b24
– year: 2017
  ident: 10.1016/j.comcom.2021.08.026_b28
  article-title: Conditional variational autoencoder for prediction and feature recovery applied to intrusion detection in iot
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s17091967
– start-page: 23
  year: 2011
  ident: 10.1016/j.comcom.2021.08.026_b36
  article-title: Optimized feature selection with k-means clustered triangle SVM for Intrusion Detection
– year: 2016
  ident: 10.1016/j.comcom.2021.08.026_b18
  article-title: A hybrid method consisting of GA and SVM for intrusion detection system
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1964-2
– year: 2019
  ident: 10.1016/j.comcom.2021.08.026_b22
– year: 2017
  ident: 10.1016/j.comcom.2021.08.026_b30
– year: 2002
  ident: 10.1016/j.comcom.2021.08.026_b3
  article-title: Use of k-nearest neighbor classifier for intrusion detection
  publication-title: Comput. Secur.
  doi: 10.1016/S0167-4048(02)00514-X
– year: 2017
  ident: 10.1016/j.comcom.2021.08.026_b11
– year: 2019
  ident: 10.1016/j.comcom.2021.08.026_b12
  article-title: An intrusion detection model based on deep long short term recurrent neural network
  publication-title: Int. J. Eng. Adv. Technol.
– year: 2017
  ident: 10.1016/j.comcom.2021.08.026_b2
– year: 2011
  ident: 10.1016/j.comcom.2021.08.026_b6
– year: 2015
  ident: 10.1016/j.comcom.2021.08.026_b26
– year: 2019
  ident: 10.1016/j.comcom.2021.08.026_b7
  article-title: A comprehensive survey of machine learning for intrusion detection
  publication-title: Int. J. Res. Advent Technol.
– year: 2018
  ident: 10.1016/j.comcom.2021.08.026_b8
– year: 2020
  ident: 10.1016/j.comcom.2021.08.026_b31
  article-title: Network intrusion detection based on supervised adversarial variational auto-encoder with regularization
  publication-title: IEEE Access
– year: 2017
  ident: 10.1016/j.comcom.2021.08.026_b16
– year: 2017
  ident: 10.1016/j.comcom.2021.08.026_b29
  article-title: An effective combining classifier approach using tree algorithms for network intrusion detection
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2418-1
– year: 2012
  ident: 10.1016/j.comcom.2021.08.026_b4
  article-title: A network intrusion detection system based on a Hidden Naïve Bayes multiclass classifier
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.07.009
– year: 2018
  ident: 10.1016/j.comcom.2021.08.026_b14
– year: 2000
  ident: 10.1016/j.comcom.2021.08.026_b25
– volume: 42
  start-page: 2670
  issue: 5
  year: 2015
  ident: 10.1016/j.comcom.2021.08.026_b34
  article-title: A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.11.009
– year: 2007
  ident: 10.1016/j.comcom.2021.08.026_b1
  article-title: Guide to intrusion detection and prevention systems (IDPS)
  publication-title: Natl. Inst. Stand. Technol.
– year: 2019
  ident: 10.1016/j.comcom.2021.08.026_b20
  article-title: TSDL: A two-stage deep learning model for efficient network intrusion detection
  publication-title: IEEE Access
– year: 2018
  ident: 10.1016/j.comcom.2021.08.026_b27
  article-title: A deep learning approach to network intrusion detection
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2017.2772792
– year: 2018
  ident: 10.1016/j.comcom.2021.08.026_b19
– year: 2017
  ident: 10.1016/j.comcom.2021.08.026_b9
  article-title: A deep learning approach for intrusion detection using recurrent neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2762418
– year: 2016
  ident: 10.1016/j.comcom.2021.08.026_b10
– volume: 9
  start-page: 205
  issue: 5
  year: 2015
  ident: 10.1016/j.comcom.2021.08.026_b35
  article-title: A hybrid malicious code detection method based on deep learning
  publication-title: Int. J. Secur. Appl.
