GraphNET: Graph Neural Networks for routing optimization in Software Defined Networks

In this paper, a graph neural net-based routing algorithm is designed which leverages global information from controller of a software-defined network to predict optimal path with minimum average delay between source and destination nodes in software-defined networks. Graph nets are used because of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer communications Ročník 178; s. 169 - 182
Hlavní autoři: Swaminathan, Avinash, Chaba, Mridul, Sharma, Deepak Kumar, Ghosh, Uttam
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2021
Témata:
ISSN:0140-3664, 1873-703X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, a graph neural net-based routing algorithm is designed which leverages global information from controller of a software-defined network to predict optimal path with minimum average delay between source and destination nodes in software-defined networks. Graph nets are used because of their generalization capability which allows the routing algorithm to scale across varying topologies, traffic schemes and changing conditions. A deep reinforcement learning framework is developed to train the Graph Neural Networks using prioritized experience replay from the experiences learnt by the controllers. The algorithm is tested on various small and large topologies in terms of packets successfully routed and average packet delay time. Experiments are performed to check robustness of routing algorithms to changes in network structure and effects of varying hyperparameters. The proposed algorithm shows impressive results when compared to q-routing and shortest path routing algorithm in terms of above experiments and is robust to varying graphical structure of the network.
AbstractList In this paper, a graph neural net-based routing algorithm is designed which leverages global information from controller of a software-defined network to predict optimal path with minimum average delay between source and destination nodes in software-defined networks. Graph nets are used because of their generalization capability which allows the routing algorithm to scale across varying topologies, traffic schemes and changing conditions. A deep reinforcement learning framework is developed to train the Graph Neural Networks using prioritized experience replay from the experiences learnt by the controllers. The algorithm is tested on various small and large topologies in terms of packets successfully routed and average packet delay time. Experiments are performed to check robustness of routing algorithms to changes in network structure and effects of varying hyperparameters. The proposed algorithm shows impressive results when compared to q-routing and shortest path routing algorithm in terms of above experiments and is robust to varying graphical structure of the network.
Author Swaminathan, Avinash
Ghosh, Uttam
Chaba, Mridul
Sharma, Deepak Kumar
Author_xml – sequence: 1
  givenname: Avinash
  orcidid: 0000-0002-7319-3275
  surname: Swaminathan
  fullname: Swaminathan, Avinash
  email: s.avinash.it.17@nsit.net.in
  organization: Department of Information Technology, Netaji Subhas University of Technology, New Delhi 110078, India
– sequence: 2
  givenname: Mridul
  surname: Chaba
  fullname: Chaba, Mridul
  email: mridulc.it.17@nsit.net.in
  organization: Department of Information Technology, Netaji Subhas University of Technology, New Delhi 110078, India
– sequence: 3
  givenname: Deepak Kumar
  orcidid: 0000-0001-6117-3464
  surname: Sharma
  fullname: Sharma, Deepak Kumar
  email: dk.sharma1982@yahoo.com
  organization: Department of Information Technology, Netaji Subhas University of Technology, New Delhi 110078, India
– sequence: 4
  givenname: Uttam
  orcidid: 0000-0003-1698-8888
  surname: Ghosh
  fullname: Ghosh, Uttam
  email: ghosh.uttam@ieee.org
  organization: Department of EECS, Vanderbilt University, Nashville TN, USA
BookMark eNqFkMFKAzEQhoMo2FbfwENeYNfJ7naT7UGQWqtQ6sEK3kKaTDS13ZRsatGnd9uKBw8KA_9cvp-Zr0uOa18jIRcMUgasvFyk2q_aSTPIWAo8hax_RDpM8DzhkD8fkw6wApK8LItT0m2aBQAUnOcd8jQOav06Hc0GdL_RKW6CWrYRtz68NdT6QIPfRFe_UL-ObuU-VXS-pq6mj97GrQpIb9C6Gs0PdUZOrFo2eP6dPTK7Hc2Gd8nkYXw_vJ4kOocyJllhCi5MYa3RQmWCKVUqy7KSVXNhKgUZ2qpSqAWg7c_7Yl4xnivkem4UE3mPDA61OvimCWildnF_XQzKLSUDufMjF_LgR-78SOCy9dPCxS94HdxKhY__sKsDhu1f7w6DbLTDWqNxAXWUxru_C74ACJ6F_g
CitedBy_id crossref_primary_10_3390_su16219239
crossref_primary_10_1016_j_eswa_2024_125963
crossref_primary_10_1109_TNSE_2024_3495583
crossref_primary_10_1016_j_eswa_2025_128724
crossref_primary_10_3390_electronics14030476
crossref_primary_10_3390_electronics11203371
crossref_primary_10_1016_j_future_2023_09_017
crossref_primary_10_3390_electronics14051012
crossref_primary_10_3390_fi15120377
crossref_primary_10_1016_j_yofte_2024_104059
crossref_primary_10_1093_comjnl_bxae105
crossref_primary_10_3390_electronics13050994
crossref_primary_10_1007_s44443_025_00133_z
crossref_primary_10_1016_j_jnca_2024_103927
crossref_primary_10_3390_telecom4030025
crossref_primary_10_1016_j_future_2022_04_006
crossref_primary_10_1016_j_comnet_2025_111175
crossref_primary_10_1287_ijoo_2023_0092
crossref_primary_10_1016_j_jmaa_2025_129509
Cites_doi 10.1109/ACCESS.2018.2877686
10.1002/dac.3879
10.1109/COMST.2018.2866942
10.37936/ecti-eec.2020182.240541
10.1090/qam/102435
10.1016/j.asoc.2021.107422
10.1109/JPROC.2019.2895553
10.1007/s11276-020-02331-1
10.1007/s11277-021-08072-4
10.1016/j.knosys.2020.106548
10.1117/12.472955
10.1016/j.jpdc.2020.03.021
10.1016/j.future.2020.10.007
10.1002/sec.1737
10.1109/JSYST.2016.2630923
10.1038/nature14236
10.1088/1742-6596/1284/1/012053
10.1109/TNSE.2020.2991106
10.1109/MCOM.2013.6553676
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.comcom.2021.07.025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-703X
EndPage 182
ExternalDocumentID 10_1016_j_comcom_2021_07_025
S0140366421002887
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
ZMT
~G-
07C
29F
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
F0J
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
TAE
UHS
VH1
VOH
WUQ
XPP
ZY4
~HD
ID FETCH-LOGICAL-c306t-24d478d4ffdc8a281aa6af12619b8d9a02ef99aec80ef5b58b9173ae7cbda183
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000703166900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0140-3664
IngestDate Sat Nov 29 07:24:13 EST 2025
Tue Nov 18 21:18:57 EST 2025
Fri Feb 23 02:44:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Q-table
Routing algorithm
Software-Defined Networking
Deep Reinforcement Learning
Routing optimization
Deep Q-learning
Graph Neural Networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-24d478d4ffdc8a281aa6af12619b8d9a02ef99aec80ef5b58b9173ae7cbda183
ORCID 0000-0001-6117-3464
0000-0002-7319-3275
0000-0003-1698-8888
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_comcom_2021_07_025
crossref_primary_10_1016_j_comcom_2021_07_025
elsevier_sciencedirect_doi_10_1016_j_comcom_2021_07_025
PublicationCentury 2000
PublicationDate 2021-10-01
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer communications
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yazdinejad, Parizi, Dehghantanha, Srivastava, Mohan, Rababah (b11) 2020; 143
Benzekki, El Fergougui, Elbelrhiti Elalaoui (b7) 2016; 9
Shan, Mamoulis, Cheng, Li, Li, Qian (b4) 2020
Naeem, Gautam, Tariq (b14) 2020; 7
Mehra, Doja, Alam (b35) 2019; 32
Zhou, Cui, Zhang, Yang, Liu, Sun (b2) 2018
Mothukuri, Khare, Parizi, Pouriyeh, Dehghantanha, Srivastava (b34) 2021
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski, Petersen, Beattie, Sadik, Antonoglou, King, Kumaran, Wierstra, Legg, Hassabis (b6) 2015; 518
Maheswari, Sujitha, Kadiyala Ramana (b29) 2020; 10
Kumar, K, Singh (b18) 2020
Ranjan, Nguyen, Mekky, Zhang (b25) 2020
Sharma, Dhurandher, Woungang, Srivastava, Mohananey, Rodrigues (b13) 2018; 12
Boyan, Littman (b26) 1999; 6
Moravejosharieh, Ahmadi, Ahmad (b1) 2018
Lin, Shao, Youcef (b24) 2021; 212
Sharma, Rodrigues, Vashishth, Khanna, Chhabra (b17) 2020; 26
Lin, Djenouri, Srivastava, Yun, Fournier-Viger (b21) 2021; 108
Pasupuleti, Mathew, Shenoy, Dianat (b28) 2002; 4740
Sendra, Rego, Lloret, Jimenez, Romero (b30) 2017
Mnih, Kavukcuoglu, Silver, Graves, Antonoglou, Wierstra, Riedmiller (b5) 2013
Dwivedi, Sharma, Mehra (b12) 2020; 18
Gia Nguyen, Phan, Dinh Thai, Nguyen, So-In (b10) 2020
Fang, Cheng, Tang, Li (b16) 2019; 1284
Lin, Akyildiz, Wang, Luo (b22) 2016
Gilmer, Schoenholz, Riley, Vinyals, Dahl (b3) 2017
Xie, Yu, Huang, Xie, Liu, Wang, Liu (b9) 2019; 21
Maan, Chaba (b19) 2021; 118
Sharma, Manju, Singh, Mehra (b20) 2021
You, Li, Xu, Feng, Zhao (b33) 2019
Bellman (b27) 1958; 16
Yu, Lan, Guo, Hu (b32) 2018; 6
Mothukuri, Parizi, Pouriyeh, Huang, Dehghantanha, Gautam (b23) 2021; 115
Azzouni, Boutaba, Pujolle (b31) 2017
Sezer, Scott-Hayward, Chouhan, Fraser, Lake, Finnegan, Vilijoen, Miller, Rao (b8) 2013; 51
Kellerer, Kalmbach, Blenk, Basta, Reisslein, Schmid (b15) 2019; 107
Moravejosharieh (10.1016/j.comcom.2021.07.025_b1) 2018
Benzekki (10.1016/j.comcom.2021.07.025_b7) 2016; 9
Azzouni (10.1016/j.comcom.2021.07.025_b31) 2017
Ranjan (10.1016/j.comcom.2021.07.025_b25) 2020
Xie (10.1016/j.comcom.2021.07.025_b9) 2019; 21
Mnih (10.1016/j.comcom.2021.07.025_b5) 2013
Gilmer (10.1016/j.comcom.2021.07.025_b3) 2017
Sharma (10.1016/j.comcom.2021.07.025_b20) 2021
Kellerer (10.1016/j.comcom.2021.07.025_b15) 2019; 107
Naeem (10.1016/j.comcom.2021.07.025_b14) 2020; 7
Lin (10.1016/j.comcom.2021.07.025_b21) 2021; 108
Lin (10.1016/j.comcom.2021.07.025_b24) 2021; 212
Sezer (10.1016/j.comcom.2021.07.025_b8) 2013; 51
Boyan (10.1016/j.comcom.2021.07.025_b26) 1999; 6
Mehra (10.1016/j.comcom.2021.07.025_b35) 2019; 32
Mnih (10.1016/j.comcom.2021.07.025_b6) 2015; 518
Bellman (10.1016/j.comcom.2021.07.025_b27) 1958; 16
Sharma (10.1016/j.comcom.2021.07.025_b17) 2020; 26
Mothukuri (10.1016/j.comcom.2021.07.025_b34) 2021
Sendra (10.1016/j.comcom.2021.07.025_b30) 2017
Zhou (10.1016/j.comcom.2021.07.025_b2) 2018
Sharma (10.1016/j.comcom.2021.07.025_b13) 2018; 12
Mothukuri (10.1016/j.comcom.2021.07.025_b23) 2021; 115
Fang (10.1016/j.comcom.2021.07.025_b16) 2019; 1284
Lin (10.1016/j.comcom.2021.07.025_b22) 2016
Dwivedi (10.1016/j.comcom.2021.07.025_b12) 2020; 18
Pasupuleti (10.1016/j.comcom.2021.07.025_b28) 2002; 4740
You (10.1016/j.comcom.2021.07.025_b33) 2019
Maheswari (10.1016/j.comcom.2021.07.025_b29) 2020; 10
Kumar (10.1016/j.comcom.2021.07.025_b18) 2020
Shan (10.1016/j.comcom.2021.07.025_b4) 2020
Gia Nguyen (10.1016/j.comcom.2021.07.025_b10) 2020
Yu (10.1016/j.comcom.2021.07.025_b32) 2018; 6
Yazdinejad (10.1016/j.comcom.2021.07.025_b11) 2020; 143
Maan (10.1016/j.comcom.2021.07.025_b19) 2021; 118
References_xml – year: 2020
  ident: b18
  article-title: Energy-aware routing protocols for wireless sensor network based on fuzzy logic: A 10-years analytical review
  publication-title: EAI Endorsed Trans. Energy Web: Online First
– volume: 118
  year: 2021
  ident: b19
  article-title: Accurate cluster head selection technique for software defined network in 5G VANET
  publication-title: Wirel. Pers. Commun.
– volume: 16
  year: 1958
  ident: b27
  article-title: On a routing problem
  publication-title: Quart. Appl. Math.
– volume: 1284
  year: 2019
  ident: b16
  article-title: Research on routing algorithm based on reinforcement learning in SDN
  publication-title: J. Phys. Conf. Ser.
– volume: 6
  start-page: 64533
  year: 2018
  end-page: 64539
  ident: b32
  article-title: DROM: Optimizing the routing in software-defined networks with deep reinforcement learning
  publication-title: IEEE Access
– volume: 12
  start-page: 2207
  year: 2018
  end-page: 2213
  ident: b13
  article-title: A machine learning-based protocol for efficient routing in opportunistic networks
  publication-title: IEEE Syst. J.
– volume: 51
  start-page: 36
  year: 2013
  end-page: 43
  ident: b8
  article-title: Are we ready for SDN? Implementation challenges for software-defined networks
  publication-title: IEEE Commun. Mag.
– volume: 32
  year: 2019
  ident: b35
  article-title: Codeword authenticated key exchange (CAKE) light weight secure routing protocol for WSN
  publication-title: Int. J. Commun. Syst.
– volume: 107
  start-page: 711
  year: 2019
  end-page: 731
  ident: b15
  article-title: Adaptable and data-driven softwarized networks: Review, opportunities, and challenges
  publication-title: Proc. IEEE
– year: 2013
  ident: b5
  article-title: Playing atari with deep reinforcement learning
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: b6
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– volume: 108
  year: 2021
  ident: b21
  article-title: A predictive GA-based model for closed high-utility itemset mining
  publication-title: Appl. Soft Comput.
– start-page: 68
  year: 2018
  end-page: 73
  ident: b1
  article-title: A fuzzy logic approach to increase quality of service in software defined networking
  publication-title: 2018 International Conference on Advances in Computing, Communication Control and Networking
– start-page: 26
  year: 2020
  end-page: 38
  ident: b10
  article-title: Efficient SDN-based traffic monitoring in IoT networks with double deep Q-network
– start-page: 49
  year: 2020
  end-page: 60
  ident: b4
  article-title: An end-to-end deep RL framework for task arrangement in crowdsourcing platforms
  publication-title: 2020 IEEE 36th International Conference on Data Engineering
– volume: 212
  year: 2021
  ident: b24
  article-title: ASRNN: A recurrent neural network with an attention model for sequence labeling
  publication-title: Knowl.-Based Syst.
– start-page: 1
  year: 2017
  end-page: 6
  ident: b31
  article-title: NeuRoute: Predictive dynamic routing for software-defined networks
  publication-title: 2017 13th International Conference on Network and Service Management
– start-page: 1
  year: 2021
  ident: b34
  article-title: Federated learning-based anomaly detection for IoT security attacks
  publication-title: IEEE Internet Things J.
– start-page: 139
  year: 2021
  end-page: 149
  ident: b20
  article-title: SCSZB: Sensor congregate stable zonal-based routing protocol designed for optimal WSN
– volume: 26
  start-page: 4319
  year: 2020
  end-page: 4338
  ident: b17
  article-title: RLProph: a dynamic programming based reinforcement learning approach for optimal routing in opportunistic IoT networks
  publication-title: Wirel. Netw.
– volume: 21
  start-page: 393
  year: 2019
  end-page: 430
  ident: b9
  article-title: A survey of machine learning techniques applied to software defined networking (SDN): Research issues and challenges
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 115
  start-page: 619
  year: 2021
  end-page: 640
  ident: b23
  article-title: A survey on security and privacy of federated learning
  publication-title: Future Gener. Comput. Syst.
– start-page: 1
  year: 2019
  end-page: 8
  ident: b33
  article-title: Toward packet routing with fully-distributed multi-agent deep reinforcement learning
  publication-title: 2019 International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
– year: 2018
  ident: b2
  article-title: Graph neural networks: A review of methods and applications
– volume: 9
  start-page: 5803
  year: 2016
  end-page: 5833
  ident: b7
  article-title: Software-defined networking (SDN): a survey
  publication-title: Secur. Commun. Netw.
– start-page: 670
  year: 2017
  end-page: 674
  ident: b30
  article-title: Including artificial intelligence in a routing protocol using software defined networks
  publication-title: 2017 IEEE International Conference on Communications Workshops
– volume: 6
  year: 1999
  ident: b26
  article-title: Packet routing in dynamically changing networks: A reinforcement learning approach
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 10
  year: 2020
  ident: b29
  article-title: Routing optimization in sdn using deep reinforcement learning
  publication-title: J. Eng. Comput. Archit.
– volume: 18
  start-page: 158
  year: 2020
  end-page: 169
  ident: b12
  article-title: Energy efficient sensor node deployment scheme for two stage routing protocol of wireless sensor networks assisted IoT
  publication-title: ECTI Trans. Electr. Eng. Electron. Commun.
– start-page: 1
  year: 2020
  end-page: 6
  ident: b25
  article-title: On virtual id assignment in networks for high resilience routing: A theoretical framework
  publication-title: 2020 IEEE Global Communications Conference
– volume: 143
  start-page: 36
  year: 2020
  end-page: 46
  ident: b11
  article-title: Cost optimization of secure routing with untrusted devices in software defined networking
  publication-title: J. Parallel Distrib. Comput.
– start-page: 25
  year: 2016
  end-page: 33
  ident: b22
  article-title: QoS-aware adaptive routing in multi-layer hierarchical software defined networks: A reinforcement learning approach
  publication-title: 2016 IEEE International Conference on Services Computing
– year: 2017
  ident: b3
  article-title: Neural message passing for quantum chemistry
– volume: 7
  start-page: 2155
  year: 2020
  end-page: 2164
  ident: b14
  article-title: A software defined network based fuzzy normalized neural adaptive multipath congestion control for the internet of things
  publication-title: IEEE Trans. Netw. Sci. Eng.
– volume: 4740
  year: 2002
  ident: b28
  article-title: Fuzzy system for adaptive network routing
  publication-title: Proc. SPIE
– volume: 6
  start-page: 64533
  year: 2018
  ident: 10.1016/j.comcom.2021.07.025_b32
  article-title: DROM: Optimizing the routing in software-defined networks with deep reinforcement learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2877686
– volume: 32
  issue: 3
  year: 2019
  ident: 10.1016/j.comcom.2021.07.025_b35
  article-title: Codeword authenticated key exchange (CAKE) light weight secure routing protocol for WSN
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.3879
– start-page: 1
  year: 2020
  ident: 10.1016/j.comcom.2021.07.025_b25
  article-title: On virtual id assignment in networks for high resilience routing: A theoretical framework
– volume: 21
  start-page: 393
  issue: 1
  year: 2019
  ident: 10.1016/j.comcom.2021.07.025_b9
  article-title: A survey of machine learning techniques applied to software defined networking (SDN): Research issues and challenges
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2018.2866942
– volume: 18
  start-page: 158
  year: 2020
  ident: 10.1016/j.comcom.2021.07.025_b12
  article-title: Energy efficient sensor node deployment scheme for two stage routing protocol of wireless sensor networks assisted IoT
  publication-title: ECTI Trans. Electr. Eng. Electron. Commun.
  doi: 10.37936/ecti-eec.2020182.240541
– volume: 16
  year: 1958
  ident: 10.1016/j.comcom.2021.07.025_b27
  article-title: On a routing problem
  publication-title: Quart. Appl. Math.
  doi: 10.1090/qam/102435
– start-page: 670
  year: 2017
  ident: 10.1016/j.comcom.2021.07.025_b30
  article-title: Including artificial intelligence in a routing protocol using software defined networks
– volume: 108
  year: 2021
  ident: 10.1016/j.comcom.2021.07.025_b21
  article-title: A predictive GA-based model for closed high-utility itemset mining
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107422
– volume: 6
  year: 1999
  ident: 10.1016/j.comcom.2021.07.025_b26
  article-title: Packet routing in dynamically changing networks: A reinforcement learning approach
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: 10.1016/j.comcom.2021.07.025_b18
  article-title: Energy-aware routing protocols for wireless sensor network based on fuzzy logic: A 10-years analytical review
  publication-title: EAI Endorsed Trans. Energy Web: Online First
– start-page: 49
  year: 2020
  ident: 10.1016/j.comcom.2021.07.025_b4
  article-title: An end-to-end deep RL framework for task arrangement in crowdsourcing platforms
– volume: 107
  start-page: 711
  issue: 4
  year: 2019
  ident: 10.1016/j.comcom.2021.07.025_b15
  article-title: Adaptable and data-driven softwarized networks: Review, opportunities, and challenges
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2019.2895553
– volume: 26
  start-page: 4319
  year: 2020
  ident: 10.1016/j.comcom.2021.07.025_b17
  article-title: RLProph: a dynamic programming based reinforcement learning approach for optimal routing in opportunistic IoT networks
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-020-02331-1
– volume: 118
  year: 2021
  ident: 10.1016/j.comcom.2021.07.025_b19
  article-title: Accurate cluster head selection technique for software defined network in 5G VANET
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-021-08072-4
– start-page: 1
  year: 2017
  ident: 10.1016/j.comcom.2021.07.025_b31
  article-title: NeuRoute: Predictive dynamic routing for software-defined networks
– volume: 212
  year: 2021
  ident: 10.1016/j.comcom.2021.07.025_b24
  article-title: ASRNN: A recurrent neural network with an attention model for sequence labeling
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106548
– start-page: 68
  year: 2018
  ident: 10.1016/j.comcom.2021.07.025_b1
  article-title: A fuzzy logic approach to increase quality of service in software defined networking
– volume: 4740
  year: 2002
  ident: 10.1016/j.comcom.2021.07.025_b28
  article-title: Fuzzy system for adaptive network routing
  publication-title: Proc. SPIE
  doi: 10.1117/12.472955
– volume: 143
  start-page: 36
  year: 2020
  ident: 10.1016/j.comcom.2021.07.025_b11
  article-title: Cost optimization of secure routing with untrusted devices in software defined networking
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2020.03.021
– start-page: 1
  year: 2021
  ident: 10.1016/j.comcom.2021.07.025_b34
  article-title: Federated learning-based anomaly detection for IoT security attacks
  publication-title: IEEE Internet Things J.
– start-page: 25
  year: 2016
  ident: 10.1016/j.comcom.2021.07.025_b22
  article-title: QoS-aware adaptive routing in multi-layer hierarchical software defined networks: A reinforcement learning approach
– volume: 115
  start-page: 619
  year: 2021
  ident: 10.1016/j.comcom.2021.07.025_b23
  article-title: A survey on security and privacy of federated learning
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.10.007
– year: 2017
  ident: 10.1016/j.comcom.2021.07.025_b3
– volume: 9
  start-page: 5803
  issue: 18
  year: 2016
  ident: 10.1016/j.comcom.2021.07.025_b7
  article-title: Software-defined networking (SDN): a survey
  publication-title: Secur. Commun. Netw.
  doi: 10.1002/sec.1737
– year: 2013
  ident: 10.1016/j.comcom.2021.07.025_b5
– volume: 12
  start-page: 2207
  issue: 3
  year: 2018
  ident: 10.1016/j.comcom.2021.07.025_b13
  article-title: A machine learning-based protocol for efficient routing in opportunistic networks
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2016.2630923
– year: 2018
  ident: 10.1016/j.comcom.2021.07.025_b2
– volume: 518
  start-page: 529
  year: 2015
  ident: 10.1016/j.comcom.2021.07.025_b6
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 1284
  year: 2019
  ident: 10.1016/j.comcom.2021.07.025_b16
  article-title: Research on routing algorithm based on reinforcement learning in SDN
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1284/1/012053
– start-page: 139
  year: 2021
  ident: 10.1016/j.comcom.2021.07.025_b20
– volume: 10
  issue: 5
  year: 2020
  ident: 10.1016/j.comcom.2021.07.025_b29
  article-title: Routing optimization in sdn using deep reinforcement learning
  publication-title: J. Eng. Comput. Archit.
– start-page: 1
  year: 2019
  ident: 10.1016/j.comcom.2021.07.025_b33
  article-title: Toward packet routing with fully-distributed multi-agent deep reinforcement learning
– start-page: 26
  year: 2020
  ident: 10.1016/j.comcom.2021.07.025_b10
– volume: 7
  start-page: 2155
  issue: 4
  year: 2020
  ident: 10.1016/j.comcom.2021.07.025_b14
  article-title: A software defined network based fuzzy normalized neural adaptive multipath congestion control for the internet of things
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2020.2991106
– volume: 51
  start-page: 36
  issue: 7
  year: 2013
  ident: 10.1016/j.comcom.2021.07.025_b8
  article-title: Are we ready for SDN? Implementation challenges for software-defined networks
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2013.6553676
SSID ssj0004773
Score 2.5058713
Snippet In this paper, a graph neural net-based routing algorithm is designed which leverages global information from controller of a software-defined network to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 169
SubjectTerms Deep Q-learning
Deep Reinforcement Learning
Graph Neural Networks
Q-table
Routing algorithm
Routing optimization
Software-Defined Networking
Title GraphNET: Graph Neural Networks for routing optimization in Software Defined Networks
URI https://dx.doi.org/10.1016/j.comcom.2021.07.025
Volume 178
WOSCitedRecordID wos000703166900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-703X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004773
  issn: 0140-3664
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXcpIf2UHRFky7goTdDgHZSvQWpuwE1CtgBfBNIikScJnJgK06-It_c4Sq1KdLm0ItACSYla55mhoM3Mwi9K0WaN1lZRVw1WZRTnkdMJHkkiZJgkljBS26aTZDplC4W1ffR6NrnwmxPSdvSq6vq_L-KGq6BsHXq7B3EHRaFCzAGocMRxA7HfxL8J12CejqZ672-GY91AQ6QxNQyvk0BhvF6dWEJz6Ayzlwupo59zEAtX2o22AepwAFtwqyhF-tbQWhCep9eErzz2SXTBBsdlDeqZwsnmxB2Pjxm3His39bLpqclzkwNbasCwUT-GBvyd6AHHa82JgB01HXsbBiqSJNAeuujl6D0S1u2PKhf28LHKdDENm5xtjixjYluqHkbcTjRUtKcH30vU4LV5lD_WlX7N2sXOIie3nZS21VqvUodkxpWuYd2U1JUoOh3D75MFl_7TFtiOQv-j_hkTMMYvPk0f3Z2Bg7M_DF65HYe-MAi5gkayfYpejioR_kMHXnsvMdmhC1ysMcABuRghxw8RA5ettgjBzvkhFnP0fzjZH74OXJ9NyIBG8gugq83J7TJlWoEZSlNGCuZSvRem9OmYnEqVVUxKWgsVcELymHPnzFJBG8YmIgXaKddtfIlwiqFFcHlVkUhcqIaHitSxhkYWRILmtE9lPn3UwtXk163Rjmtb5POHorCrHNbk-Uvvyf-1dfOr7T-Yg14unXm_h3v9Ao96HH_Gu106wv5Bt0X2265Wb91YPoJLGielw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GraphNET%3A+Graph+Neural+Networks+for+routing+optimization+in+Software+Defined+Networks&rft.jtitle=Computer+communications&rft.au=Swaminathan%2C+Avinash&rft.au=Chaba%2C+Mridul&rft.au=Sharma%2C+Deepak+Kumar&rft.au=Ghosh%2C+Uttam&rft.date=2021-10-01&rft.issn=0140-3664&rft.volume=178&rft.spage=169&rft.epage=182&rft_id=info:doi/10.1016%2Fj.comcom.2021.07.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_comcom_2021_07_025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon