High attenuation electromagnetic interface filter for effective processing of audio signals

Suppressing the noise or unwanted signal from the raw signal makes the system work efficiently. Electromagnetic interface (EMI) can cause the system/device to lose the data, damage the electronic equipment, interrupt the audio, or video signals, lead to poor reception, etc EMI filters are used in te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering Research Express Jg. 6; H. 3; S. 35309 - 35320
Hauptverfasser: Prasanna, Dasari Lakshmi, Tripathi, Suman Lata, Mahmud, Mufti, Wijayanto, Inung
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IOP Publishing 01.09.2024
Schlagworte:
ISSN:2631-8695, 2631-8695
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Suppressing the noise or unwanted signal from the raw signal makes the system work efficiently. Electromagnetic interface (EMI) can cause the system/device to lose the data, damage the electronic equipment, interrupt the audio, or video signals, lead to poor reception, etc EMI filters are used in telecommunications, military equipment, satellite communication, etc At the industry level, EMI filters are used for home appliances, medical equipment, motor controls, test equipment, etc In this paper, active and passive EMI filters are designed to avoid or attenuate EMI or noise (unwanted EMI signal) and implemented on Xilinx Nexys 4 Artix 7 FPGA board. The filters provide a significant improvement in the attenuation of the EMI. MATLAB tool is used to design the filters, which are highly immune to undesired signals, give better stability, and perform over a wide range of frequencies. Depending on the filters’ coefficients, the frequency response will be changed. Phase response and amplitude response of the EMI filters are calculated. Insertion loss of the active filter is 1.5836, and for the passive filter, 1.9382. The gain of active and passive filters is 0.7359 and 0.912 respectively. The return loss of the active and passive EMI filters is 20 dB. HDL code is generated using MATLAB for the implementation of filter on FPGA. Using MATLAB HDL coder for implementing is new and it simplifies the design, as a result development time is reduced. Xilinx Vivado tool is used for the implementation of active filter. The total on-chip power is 0.146 W. Dynamic power is 0.049 W, and device static power is 0.097 W. The utilization of LUTs and slice registers are less, compared to the previous filter implementation, which leads to reduce the cost of hardware implementation.
AbstractList Suppressing the noise or unwanted signal from the raw signal makes the system work efficiently. Electromagnetic interface (EMI) can cause the system/device to lose the data, damage the electronic equipment, interrupt the audio, or video signals, lead to poor reception, etc EMI filters are used in telecommunications, military equipment, satellite communication, etc At the industry level, EMI filters are used for home appliances, medical equipment, motor controls, test equipment, etc In this paper, active and passive EMI filters are designed to avoid or attenuate EMI or noise (unwanted EMI signal) and implemented on Xilinx Nexys 4 Artix 7 FPGA board. The filters provide a significant improvement in the attenuation of the EMI. MATLAB tool is used to design the filters, which are highly immune to undesired signals, give better stability, and perform over a wide range of frequencies. Depending on the filters’ coefficients, the frequency response will be changed. Phase response and amplitude response of the EMI filters are calculated. Insertion loss of the active filter is 1.5836, and for the passive filter, 1.9382. The gain of active and passive filters is 0.7359 and 0.912 respectively. The return loss of the active and passive EMI filters is 20 dB. HDL code is generated using MATLAB for the implementation of filter on FPGA. Using MATLAB HDL coder for implementing is new and it simplifies the design, as a result development time is reduced. Xilinx Vivado tool is used for the implementation of active filter. The total on-chip power is 0.146 W. Dynamic power is 0.049 W, and device static power is 0.097 W. The utilization of LUTs and slice registers are less, compared to the previous filter implementation, which leads to reduce the cost of hardware implementation.
Author Prasanna, Dasari Lakshmi
Tripathi, Suman Lata
Mahmud, Mufti
Wijayanto, Inung
Author_xml – sequence: 1
  givenname: Dasari Lakshmi
  surname: Prasanna
  fullname: Prasanna, Dasari Lakshmi
  organization: Lovely Professional University VLSI Design Lab, Punjab, India
– sequence: 2
  givenname: Suman Lata
  orcidid: 0000-0002-1684-8204
  surname: Tripathi
  fullname: Tripathi, Suman Lata
  organization: Lovely Professional University VLSI Design Lab, Punjab, India
– sequence: 3
  givenname: Mufti
  orcidid: 0000-0002-2037-8348
  surname: Mahmud
  fullname: Mahmud, Mufti
  organization: Nottingham Trent University Department of Computer Science , United Kingdom
– sequence: 4
  givenname: Inung
  surname: Wijayanto
  fullname: Wijayanto, Inung
  organization: Telkom University School of Electrical Engineering, Bandung, Indonesia
BookMark eNp1kDFPwzAUhC1UJErpzuiJiVC7SV7sEVVAkSqxwMRgOc5zMGrtyHER_HsSihADTO_0dHc6fadk4oNHQs45u-JMiMUScp4JkOVCN6Vt7BGZ_rwmv_QJmfe9q1kBwKHi1ZQ8r137QnVK6Pc6ueApbtGkGHa69Zicoc4njFYbpNZtB0ltiBStHVzuDWkXg8Gh1Lc0WKr3jQu0d63X2_6MHNvh4Pz7zsjT7c3jap1tHu7uV9ebzOQMUrYsDLeGVRUHAXUJDa8lFwUKLWsNIIUwMAw2tbQC8kYudWlAGs7qsjBaYj4j7NBrYuj7iFZ10e10_FCcqZGPGgGoEYA68BkiF4eIC516Dfs47lUY3xWoXLG8zJlU3Zfx8g_jv72f4G14XQ
CODEN ERENBL
Cites_doi 10.1109/TCSII.2021.3081257
10.1109/TEMC.2017.2696166
10.1080/09298210903171178
10.1109/TPEL.2009.2023216
10.1007/s11277-024-10897-8
10.1109/TPEL.2012.2219074
10.3390/math11194117
10.1109/JSSC.2011.2178930
10.1109/TVT.2019.2944220
10.1002/9781119861850.ch17
10.1163/156939310791036331
10.1109/VLSIDCS53788.2022.9811452
10.1109/TPEL.2010.2077655
10.1109/TNS.2017.2706061
10.1109/TCPMT.2015.2411624
10.1109/TEMC.2013.2240392
10.1103/physrevb.99.115304
10.1109/TIA.2016.2518129
10.1109/APEC.2016.7467958
10.1002/9781119778097
10.1109/TEMC.2015.2401001
10.1002/9781119861850.ch7
10.1109/TMAG.2011.2150738
10.1109/TEMC.2010.2046419
10.1038/177536a0
10.1109/TEMC.2006.870803
10.1109/ICCCNT.2017.8204189
10.1109/TPEL.2009.2030803
10.1109/TEMC.2010.2072510
10.30534/ijatcse/2020/355942020
ContentType Journal Article
Copyright 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
DOI 10.1088/2631-8695/ad5fdf
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2631-8695
ExternalDocumentID 10_1088_2631_8695_ad5fdf
erxad5fdf
GroupedDBID ABJNI
ALMA_UNASSIGNED_HOLDINGS
AAYXX
CITATION
ID FETCH-LOGICAL-c306t-24c1fc0771686b56d1b9184e8a9ba66988c6466cb9f863d92a5c69c10b54ca9e3
IEDL.DBID O3W
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001270973700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2631-8695
IngestDate Sat Nov 29 07:48:49 EST 2025
Tue Jun 17 22:16:46 EDT 2025
Tue Aug 20 22:16:33 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-24c1fc0771686b56d1b9184e8a9ba66988c6466cb9f863d92a5c69c10b54ca9e3
Notes ERX-104467.R1
ORCID 0000-0002-1684-8204
0000-0002-2037-8348
OpenAccessLink https://doi.org/10.1088/2631-8695/ad5fdf
PageCount 12
ParticipantIDs crossref_primary_10_1088_2631_8695_ad5fdf
iop_journals_10_1088_2631_8695_ad5fdf
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering Research Express
PublicationTitleAbbrev ERX
PublicationTitleAlternate Eng. Res. Express
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Prasanna (erxad5fdfbib28) 2022
Wu (erxad5fdfbib10) 2011; 26
Annangi (erxad5fdfbib21) 2017
Bai (erxad5fdfbib16) 2016
Luciano (erxad5fdfbib27) 2017; 64
Tarateeraseth (erxad5fdfbib13) 2010; 52
Kumar (erxad5fdfbib30) 2023
Richelli (erxad5fdfbib15) 2017; 59
Nave (erxad5fdfbib14) 1991
Tripathi (erxad5fdfbib22) 2021
Chen (erxad5fdfbib1) 2009; 24
Lai (erxad5fdfbib11) 2010; 25
Holzer (erxad5fdfbib32) 1956; 177
Nigam (erxad5fdfbib26) 2023; 11
Shin (erxad5fdfbib9) 2015; 57
Chen (erxad5fdfbib2) 2015; 5
Sturm (erxad5fdfbib23) 2009; 38
Bose (erxad5fdfbib20) 2021; 68
Prasanna (erxad5fdfbib29) 2023
Hamza (erxad5fdfbib7) 2013; 28
Jiang (erxad5fdfbib18) 2019; 68
Prasanna (erxad5fdfbib31) 2024; 134
Guanziroli (erxad5fdfbib19) 2012; 47
Huang (erxad5fdfbib5) 2013; 55
Sarsen (erxad5fdfbib25) 2019; 99
Ala (erxad5fdfbib6) 2016; 52
Menicanin (erxad5fdfbib3) 2011; 47
Valagiannopoulos (erxad5fdfbib24) 2010; 24
Rajamanickam (erxad5fdfbib17) 2020; 9
Chen (erxad5fdfbib4) 2010; 52
Kumar (erxad5fdfbib12) 2017; 6
Chen (erxad5fdfbib8) 2006; 48
References_xml – volume: 68
  start-page: 3451
  year: 2021
  ident: erxad5fdfbib20
  article-title: Area-delay-power efficient VLSI architecture of FIR filter for processing seismic signal
  publication-title: IEEE Trans. Circuits Syst. Express Briefs
  doi: 10.1109/TCSII.2021.3081257
– volume: 59
  start-page: 2049
  year: 2017
  ident: erxad5fdfbib15
  article-title: An EMI-resistant common-mode cancelation differential input stage in UMC 180 nm CMOS
  publication-title: IEEE Trans. Electromagn. Compat.
  doi: 10.1109/TEMC.2017.2696166
– volume: 38
  start-page: 325
  year: 2009
  ident: erxad5fdfbib23
  article-title: Analysis, visualization, and transformation of audio signals using dictionary-based methods
  publication-title: Journal of New Music Research
  doi: 10.1080/09298210903171178
– volume: 24
  start-page: 2867
  year: 2009
  ident: erxad5fdfbib1
  article-title: A method of using two equivalent negative inductances to reduce parasitic inductances of a three-capacitor EMI filter
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2009.2023216
– volume: 134
  start-page: 151
  year: 2024
  ident: erxad5fdfbib31
  article-title: A review on tongue based assistive technology, devices and FPGA processors using machine learning module
  publication-title: Wireless Pers Commun
  doi: 10.1007/s11277-024-10897-8
– volume: 28
  start-page: 2867
  year: 2013
  ident: erxad5fdfbib7
  article-title: Application and stability analysis of a novel digital active EMI filter used in a grid-tied PV microinverter module
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2012.2219074
– year: 1991
  ident: erxad5fdfbib14
– volume: 11
  year: 2023
  ident: erxad5fdfbib26
  article-title: Filtering of audio signals using discrete wavelet transforms
  publication-title: Mathematics
  doi: 10.3390/math11194117
– volume: 47
  start-page: 686
  year: 2012
  ident: erxad5fdfbib19
  article-title: A 1 W 104 dB SNR filter-less fully-digital open-loop class D audio amplifier with EMI reduction
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2011.2178930
– volume: 68
  start-page: 10639
  year: 2019
  ident: erxad5fdfbib18
  article-title: Active EMI filter design with a modified LCL-LC filter for single-phase grid-connected inverter in vehicle-to-grid application
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2944220
– volume: 6
  start-page: 73
  year: 2017
  ident: erxad5fdfbib12
  article-title: Simulation of EMI filters using matlab
  publication-title: International Journal of Engineering Science Invention
– start-page: 293
  year: 2023
  ident: erxad5fdfbib30
  article-title: Future of machine learning (ML) and deep learning (DL) in healthcare monitoring system
  doi: 10.1002/9781119861850.ch17
– volume: 24
  start-page: 631
  year: 2010
  ident: erxad5fdfbib24
  article-title: A novel methodology for estimating the permittivity of a specimen rod at low radio frequencies
  publication-title: J. Electromagn. Waves Appl.
  doi: 10.1163/156939310791036331
– start-page: 143
  year: 2022
  ident: erxad5fdfbib28
  article-title: Machine learning classifiers for speech detection
  doi: 10.1109/VLSIDCS53788.2022.9811452
– volume: 26
  start-page: 1344
  year: 2011
  ident: erxad5fdfbib10
  article-title: Design, modeling, and improvement of integrated EMI filter with flexible multilayer foils
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2010.2077655
– volume: 64
  start-page: 1374
  year: 2017
  ident: erxad5fdfbib27
  article-title: A hardware implementation of a brain inspired filter for image processing
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2017.2706061
– volume: 5
  start-page: 713
  year: 2015
  ident: erxad5fdfbib2
  article-title: Implementation of a compact EMI filter array for 4G-LTE applications on LTCC
  publication-title: IEEE Trans. Compon., Packag., Manuf. Technol.
  doi: 10.1109/TCPMT.2015.2411624
– volume: 55
  start-page: 901
  year: 2013
  ident: erxad5fdfbib5
  article-title: Techniques for improving the high-frequency performance of the planar CM EMI filter
  publication-title: IEEE Trans. Electromagn. Compat.
  doi: 10.1109/TEMC.2013.2240392
– volume: 99
  year: 2019
  ident: erxad5fdfbib25
  article-title: Robust polarization twist by pairs of multilayers with tilted optical axes
  publication-title: Phys. Rev.
  doi: 10.1103/physrevb.99.115304
– volume: 52
  start-page: 2397
  year: 2016
  ident: erxad5fdfbib6
  article-title: Design and performance evaluation of a high power-density EMI filter for PWM inverter-fed induction-motor drives
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2016.2518129
– start-page: 766
  year: 2016
  ident: erxad5fdfbib16
  article-title: EMI noise cancelation by optimizing transformer design without need for the traditional Y-capacitor
  doi: 10.1109/APEC.2016.7467958
– year: 2021
  ident: erxad5fdfbib22
  doi: 10.1002/9781119778097
– volume: 57
  start-page: 660
  year: 2015
  ident: erxad5fdfbib9
  article-title: Analysis and design guide of active EMI Filter in a compact package for reduction of common-mode conducted emissions
  publication-title: IEEE Trans. Electromagn. Compat.
  doi: 10.1109/TEMC.2015.2401001
– start-page: 115
  year: 2023
  ident: erxad5fdfbib29
  article-title: Machine and deep-learning techniques for text and speech processing
  doi: 10.1002/9781119861850.ch7
– volume: 47
  start-page: 3975
  year: 2011
  ident: erxad5fdfbib3
  article-title: Improved model of T-type LC EMI chip filters using new microstrip test fixture
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2011.2150738
– volume: 52
  start-page: 588
  year: 2010
  ident: erxad5fdfbib13
  article-title: Systematic electromagnetic interference filter design based on information from in-circuit impedance measurements
  publication-title: IEEE Trans. Electromagn. Compat.
  doi: 10.1109/TEMC.2010.2046419
– volume: 177
  start-page: 536
  year: 1956
  ident: erxad5fdfbib32
  article-title: Low audio-frequency electromagnetic signals of natural origin
  publication-title: Nature
  doi: 10.1038/177536a0
– volume: 48
  start-page: 172
  year: 2006
  ident: erxad5fdfbib8
  article-title: An active EMI filtering technique for improving passive filter low-frequency performance
  publication-title: IEEE Trans. Electromagn. Compat.
  doi: 10.1109/TEMC.2006.870803
– start-page: 1
  year: 2017
  ident: erxad5fdfbib21
  article-title: ASIC implementation of efficient 16-parallel fast FIR algorithm filter structure
  doi: 10.1109/ICCCNT.2017.8204189
– volume: 25
  start-page: 539
  year: 2010
  ident: erxad5fdfbib11
  article-title: An integrated EMI choke for differential-mode and common-mode noise suppression
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2009.2030803
– volume: 52
  start-page: 1066
  year: 2010
  ident: erxad5fdfbib4
  article-title: Series-connected grounding of common-mode EMI filter
  publication-title: IEEE Trans. Electromagn. Compat.
  doi: 10.1109/TEMC.2010.2072510
– volume: 9
  start-page: 6631
  year: 2020
  ident: erxad5fdfbib17
  article-title: Spread spectrum modulation investigation using MATLAB developed tool on automotive DC-DC converter
  publication-title: International Journal of Advanced Trends in Computer Science and Engineering
  doi: 10.30534/ijatcse/2020/355942020
SSID ssib046616717
ssib037096498
ssib052001916
Score 2.3065257
Snippet Suppressing the noise or unwanted signal from the raw signal makes the system work efficiently. Electromagnetic interface (EMI) can cause the system/device to...
SourceID crossref
iop
SourceType Index Database
Enrichment Source
Publisher
StartPage 35309
SubjectTerms amplitude response
cut-off frequency
EMI filters
FPGA
gain
HDL
phase response
Title High attenuation electromagnetic interface filter for effective processing of audio signals
URI https://iopscience.iop.org/article/10.1088/2631-8695/ad5fdf
Volume 6
WOSCitedRecordID wos001270973700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles (WRLC)
  customDbUrl:
  eissn: 2631-8695
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib037096498
  issn: 2631-8695
  databaseCode: O3W
  dateStart: 20190711
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5t9eDFByrWZw568LB2d7ObTfAkYvEg1YNiwUPIU3pwt_Qh_nwnzVZbEBG87WEI4dtJZj5m8g1Cp8p6WTeiIgPJe5QlVkXSFC7KuLF-1EPC5exP3xW9Huv3-UMDXX69hamG9dV_AZ9BKDhAWDfEsU5KSRIxyvOONLkzrolWCIMwDs58T57nzkQKSM6zby6RQSCiC9zFyw0BV5mXLn9aeClUNWE7C5Gnu_GvPW-i9TrhxFfBdAs1bLmNXnx7B_bSmmWQ-sb1OJw3-Vr6Z43Yy0iMnNQWu4EvqGNIbnFo_oD7EQ_D-wKIe7hyWE7NoMK-FQSceQc9dW8er2-jesxCpIEvTKI004nTcQHMiVGVU5MoDrzPMsmVpJQzpimgpxV3jBLDU5lrynUSqzzTkluyi1plVdo9hA0kU7JIXGxyntmYq4IQnhjCpVSkcLKNzueIimFQ0xCzKjhjwkMkPEQiQNRGZ4CmqI_U-Be7kyU7O_oQVBARk5zEXAyN2__jSgdoLYWUJXSQHaLWZDS1R2hVv08G49HxzLs-AfrH0E4
linkProvider IOP Publishing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA62injxgYr11Rz04GHtbrObTY6iFsVSe1AseAh5Sg9uSx_iz3fSbLEFEcHbHoYQvp1kvmEm3yB0pqyXdSMqMkDeozSxKpImd1HKjfWjHhIuZ3-6nXc6rNfj3XLO6ewtzGBYXv2X8BmEggOEZUMcazQpSSJGedaQJnPGNYbGVdCq1ynxbv1IXuYORXIg6Ol3PpFCMKIL-YuXHIJ8ZV6-_GnxpXBVgS0tRJ_W1r_3vY02S-KJr4L5DlqxxS569W0e2EtsFkHyG5djcd7lW-GfN2IvJzFyUlvs-r6wjoHk4tAEAvckHoZ3BhD_8MBhOTX9AfYtIeDUe-i5dft0fReV4xYiDXnDJGqmOnE6ziGDYlRl1CSKQ_5nmeRKUsoZ0xQQ1Io7RonhTZlpynUSqyzVkluyj6rFoLAHCBsgVTJPXGwyntqYq5wQnhjCpVQkd7KGLuaoimFQ1RCzajhjwsMkPEwiwFRD54CoKI_W-Be7-pKdHX0KKoiISUZiLgDswz-uVEfr3ZuWaN93Ho7QRhNYTGgqO0bVyWhqT9Ca_pj0x6PTmbN9Ab-A1bY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+attenuation+electromagnetic+interface+filter+for+effective+processing+of+audio+signals&rft.jtitle=Engineering+Research+Express&rft.au=Prasanna%2C+Dasari+Lakshmi&rft.au=Tripathi%2C+Suman+Lata&rft.au=Mahmud%2C+Mufti&rft.au=Wijayanto%2C+Inung&rft.date=2024-09-01&rft.pub=IOP+Publishing&rft.eissn=2631-8695&rft.volume=6&rft.issue=3&rft_id=info:doi/10.1088%2F2631-8695%2Fad5fdf&rft.externalDocID=erxad5fdf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-8695&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-8695&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-8695&client=summon