– year: 2017
  ident: 10.1016/j.comcom.2021.08.026_b17
– year: 2012
  ident: 10.1016/j.comcom.2021.08.026_b23
  article-title: Smoothing and first order methods: A unified framework
  publication-title: SIAM J. Optim.
  doi: 10.1137/100818327
– year: 2019
  ident: 10.1016/j.comcom.2021.08.026_b13
  article-title: Deep learning approach for intelligent intrusion detection system
  publication-title: IEEE Access
– year: 2015
  ident: 10.1016/j.comcom.2021.08.026_b15
– year: 2019
  ident: 10.1016/j.comcom.2021.08.026_b33
– year: 2017
  ident: 10.1016/j.comcom.2021.08.026_b32
– year: 2016
  ident: 10.1016/j.comcom.2021.08.026_b5
– year: 2018
  ident: 10.1016/j.comcom.2021.08.026_b21
  article-title: Deep learning approach combining sparse autoencoder with SVM for network intrusion detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2869577
SSID ssj0004773
Score 2.5773432
Snippet A large number of attacks are launched daily in the era of the internet and with a large number of users. Nowadays, effective detection of numerous attacks...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 77
SubjectTerms Deep Neural Network
Feature selection
Intrusion Detection
Sparse autoencoder
Title A hybrid Intrusion Detection System based on Sparse autoencoder and Deep Neural Network
URI https://dx.doi.org/10.1016/j.comcom.2021.08.026
Volume 180
WOSCitedRecordID wos000704054300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0140-3664
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004773
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6Ftgc4oEJBFCjaAzfLUeLXeo8RtOVRRRFtQ27WeL0WlMqNUjdq_z0z3l3HKlEfBy5WYsdrx_Np9tvxzDeMfSy00InKcVkS6cCPdBr7eSkiH5AcQJQgaW5etE-PxHiczmZy0ustXS3M8lxUVXp9Lef_1dS4D41NpbOPMHc7KO7Az2h03KLZcfsgw4-8XzdUhkXBvsUVBcPQqdTatAQ3AuUezV0FvSc4nuPCVntwVV-QoiUJS5jcZD33SLcDDTg2ieJdFutaQVBC-qq8pGXnY1jADVTg_YAmEPu9745MdfUH6jUHJv1p_7D_uXFVkwVcAlVNFlb41gYlgmEnwcPFKdG9J0agfOVoBx1Xabu32Ek3XevOTWThjKxBuT10pUZwNVijnn1rVmtzDV0a21lmRslolIx6bwbJE7YZiFiiQ98cfd2ffVtV1AqTm-D-hiu6bDID_72b9aSmQ1ROttlzu8LgI4OMF6ynq5fsWUd3cof9HHGDEd5ihLcY4QYjvMEIp-8NRngHIxwxwgkj3GCEW4y8YqcH-yefvvi2w4avcKlY-0GiwrBQOgYdQBjrWOYDXGICMhakKYpagJQKYKhDGcoEZF6oOCqREutCDqKwCF-zjeqi0m8YRwaEx2FYIuOOZAlS5nEphM6VkGWcBrssdI8oU1Z-nrqgnGd3GWiX-e1ZcyO_cs_vhXv6maWQhhpmCKk7z3z7yCu9Y09XwH_PNtBaeo9tqWX9-3LxweLpL9tTlCk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+Intrusion+Detection+System+based+on+Sparse+autoencoder+and+Deep+Neural+Network&rft.jtitle=Computer+communications&rft.au=Narayana+Rao%2C+K.&rft.au=Venkata+Rao%2C+K.&rft.au=P.V.G.D.%2C+Prasad+Reddy&rft.date=2021-12-01&rft.issn=0140-3664&rft.volume=180&rft.spage=77&rft.epage=88&rft_id=info:doi/10.1016%2Fj.comcom.2021.08.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_comcom_2021_08_026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon