Optimization of quantum-inspired neural network using memetic algorithm for function approximation and chaotic time series prediction

•A novel memetic algorithm based on hybrid genetic algorithm and gradient descent is proposed.•We develop a new and efficient type of quantum-inspired neural networks model.•The accuracy of the approach is investigated for function approximation and time series prediction problems.•Numerical experim...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 291; s. 175 - 186
Hlavní autoři: Ganjefar, Soheil, Tofighi, Morteza
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 24.05.2018
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A novel memetic algorithm based on hybrid genetic algorithm and gradient descent is proposed.•We develop a new and efficient type of quantum-inspired neural networks model.•The accuracy of the approach is investigated for function approximation and time series prediction problems.•Numerical experiments show the excellent effectiveness and efficiency of the proposed approach. Heuristic and deterministic optimization methods are extensively applied for the training of artificial neural networks. Both of these methods have their own advantages and disadvantages. Heuristic stochastic optimization methods like genetic algorithm perform global search, but they suffer from the problem of slow convergence rate near global optimum. On the other hand deterministic methods like gradient descent exhibit a fast convergence rate around global optimum but may get stuck in a local optimum. Motivated by these problems, a hybrid learning algorithm combining genetic algorithm (GA) with gradient descent (GD), called HGAGD, is proposed in this paper. The new algorithm combines the global exploration ability of GA with the accurate local exploitation ability of GD to achieve a faster convergence and also a better accuracy of final solution. The HGAGD is then employed as a new training method to optimize the parameters of a quantum-inspired neural network (QINN) for two different applications. Firstly, two benchmark functions are chosen to demonstrate the potential of the proposed QINN with the HGAGD algorithm in dealing with function approximation problems. Next, the performance of the proposed method in forecasting Mackey–Glass time series and Lorenz attractor is studied. The results of these studies show the superiority of the introduced approach over other published approaches.
AbstractList •A novel memetic algorithm based on hybrid genetic algorithm and gradient descent is proposed.•We develop a new and efficient type of quantum-inspired neural networks model.•The accuracy of the approach is investigated for function approximation and time series prediction problems.•Numerical experiments show the excellent effectiveness and efficiency of the proposed approach. Heuristic and deterministic optimization methods are extensively applied for the training of artificial neural networks. Both of these methods have their own advantages and disadvantages. Heuristic stochastic optimization methods like genetic algorithm perform global search, but they suffer from the problem of slow convergence rate near global optimum. On the other hand deterministic methods like gradient descent exhibit a fast convergence rate around global optimum but may get stuck in a local optimum. Motivated by these problems, a hybrid learning algorithm combining genetic algorithm (GA) with gradient descent (GD), called HGAGD, is proposed in this paper. The new algorithm combines the global exploration ability of GA with the accurate local exploitation ability of GD to achieve a faster convergence and also a better accuracy of final solution. The HGAGD is then employed as a new training method to optimize the parameters of a quantum-inspired neural network (QINN) for two different applications. Firstly, two benchmark functions are chosen to demonstrate the potential of the proposed QINN with the HGAGD algorithm in dealing with function approximation problems. Next, the performance of the proposed method in forecasting Mackey–Glass time series and Lorenz attractor is studied. The results of these studies show the superiority of the introduced approach over other published approaches.
Author Tofighi, Morteza
Ganjefar, Soheil
Author_xml – sequence: 1
  givenname: Soheil
  orcidid: 0000-0001-7030-2766
  surname: Ganjefar
  fullname: Ganjefar, Soheil
  email: s_ganjefar@basu.ac.ir
– sequence: 2
  givenname: Morteza
  surname: Tofighi
  fullname: Tofighi, Morteza
BookMark eNqFkMtOxCAUQInRxPHxBy74gVagHVpcmBjjK5nEja4J0ssM4xQqUF97_1tmxpULXd2E5BzuPQdo13kHCJ1QUlJC-emydDBq35eM0LYkrCRNvYMmtG1Y0bKW76IJEWxasIqyfXQQ45IQ2lAmJujrfki2t58qWe-wN_hlVC6NfWFdHGyADmd1UKs80psPz3iM1s1xDz0kq7FazX2wadFj4wM2o9MbjxqG4N9tv7Uq12G9UH4N5M8ARwgWIh6y3m6AI7Rn1CrC8c88RI_XVw-Xt8Xs_ubu8mJW6IrwVDDeNB1UrWlUQ6eVEoaZSigwDLiojeJGTVV-FeyJm7ZqRfMkOBE11dAxruvqENVbrw4-xgBGDiFvGT4kJXKdUi7lNqVcp5SEyZwyY2e_MG3T5rYUlF39B59vYciHvVoIMmoLLq-U8-okO2__FnwDUIqZmg
CitedBy_id crossref_primary_10_1016_j_dajour_2023_100188
crossref_primary_10_1007_s10489_022_03525_0
crossref_primary_10_1109_TCYB_2023_3270873
crossref_primary_10_1016_j_chaos_2020_110366
crossref_primary_10_1016_j_asoc_2019_04_016
crossref_primary_10_1016_j_chaos_2022_112183
crossref_primary_10_1080_23307706_2022_2110166
crossref_primary_10_1016_j_eswa_2023_122645
crossref_primary_10_1007_s11227_023_05158_7
crossref_primary_10_1186_s44147_024_00483_x
crossref_primary_10_1155_2022_9910982
crossref_primary_10_3390_s23073621
crossref_primary_10_1155_2018_6565737
crossref_primary_10_1109_ACCESS_2018_2869894
crossref_primary_10_3390_e24030408
crossref_primary_10_1007_s11063_022_10986_4
crossref_primary_10_3390_buildings11020066
crossref_primary_10_1016_j_asoc_2022_108602
crossref_primary_10_32362_2500_316X_2019_7_1_5_37
crossref_primary_10_1109_ACCESS_2020_3007142
crossref_primary_10_1007_s11071_019_05430_7
crossref_primary_10_1155_2019_3727254
crossref_primary_10_51537_chaos_1116084
crossref_primary_10_1109_TR_2020_3021376
crossref_primary_10_1155_2019_8405036
crossref_primary_10_1002_tee_24223
crossref_primary_10_1007_s10462_024_10932_x
Cites_doi 10.1109/91.649903
10.1016/j.bspc.2015.10.008
10.1016/j.amc.2012.04.069
10.1016/j.apm.2006.04.014
10.1016/j.knosys.2017.09.013
10.1016/j.ins.2016.07.062
10.1016/j.chaos.2017.03.018
10.1023/A:1019708909383
10.1016/j.neucom.2012.12.073
10.1016/j.eswa.2015.04.018
10.1049/el:19960229
10.1109/TMTT.2005.862671
10.1016/j.neunet.2015.07.013
10.1016/j.cie.2014.12.013
10.1016/j.neucom.2017.04.025
10.1109/TNNLS.2012.2188414
10.1016/j.fss.2010.06.002
10.1016/j.neucom.2012.01.014
10.1109/TSP.2004.837418
10.1109/TEVC.2005.850260
10.1016/j.neunet.2016.01.002
10.1016/j.neucom.2013.01.029
10.1080/08839514.2011.529263
10.1016/j.physa.2014.07.071
10.1016/j.ins.2014.09.054
10.1016/j.cnsns.2010.12.011
10.1109/91.917126
10.1016/j.ins.2014.08.033
10.1016/j.ins.2004.10.005
10.1016/j.neucom.2007.07.018
10.1007/BF01342185
10.1109/TNNLS.2015.2404823
10.1016/j.eswa.2011.09.040
10.1016/j.neucom.2017.01.032
10.1016/j.eswa.2014.11.056
10.1016/j.asoc.2015.05.034
10.1016/j.asoc.2014.09.007
10.1016/j.neunet.2013.02.012
10.1016/j.asoc.2015.08.009
10.1016/j.sna.2008.05.025
10.1109/72.165591
10.1109/21.199466
10.1016/S0925-2312(01)00338-1
10.1016/j.procbio.2015.12.005
10.1016/j.neucom.2009.11.007
10.1016/0165-0114(95)00322-3
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2018.02.074
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 186
ExternalDocumentID 10_1016_j_neucom_2018_02_074
S0925231218302418
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-2677de38f7a7153a9f2f39aef2e694fa6fa5aa9f92b6f83897b960941ced26c43
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428345000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 03:02:54 EST 2025
Tue Nov 18 22:35:27 EST 2025
Fri Feb 23 02:30:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Memetic algorithm
Time series prediction
Quantum-inspired neural network
Function approximation
Genetic algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-2677de38f7a7153a9f2f39aef2e694fa6fa5aa9f92b6f83897b960941ced26c43
ORCID 0000-0001-7030-2766
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_neucom_2018_02_074
crossref_citationtrail_10_1016_j_neucom_2018_02_074
elsevier_sciencedirect_doi_10_1016_j_neucom_2018_02_074
PublicationCentury 2000
PublicationDate 2018-05-24
PublicationDateYYYYMMDD 2018-05-24
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-24
  day: 24
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nielsen, Chuang (bib0026) 2010
Zhao, Xu, Jiang (bib0010) 2015; 42
Almeida, Ludermir (bib0012) 2010; 73
Shadmand, Mashoufi (bib0004) 2016; 25
Rojas, Valenzuela, Rojas, Guillen, Herrera, Pomares, Marquez, Pasadas (bib0042) 2008; 71
Benioff (bib0018) 1982; 29
Chen, Yang, Dong, Abraham (bib0040) 2005; 174
Tripathy, Dash, Padhy (bib0003) 2015; 80
Cui, Shi, Wang (bib0023) 2015; 71
Wang, Mendel (bib0039) 1992; 22
Mirjalili, Hashim, Sardroudi (bib0013) 2012; 218
Takahashi, Rocha, Núñez (bib0001) 2016; 51
Zhao, Huang (bib0015) 2007; 31
Kobayashi (bib0005) 2017; 260
Kouda, Matsui, Nishimura (bib0021) 2002; 16
Chandra, Zhang (bib0045) 2012; 86
Melin, Soto, Castillo, Soria (bib0043) 2012; 39
Li, Xiao, Shang, Tong, Li, Cao (bib0027) 2013; 117
Requena-Pérez, Albero-Ortiz, Monzó-Cabrera, Díaz-Morcillo (bib0014) 2006; 54
Martínez-Martínez, Gomez-Gil, Gomez-Gil, Ruiz-Gonzalez (bib0002) 2015; 42
da Silva, de Oliveira (bib0019) 2016; 370–371
Cho, Wang (bib0041) 1996; 83
Cao, Cao, Wang (bib0022) 2015; 290
Chandra (bib0047) 2015; 26
Sun, Du, Gong, Ma, Wang (bib0007) 2014; 415
Liu, Chen, Chang, Shih (bib0029) 2013; 45
Zhongda, Shujiang, Yanhong, Yi (bib0049) 2017; 98
Zhang, Benveniste (bib0031) 1992; 3
Mousavi, Alfi (bib0009) 2015; 36
Mu, Xie, Liu, Chen, Liu, Jiao (bib0008) 2015; 34
Hu, Bao, Xiong (bib0011) 2014; 25
Jang, Sun, Mizutani (bib0044) 1997
Tzeng (bib0033) 2010; 161
Dhahri, Alimi (bib0048) 2006
Ardalani-Farsa, Zolfaghari (bib0046) 2011; 25
Krasnogor, Smith (bib0006) 2005; 9
Han, Xi, Xu, Yin (bib0016) 2004; 52
Yao, Wei, He (bib0032) 1996; 32
da Silva, Ludermir, de Oliveira (bib0020) 2016; 76
Ho, Zhang, Xu (bib0036) 2001; 9
Rojas, Pomares, Bernier, Ortega, Pino, Pelayo, Prieto (bib0037) 2002; 42
Gao, Ma, Song, Liu (bib0030) 2017; 238
Takahashi, Kurokawa, Hashimoto (bib0025) 2014; 134
Kim, Kim (bib0038) 1997; 5
Li, Han, Wang (bib0017) 2012; 23
Ebadat, Noroozi, Safavi, Mousavi (bib0034) 2011; 16
Ma, Niu, Zhang, Li (bib0028) 2017; 136
Shen, Huang, Hwang (bib0024) 2008; 147
Ganjefar, Tofighi (bib0035) 2015; 294
Benioff (10.1016/j.neucom.2018.02.074_bib0018) 1982; 29
Han (10.1016/j.neucom.2018.02.074_bib0016) 2004; 52
Kim (10.1016/j.neucom.2018.02.074_bib0038) 1997; 5
Krasnogor (10.1016/j.neucom.2018.02.074_bib0006) 2005; 9
Rojas (10.1016/j.neucom.2018.02.074_bib0037) 2002; 42
Cui (10.1016/j.neucom.2018.02.074_bib0023) 2015; 71
Yao (10.1016/j.neucom.2018.02.074_bib0032) 1996; 32
Ma (10.1016/j.neucom.2018.02.074_bib0028) 2017; 136
Zhao (10.1016/j.neucom.2018.02.074_bib0010) 2015; 42
Nielsen (10.1016/j.neucom.2018.02.074_bib0026) 2010
Zhongda (10.1016/j.neucom.2018.02.074_bib0049) 2017; 98
Tripathy (10.1016/j.neucom.2018.02.074_bib0003) 2015; 80
Shadmand (10.1016/j.neucom.2018.02.074_bib0004) 2016; 25
Li (10.1016/j.neucom.2018.02.074_bib0017) 2012; 23
Liu (10.1016/j.neucom.2018.02.074_bib0029) 2013; 45
Ho (10.1016/j.neucom.2018.02.074_bib0036) 2001; 9
da Silva (10.1016/j.neucom.2018.02.074_bib0020) 2016; 76
Zhang (10.1016/j.neucom.2018.02.074_bib0031) 1992; 3
Ardalani-Farsa (10.1016/j.neucom.2018.02.074_bib0046) 2011; 25
Almeida (10.1016/j.neucom.2018.02.074_bib0012) 2010; 73
Mousavi (10.1016/j.neucom.2018.02.074_bib0009) 2015; 36
Ebadat (10.1016/j.neucom.2018.02.074_bib0034) 2011; 16
Dhahri (10.1016/j.neucom.2018.02.074_bib0048) 2006
Sun (10.1016/j.neucom.2018.02.074_bib0007) 2014; 415
Wang (10.1016/j.neucom.2018.02.074_bib0039) 1992; 22
Gao (10.1016/j.neucom.2018.02.074_bib0030) 2017; 238
Chandra (10.1016/j.neucom.2018.02.074_bib0047) 2015; 26
Zhao (10.1016/j.neucom.2018.02.074_bib0015) 2007; 31
Takahashi (10.1016/j.neucom.2018.02.074_bib0025) 2014; 134
Ganjefar (10.1016/j.neucom.2018.02.074_bib0035) 2015; 294
Requena-Pérez (10.1016/j.neucom.2018.02.074_bib0014) 2006; 54
Mu (10.1016/j.neucom.2018.02.074_bib0008) 2015; 34
Takahashi (10.1016/j.neucom.2018.02.074_bib0001) 2016; 51
Cao (10.1016/j.neucom.2018.02.074_bib0022) 2015; 290
Tzeng (10.1016/j.neucom.2018.02.074_bib0033) 2010; 161
Rojas (10.1016/j.neucom.2018.02.074_bib0042) 2008; 71
Chen (10.1016/j.neucom.2018.02.074_bib0040) 2005; 174
da Silva (10.1016/j.neucom.2018.02.074_bib0019) 2016; 370–371
Li (10.1016/j.neucom.2018.02.074_bib0027) 2013; 117
Jang (10.1016/j.neucom.2018.02.074_bib0044) 1997
Melin (10.1016/j.neucom.2018.02.074_bib0043) 2012; 39
Kobayashi (10.1016/j.neucom.2018.02.074_bib0005) 2017; 260
Chandra (10.1016/j.neucom.2018.02.074_bib0045) 2012; 86
Kouda (10.1016/j.neucom.2018.02.074_bib0021) 2002; 16
Hu (10.1016/j.neucom.2018.02.074_bib0011) 2014; 25
Mirjalili (10.1016/j.neucom.2018.02.074_bib0013) 2012; 218
Cho (10.1016/j.neucom.2018.02.074_bib0041) 1996; 83
Martínez-Martínez (10.1016/j.neucom.2018.02.074_bib0002) 2015; 42
Shen (10.1016/j.neucom.2018.02.074_bib0024) 2008; 147
References_xml – volume: 80
  start-page: 154
  year: 2015
  end-page: 158
  ident: bib0003
  article-title: Multiprocessor scheduling and neural network training methods using shuffled frog-leaping algorithm
  publication-title: Comput. Ind. Eng.
– volume: 25
  start-page: 15
  year: 2014
  end-page: 25
  ident: bib0011
  article-title: Comprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression
  publication-title: Appl. Soft Comput.
– volume: 5
  start-page: 523
  year: 1997
  end-page: 535
  ident: bib0038
  article-title: Forecasting time series with genetic fuzzy predictor ensemble
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 39
  start-page: 3494
  year: 2012
  end-page: 3506
  ident: bib0043
  article-title: A new approach for time series prediction using ensembles of ANFIS models
  publication-title: Expert Syst. Appl.
– volume: 42
  start-page: 3760
  year: 2015
  end-page: 3773
  ident: bib0010
  article-title: The memetic algorithm for the optimization of urban transit network
  publication-title: Expert Syst. Appl.
– volume: 25
  start-page: 45
  year: 2011
  end-page: 73
  ident: bib0046
  article-title: Residual analysis and combination of embedding theorem and artificial intelligence in chaotic time series forecasting
  publication-title: Appl. Artif. Intell.
– volume: 29
  start-page: 515
  year: 1982
  end-page: 546
  ident: bib0018
  article-title: Quantum mechanical Hamiltonian model of Turing machine
  publication-title: J. Stat. Phys.
– volume: 76
  start-page: 55
  year: 2016
  end-page: 64
  ident: bib0020
  article-title: Quantum perceptron over a field and neural network architecture selection in a quantum computer
  publication-title: Neural Netw.
– volume: 51
  start-page: 422
  year: 2016
  end-page: 430
  ident: bib0001
  article-title: Optimization of artificial neural network by genetic algorithm for describing viral production from uniform design data
  publication-title: Process. Biochem.
– volume: 3
  start-page: 889
  year: 1992
  end-page: 898
  ident: bib0031
  article-title: Wavelet networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 136
  start-page: 140
  year: 2017
  end-page: 149
  ident: bib0028
  article-title: Research and application of quantum-inspired double parallel feed-forward neural network
  publication-title: Knowl.-Based Syst.
– volume: 117
  start-page: 81
  year: 2013
  end-page: 90
  ident: bib0027
  article-title: A hybrid quantum-inspired neural networks with sequence inputs
  publication-title: Neurocomputing
– volume: 161
  start-page: 2585
  year: 2010
  end-page: 2596
  ident: bib0033
  article-title: Design of fuzzy wavelet neural networks using GA approach for function approximation and system identification
  publication-title: Fuzzy Sets Syst.
– volume: 42
  start-page: 6433
  year: 2015
  end-page: 6441
  ident: bib0002
  article-title: An artificial neural network based expert system fitted with genetic algorithms for detecting the status of several rotary components in agro-industrial machines using a single vibration signal
  publication-title: Expert Syst. Appl.
– volume: 45
  start-page: 144
  year: 2013
  end-page: 150
  ident: bib0029
  article-title: Single-hidden-layer feed-forward quantum neural network based on grover learning
  publication-title: Neural Netw.
– volume: 260
  start-page: 174
  year: 2017
  end-page: 179
  ident: bib0005
  article-title: Gradient descent learning for quaternionic Hopfield neural networks
  publication-title: Neurocomputing
– volume: 83
  start-page: 325
  year: 1996
  end-page: 339
  ident: bib0041
  article-title: Radial basis function based adaptive fuzzy systems their applications to system identification and prediction
  publication-title: Fuzzy Sets Syst.
– volume: 98
  start-page: 158
  year: 2017
  end-page: 172
  ident: bib0049
  article-title: A prediction method based on wavelet transform and multiple models fusion for chaotic time series
  publication-title: Chaos, Solitons Fractals
– volume: 36
  start-page: 125
  year: 2015
  end-page: 142
  ident: bib0009
  article-title: A memetic algorithm applied to trajectory control by tuning of fractional order proportional-integral-derivative controllers
  publication-title: Appl. Soft Comput.
– volume: 370–371
  start-page: 120
  year: 2016
  end-page: 122
  ident: bib0019
  article-title: Comments on “quantum artificial neural networks with applications
  publication-title: Inf. Sci.
– volume: 218
  start-page: 11125
  year: 2012
  end-page: 11137
  ident: bib0013
  article-title: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm
  publication-title: Appl. Math. Comput.
– volume: 25
  start-page: 12
  year: 2016
  end-page: 23
  ident: bib0004
  article-title: A new personalized ECG signal classification algorithm using block-based neural network and particle swarm optimization
  publication-title: Biomed. Signal Process. Control
– volume: 31
  start-page: 1271
  year: 2007
  end-page: 1281
  ident: bib0015
  article-title: A mended hybrid learning algorithm for radial basis function neural networks to improve generalization capability
  publication-title: Appl. Math. Model.
– volume: 23
  start-page: 787
  year: 2012
  end-page: 799
  ident: bib0017
  article-title: Chaotic time series prediction based on a novel robust echo state network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 147
  start-page: 464
  year: 2008
  end-page: 469
  ident: bib0024
  article-title: Ammonia identification using shear horizontal surface acoustic wave sensor and quantum neural network model
  publication-title: Sens. Actuators A: Phys.
– volume: 9
  start-page: 200
  year: 2001
  end-page: 211
  ident: bib0036
  article-title: Fuzzy wavelet networks for function learning
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 16
  start-page: 3385
  year: 2011
  end-page: 3396
  ident: bib0034
  article-title: New fuzzy wavelet network for modeling and control: the modeling approach
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 9
  start-page: 474
  year: 2005
  end-page: 488
  ident: bib0006
  article-title: A tutorial for competent memetic algorithms: model, taxonomy, and design issues
  publication-title: IEEE Trans. Evol. Comput.
– volume: 71
  start-page: 11
  year: 2015
  end-page: 26
  ident: bib0023
  article-title: Complex rotation quantum dynamic neural networks (CRQDNN) using complex quantum neuron (CQN): Applications to time series prediction
  publication-title: Neural Netw.
– volume: 134
  start-page: 159
  year: 2014
  end-page: 164
  ident: bib0025
  article-title: Multi-layer quantum neural network controller trained by real-coded genetic algorithm
  publication-title: Neurocomputing
– start-page: 2938
  year: 2006
  end-page: 2943
  ident: bib0048
  article-title: The modified differential evolution and the RBF (MDERBF) neural network for time series prediction
  publication-title: Proceedings of the International Joint Conference on Neural Networks
– volume: 415
  start-page: 261
  year: 2014
  end-page: 272
  ident: bib0007
  article-title: Fast computing global structural balance in signed networks based on memetic algorithm
  publication-title: Phys. A
– volume: 86
  start-page: 116
  year: 2012
  end-page: 123
  ident: bib0045
  article-title: Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction
  publication-title: Neurocomputing
– volume: 294
  start-page: 269
  year: 2015
  end-page: 285
  ident: bib0035
  article-title: Single-hidden-layer fuzzy recurrent wavelet neural network: applications to function approximation and system identification
  publication-title: Inf. Sci.
– volume: 16
  start-page: 67
  year: 2002
  end-page: 80
  ident: bib0021
  article-title: Image compression by layered quantum neural networks
  publication-title: Neural Process. Lett.
– volume: 34
  start-page: 485
  year: 2015
  end-page: 501
  ident: bib0008
  article-title: Memetic algorithm with simulated annealing strategy and tightness greedy optimization for community detection in networks
  publication-title: Appl. Soft Comput.
– year: 2010
  ident: bib0026
  article-title: Quantum Computation and Quantum Information
– volume: 26
  start-page: 3123
  year: 2015
  end-page: 3136
  ident: bib0047
  article-title: Competition and collaboration in cooperative coevolution of Elman recurrent neural networks for time-series prediction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 73
  start-page: 1438
  year: 2010
  end-page: 1450
  ident: bib0012
  article-title: A multi-objective memetic and hybrid methodology for optimizing the parameters and performance of artificial neural networks
  publication-title: Neurocomputing
– year: 1997
  ident: bib0044
  article-title: Neuro-Fuzzy and Soft Computing
– volume: 22
  start-page: 1414
  year: 1992
  end-page: 1427
  ident: bib0039
  article-title: Generating fuzzy rules by learning from examples
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 32
  start-page: 360
  year: 1996
  end-page: 361
  ident: bib0032
  article-title: Evolving wavelet neural networks for function approximation
  publication-title: Electron. Lett.
– volume: 54
  start-page: 615
  year: 2006
  end-page: 624
  ident: bib0014
  article-title: Combined use of genetic algorithms and gradient descent optmization methods for accurate inverse permittivity measurement
  publication-title: IEEE Trans. Microwave Theory Tech.
– volume: 290
  start-page: 1
  year: 2015
  end-page: 6
  ident: bib0022
  article-title: Quantum artificial neural networks with applications
  publication-title: Inf. Sci.
– volume: 52
  start-page: 3409
  year: 2004
  end-page: 3416
  ident: bib0016
  article-title: Prediction of chaotic time series based on the recurrent predictor neural network
  publication-title: IEEE Trans. Signal Process.
– volume: 238
  start-page: 13
  year: 2017
  end-page: 23
  ident: bib0030
  article-title: Deep quantum inspired neural network with application to aircraft fuel system fault diagnosis
  publication-title: Neurocomputing
– volume: 71
  start-page: 519
  year: 2008
  end-page: 537
  ident: bib0042
  article-title: Soft-computing techniques and ARMA model for time series prediction
  publication-title: Neurocomputing
– volume: 42
  start-page: 267
  year: 2002
  end-page: 285
  ident: bib0037
  article-title: Time series analysis using normalized PG-RBF network with regression weights
  publication-title: Neurocomputing
– volume: 174
  start-page: 219
  year: 2005
  end-page: 235
  ident: bib0040
  article-title: Time-series forecasting using flexible neural tree model
  publication-title: Inf. Sci.
– volume: 5
  start-page: 523
  year: 1997
  ident: 10.1016/j.neucom.2018.02.074_bib0038
  article-title: Forecasting time series with genetic fuzzy predictor ensemble
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.649903
– volume: 25
  start-page: 12
  year: 2016
  ident: 10.1016/j.neucom.2018.02.074_bib0004
  article-title: A new personalized ECG signal classification algorithm using block-based neural network and particle swarm optimization
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2015.10.008
– volume: 218
  start-page: 11125
  year: 2012
  ident: 10.1016/j.neucom.2018.02.074_bib0013
  article-title: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2012.04.069
– volume: 31
  start-page: 1271
  year: 2007
  ident: 10.1016/j.neucom.2018.02.074_bib0015
  article-title: A mended hybrid learning algorithm for radial basis function neural networks to improve generalization capability
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2006.04.014
– volume: 136
  start-page: 140
  year: 2017
  ident: 10.1016/j.neucom.2018.02.074_bib0028
  article-title: Research and application of quantum-inspired double parallel feed-forward neural network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.09.013
– volume: 370–371
  start-page: 120
  year: 2016
  ident: 10.1016/j.neucom.2018.02.074_bib0019
  article-title: Comments on “quantum artificial neural networks with applications
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.07.062
– volume: 98
  start-page: 158
  year: 2017
  ident: 10.1016/j.neucom.2018.02.074_bib0049
  article-title: A prediction method based on wavelet transform and multiple models fusion for chaotic time series
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2017.03.018
– volume: 16
  start-page: 67
  year: 2002
  ident: 10.1016/j.neucom.2018.02.074_bib0021
  article-title: Image compression by layered quantum neural networks
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1019708909383
– volume: 134
  start-page: 159
  year: 2014
  ident: 10.1016/j.neucom.2018.02.074_bib0025
  article-title: Multi-layer quantum neural network controller trained by real-coded genetic algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.073
– volume: 42
  start-page: 6433
  year: 2015
  ident: 10.1016/j.neucom.2018.02.074_bib0002
  article-title: An artificial neural network based expert system fitted with genetic algorithms for detecting the status of several rotary components in agro-industrial machines using a single vibration signal
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.04.018
– volume: 32
  start-page: 360
  year: 1996
  ident: 10.1016/j.neucom.2018.02.074_bib0032
  article-title: Evolving wavelet neural networks for function approximation
  publication-title: Electron. Lett.
  doi: 10.1049/el:19960229
– volume: 54
  start-page: 615
  year: 2006
  ident: 10.1016/j.neucom.2018.02.074_bib0014
  article-title: Combined use of genetic algorithms and gradient descent optmization methods for accurate inverse permittivity measurement
  publication-title: IEEE Trans. Microwave Theory Tech.
  doi: 10.1109/TMTT.2005.862671
– volume: 71
  start-page: 11
  year: 2015
  ident: 10.1016/j.neucom.2018.02.074_bib0023
  article-title: Complex rotation quantum dynamic neural networks (CRQDNN) using complex quantum neuron (CQN): Applications to time series prediction
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2015.07.013
– volume: 80
  start-page: 154
  year: 2015
  ident: 10.1016/j.neucom.2018.02.074_bib0003
  article-title: Multiprocessor scheduling and neural network training methods using shuffled frog-leaping algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2014.12.013
– volume: 260
  start-page: 174
  year: 2017
  ident: 10.1016/j.neucom.2018.02.074_bib0005
  article-title: Gradient descent learning for quaternionic Hopfield neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.025
– volume: 23
  start-page: 787
  year: 2012
  ident: 10.1016/j.neucom.2018.02.074_bib0017
  article-title: Chaotic time series prediction based on a novel robust echo state network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2188414
– volume: 161
  start-page: 2585
  year: 2010
  ident: 10.1016/j.neucom.2018.02.074_bib0033
  article-title: Design of fuzzy wavelet neural networks using GA approach for function approximation and system identification
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2010.06.002
– volume: 86
  start-page: 116
  year: 2012
  ident: 10.1016/j.neucom.2018.02.074_bib0045
  article-title: Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.01.014
– volume: 52
  start-page: 3409
  year: 2004
  ident: 10.1016/j.neucom.2018.02.074_bib0016
  article-title: Prediction of chaotic time series based on the recurrent predictor neural network
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2004.837418
– volume: 9
  start-page: 474
  year: 2005
  ident: 10.1016/j.neucom.2018.02.074_bib0006
  article-title: A tutorial for competent memetic algorithms: model, taxonomy, and design issues
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.850260
– volume: 76
  start-page: 55
  year: 2016
  ident: 10.1016/j.neucom.2018.02.074_bib0020
  article-title: Quantum perceptron over a field and neural network architecture selection in a quantum computer
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2016.01.002
– volume: 117
  start-page: 81
  year: 2013
  ident: 10.1016/j.neucom.2018.02.074_bib0027
  article-title: A hybrid quantum-inspired neural networks with sequence inputs
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.029
– volume: 25
  start-page: 45
  year: 2011
  ident: 10.1016/j.neucom.2018.02.074_bib0046
  article-title: Residual analysis and combination of embedding theorem and artificial intelligence in chaotic time series forecasting
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2011.529263
– volume: 415
  start-page: 261
  year: 2014
  ident: 10.1016/j.neucom.2018.02.074_bib0007
  article-title: Fast computing global structural balance in signed networks based on memetic algorithm
  publication-title: Phys. A
  doi: 10.1016/j.physa.2014.07.071
– volume: 294
  start-page: 269
  year: 2015
  ident: 10.1016/j.neucom.2018.02.074_bib0035
  article-title: Single-hidden-layer fuzzy recurrent wavelet neural network: applications to function approximation and system identification
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.09.054
– volume: 16
  start-page: 3385
  year: 2011
  ident: 10.1016/j.neucom.2018.02.074_bib0034
  article-title: New fuzzy wavelet network for modeling and control: the modeling approach
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.12.011
– volume: 9
  start-page: 200
  year: 2001
  ident: 10.1016/j.neucom.2018.02.074_bib0036
  article-title: Fuzzy wavelet networks for function learning
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.917126
– year: 1997
  ident: 10.1016/j.neucom.2018.02.074_bib0044
– volume: 290
  start-page: 1
  year: 2015
  ident: 10.1016/j.neucom.2018.02.074_bib0022
  article-title: Quantum artificial neural networks with applications
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.08.033
– start-page: 2938
  year: 2006
  ident: 10.1016/j.neucom.2018.02.074_bib0048
  article-title: The modified differential evolution and the RBF (MDERBF) neural network for time series prediction
– volume: 174
  start-page: 219
  year: 2005
  ident: 10.1016/j.neucom.2018.02.074_bib0040
  article-title: Time-series forecasting using flexible neural tree model
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2004.10.005
– volume: 71
  start-page: 519
  year: 2008
  ident: 10.1016/j.neucom.2018.02.074_bib0042
  article-title: Soft-computing techniques and ARMA model for time series prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.07.018
– volume: 29
  start-page: 515
  year: 1982
  ident: 10.1016/j.neucom.2018.02.074_bib0018
  article-title: Quantum mechanical Hamiltonian model of Turing machine
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01342185
– volume: 26
  start-page: 3123
  year: 2015
  ident: 10.1016/j.neucom.2018.02.074_bib0047
  article-title: Competition and collaboration in cooperative coevolution of Elman recurrent neural networks for time-series prediction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2404823
– volume: 39
  start-page: 3494
  year: 2012
  ident: 10.1016/j.neucom.2018.02.074_bib0043
  article-title: A new approach for time series prediction using ensembles of ANFIS models
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.040
– volume: 238
  start-page: 13
  year: 2017
  ident: 10.1016/j.neucom.2018.02.074_bib0030
  article-title: Deep quantum inspired neural network with application to aircraft fuel system fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.032
– volume: 42
  start-page: 3760
  year: 2015
  ident: 10.1016/j.neucom.2018.02.074_bib0010
  article-title: The memetic algorithm for the optimization of urban transit network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.11.056
– volume: 34
  start-page: 485
  year: 2015
  ident: 10.1016/j.neucom.2018.02.074_bib0008
  article-title: Memetic algorithm with simulated annealing strategy and tightness greedy optimization for community detection in networks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.05.034
– volume: 25
  start-page: 15
  year: 2014
  ident: 10.1016/j.neucom.2018.02.074_bib0011
  article-title: Comprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.09.007
– year: 2010
  ident: 10.1016/j.neucom.2018.02.074_bib0026
– volume: 45
  start-page: 144
  year: 2013
  ident: 10.1016/j.neucom.2018.02.074_bib0029
  article-title: Single-hidden-layer feed-forward quantum neural network based on grover learning
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2013.02.012
– volume: 36
  start-page: 125
  year: 2015
  ident: 10.1016/j.neucom.2018.02.074_bib0009
  article-title: A memetic algorithm applied to trajectory control by tuning of fractional order proportional-integral-derivative controllers
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.08.009
– volume: 147
  start-page: 464
  year: 2008
  ident: 10.1016/j.neucom.2018.02.074_bib0024
  article-title: Ammonia identification using shear horizontal surface acoustic wave sensor and quantum neural network model
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2008.05.025
– volume: 3
  start-page: 889
  year: 1992
  ident: 10.1016/j.neucom.2018.02.074_bib0031
  article-title: Wavelet networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.165591
– volume: 22
  start-page: 1414
  year: 1992
  ident: 10.1016/j.neucom.2018.02.074_bib0039
  article-title: Generating fuzzy rules by learning from examples
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.199466
– volume: 42
  start-page: 267
  year: 2002
  ident: 10.1016/j.neucom.2018.02.074_bib0037
  article-title: Time series analysis using normalized PG-RBF network with regression weights
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00338-1
– volume: 51
  start-page: 422
  year: 2016
  ident: 10.1016/j.neucom.2018.02.074_bib0001
  article-title: Optimization of artificial neural network by genetic algorithm for describing viral production from uniform design data
  publication-title: Process. Biochem.
  doi: 10.1016/j.procbio.2015.12.005
– volume: 73
  start-page: 1438
  year: 2010
  ident: 10.1016/j.neucom.2018.02.074_bib0012
  article-title: A multi-objective memetic and hybrid methodology for optimizing the parameters and performance of artificial neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.11.007
– volume: 83
  start-page: 325
  year: 1996
  ident: 10.1016/j.neucom.2018.02.074_bib0041
  article-title: Radial basis function based adaptive fuzzy systems their applications to system identification and prediction
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(95)00322-3
SSID ssj0017129
Score 2.3657377
Snippet •A novel memetic algorithm based on hybrid genetic algorithm and gradient descent is proposed.•We develop a new and efficient type of quantum-inspired neural...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 175
SubjectTerms Function approximation
Genetic algorithm
Memetic algorithm
Quantum-inspired neural network
Time series prediction
Title Optimization of quantum-inspired neural network using memetic algorithm for function approximation and chaotic time series prediction
URI https://dx.doi.org/10.1016/j.neucom.2018.02.074
Volume 291
WOSCitedRecordID wos000428345000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbcpEOXvoskfYBDN0NFRD0ojkaRvoa0QFPAm0BRZC3DklLHCozsXfube0dSip0UaTN0EQTCpCzep-PxePcdIa_TmJtDXsjAZOitKkseSKl4UCZxrELcsAhji03w4-NsOhVfRqNffS7M-YI3TbZei9P_KmpoA2Fj6uwtxD0MCg1wD0KHK4gdrv8k-M-gBGqfXYmm4I8OJq-rg6rBQ3U87deWaqNxAeDjznoLal1ry926-N4uq9WstvGHuOq5UuJIPb6uXJ6jy4WbyRY7YHH6Mb6YPkPCgbJSg6jnPTNUB6ukrR7h_RKTGukZSsTi4Id4L5u5Ni7c-2s70xuhHzAdrvbw2IYGX8hNV0WY4Sm7y5DufY4MGqJwS_0yV63LK9DQ1VHxa3HoaLKvqXnncZi_gQnDmB98lmVedQV_tlm1r6x2QwxiH942z90oOY6SH7IcRrlDdhlPBGjJ3cnHo-mn4VyKh8yxN_oX6ZMxbcTg9X_zZ2Nnw4A5eUju-50HnTjEPCIj3TwmD_qqHtQr-Sfk5yaAaGvoVQBRByDqAUQtgKgHEB0ARAFAtAcQ3QIQBQBRDyCKAKIOQPQSQE_Jt3dHJ28_BL5YR6Bg17kKWMp5qaPMcMlhFZXCMBMJqQ3TqYiNTI1MJLQKVqQmAzOZF0h2GIdKlyxVcfSM7DRto_cIVXFqeGF0go4boUIhJU9DmYkkKtIyivdJ1M9qrjyTPRZUWeQ3yXSfBEOvU8fk8pff815gubdGnZWZAwpv7Hlwyyc9J_cuv5YXZGe17PRLcledr6qz5SsPwd_8mLdN
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+quantum-inspired+neural+network+using+memetic+algorithm+for+function+approximation+and+chaotic+time+series+prediction&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Ganjefar%2C+Soheil&rft.au=Tofighi%2C+Morteza&rft.date=2018-05-24&rft.issn=0925-2312&rft.volume=291&rft.spage=175&rft.epage=186&rft_id=info:doi/10.1016%2Fj.neucom.2018.02.074&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2018_02_074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon