A semi-supervised autoencoder for autism disease diagnosis

Autism spectrum disorder (ASD) is a neurological developmental disorder that typically causes impaired communication and compromised social interactions. The current clinical assessment of ASD is typically based on behavioral observations and lack of the understanding of the neurological mechanism a...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 483; pp. 140 - 147
Main Authors: Yin, Wutao, Li, Longhai, Wu, Fang-Xiang
Format: Journal Article
Language:English
Published: Elsevier B.V 28.04.2022
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Autism spectrum disorder (ASD) is a neurological developmental disorder that typically causes impaired communication and compromised social interactions. The current clinical assessment of ASD is typically based on behavioral observations and lack of the understanding of the neurological mechanism and the progression of the brain development. The functional magnetic resonance imaging (fMRI) data is one of the commonly-used imaging modalities for understanding human brain mechanisms as well as the diagnosis and treatment of brain disorders such as ASD. In this paper, we proposed a semi-supervised autoencoder (AE) for autism diagnosis using functional connectivity (FC) pattern obtained from resting-state fMRI. An unsupervised autoencoder in combination with the supervised classification networks enables semi-supervised learning in which an autoencoder for learning hidden features and a neural network based classifier are trained together. Compared to train the autoencoder and classifier in separate phases, the proposed semi-supervised learning essentially helps tune the latent feature representation learning towards the goal of classification, and thus leads to improvements in autism diagnosis performance. The proposed model is evaluated by using cross-validation methods on ABIDE I database. Experimental results demonstrate that the proposed model achieves improved classification performance, and that the proposed semi-supervised learning framework can integrate unlabelled fMRI data for better feature learning and improved classification accuracy.
AbstractList Autism spectrum disorder (ASD) is a neurological developmental disorder that typically causes impaired communication and compromised social interactions. The current clinical assessment of ASD is typically based on behavioral observations and lack of the understanding of the neurological mechanism and the progression of the brain development. The functional magnetic resonance imaging (fMRI) data is one of the commonly-used imaging modalities for understanding human brain mechanisms as well as the diagnosis and treatment of brain disorders such as ASD. In this paper, we proposed a semi-supervised autoencoder (AE) for autism diagnosis using functional connectivity (FC) pattern obtained from resting-state fMRI. An unsupervised autoencoder in combination with the supervised classification networks enables semi-supervised learning in which an autoencoder for learning hidden features and a neural network based classifier are trained together. Compared to train the autoencoder and classifier in separate phases, the proposed semi-supervised learning essentially helps tune the latent feature representation learning towards the goal of classification, and thus leads to improvements in autism diagnosis performance. The proposed model is evaluated by using cross-validation methods on ABIDE I database. Experimental results demonstrate that the proposed model achieves improved classification performance, and that the proposed semi-supervised learning framework can integrate unlabelled fMRI data for better feature learning and improved classification accuracy.
Author Li, Longhai
Yin, Wutao
Wu, Fang-Xiang
Author_xml – sequence: 1
  givenname: Wutao
  surname: Yin
  fullname: Yin, Wutao
  email: wutao.yin@usask.ca
  organization: Division of Biomedical Engineering, 57 Campus Dr., Saskatoon, SK S7N 5A9 Canada
– sequence: 2
  givenname: Longhai
  surname: Li
  fullname: Li, Longhai
  email: longhai@math.usask.ca
  organization: Department of Mathematics and Statistics, University of Saskatchewan, 106 Wiggins Road, MCLN 219 Saskatoon, Saskatchewan S7N 5E6 Canada
– sequence: 3
  givenname: Fang-Xiang
  surname: Wu
  fullname: Wu, Fang-Xiang
  email: fangxiang.wu@usask.ca
  organization: Department of Mechanical Engineering, Division of Biomedical Engineering, and Department of Computer Science, 57 Campus Dr., Saskatoon, SK S7N 5A9 Canada
BookMark eNqFkE9LAzEQxYNUsK1-Aw_7BXZNJtl_PQilaBUKXvQcpsmspHQ3JdkW_Pam1JMHhQePYeY9mN-MTQY_EGP3gheCi-phVwx0NL4vgAMUPEnUV2wqmhryBppqwqa8hTIHKeCGzWLc8XQhoJ2yxTKL1Ls8Hg8UTi6SzfA4ehqMtxSyzofz7GKf2bTESMnxc_DRxVt23eE-0t2Pz9nH89P76iXfvK1fV8tNbiSvxhyUFGSrxihA0YmSeMdBEYJs2s7Ksm5hW3bWEHIkQKmwMlusSrK1UKpt5ZwtLr0m-BgDddq4EUfnhzGg22vB9ZmC3ukLBX2moHmSqFNY_QofgusxfP0Xe7zEKD12chR0NC5BIesCmVFb7_4u-AbLW3v2
CitedBy_id crossref_primary_10_1016_j_rasd_2023_102228
crossref_primary_10_3389_fnins_2022_1046268
crossref_primary_10_1016_j_jaacop_2024_03_005
crossref_primary_10_1155_2022_4464603
crossref_primary_10_1038_s41398_024_03024_5
crossref_primary_10_1007_s10278_024_01002_3
crossref_primary_10_3390_brainsci13050725
crossref_primary_10_3390_app14073053
crossref_primary_10_1016_j_jtice_2023_105098
crossref_primary_10_1097_PR9_0000000000001044
crossref_primary_10_1038_s41598_024_68749_1
crossref_primary_10_1016_j_eclinm_2025_103452
crossref_primary_10_1016_j_neucom_2023_03_008
crossref_primary_10_1177_14759217231200096
crossref_primary_10_1016_j_cmpb_2024_108114
crossref_primary_10_1016_j_neucom_2023_126520
crossref_primary_10_1049_cit2_12340
crossref_primary_10_3390_s24113601
crossref_primary_10_3389_fnmol_2022_999605
crossref_primary_10_1371_journal_pone_0286137
crossref_primary_10_3389_fphys_2025_1593965
crossref_primary_10_1038_s44387_025_00020_y
crossref_primary_10_1016_j_asoc_2022_109773
Cites_doi 10.1016/j.procs.2018.10.129
10.1016/j.zemedi.2018.11.002
10.1016/j.neuron.2011.09.006
10.1007/978-3-030-00755-3_9
10.1016/j.nicl.2017.08.017
10.1097/WCO.0b013e328306f2c5
10.1371/journal.pone.0206351
10.1089/cmb.2020.0252
10.1146/annurev-bioeng-071516-044442
10.1038/nrn2575
10.1016/j.neuroimage.2012.01.022
10.1126/science.1127647
10.1016/j.neuroimage.2015.05.018
10.1016/j.jneumeth.2019.108319
10.1192/bjp.bp.114.160192
10.3389/fnins.2017.00460
10.3389/conf.fninf.2013.09.00041
10.1016/j.euroneuro.2010.03.008
10.1109/TASLP.2017.2759338
10.3389/fnhum.2013.00599
10.1016/j.ebiom.2018.03.017
10.1109/ACCESS.2019.2940198
10.3389/fnins.2014.00229
10.1016/j.neucom.2018.04.080
10.1016/j.neucom.2021.03.051
10.1002/mrm.22159
10.1006/cbmr.1996.0014
10.1109/TCBB.2017.2776910
10.1109/TNNLS.2019.2955565
10.1016/j.neuroimage.2011.09.015
10.1016/j.neuroimage.2019.05.039
10.3389/fninf.2019.00070
10.1016/j.cmpb.2020.105348
10.1109/MGRS.2018.2853555
10.1007/BF02172145
10.1016/j.mri.2019.05.031
10.3389/fneur.2019.00869
10.1002/hbm.21333
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2022.02.017
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 147
ExternalDocumentID 10_1016_j_neucom_2022_02_017
S0925231222001606
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-2431ed68c42a1f15e0f024ea2389fd35792b5fdcea0ae2a34a6cba65ed7144993
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000761719500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:08:17 EST 2025
Tue Nov 18 21:49:07 EST 2025
Fri Feb 23 02:39:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords fMRI
Brain disorders diagnosis
Semi-supervised learning
Autoencoders
Artificial intelligence
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-2431ed68c42a1f15e0f024ea2389fd35792b5fdcea0ae2a34a6cba65ed7144993
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2022_02_017
crossref_primary_10_1016_j_neucom_2022_02_017
elsevier_sciencedirect_doi_10_1016_j_neucom_2022_02_017
PublicationCentury 2000
PublicationDate 2022-04-28
PublicationDateYYYYMMDD 2022-04-28
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-28
  day: 28
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Heinsfeld, Franco, Cameron, Buchweitz, Meneguzzi (b0110) 2018; 17
Salimans, Kingma (b0240) 2016
E. Wong, J.S. Anderson, B.A. Zielinski, P.T. Fletcher, Riemannian regression and classification models of brain networks applied to autism, in: Connectomics in NeuroImaging, Springer International Publishing, 2018, pp. 78–87. doi: 10.1007/978-3-030-00755-3_9.
A.S. Lundervold, A. Lundervold, An overview of deep learning in medical imaging focusing on mri, Zeitschrift für Medizinische Physik 29 (2019) 102–127. Special Issue: Deep Learning in Medical Physics.
Shen, Wu, Suk (b0090) 2017; 19
Kong, Gao, Xu, Pan, Wang, Liu (b0115) 2019; 324
Dekhil, Hajjdiab, Shalaby, Ali, Ayinde, Switala, Elshamekh, Ghazal, Keynton, Barnes, El-Baz (b0030) 2018; 13
Greicius (b0015) 2008; 21
Zeng, Wang, Hu, Yang, Pu, Shen, Chen, Liu, Yin, Tan, Wang, Hu (b0130) 2018; 30
Tschannen, Bachem, Lucic (b0195) 2018
Dong, Liao, Liu, Kuang (b0140) 2018; 6
S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, ICML’15, JMLR.org, 2015, p. 448–456.
Zhu, Jiang, Tong, Xie, Zaharchuk, Wintermark (b0080) 2019; 10
Weston, Ratle, Mobahi, Collobert (b0170) 2012
Hirvikoski, Mittendorfer-Rutz, Boman, Larsson, Lichtenstein, Bölte (b0005) 2016; 208
Guo, Dominick, Minai, Li, Erickson, Lu (b0050) 2017; 11
Yin, Mostafa, Wu (b0200) 2021; 28
Hinton, Salakhutdinov (b0220) 2006; 313
Eslami, Mirjalili, Fong, Laird, Saeed (b0125) 2019; 13
Svanera, Savardi, Benini, Signoroni, Raz, Hendler, Muckli, Goebel, Valente (b0215) 2019; 328
Martí-Juan, Sanroma-Guell, Piella (b0230) 2020; 189
Li, Lin, Chen (b0035) 2020
Yin, Li, Wu (b0070) 2020
Craddock, James, Holtzheimer, Hu, Mayberg (b0020) 2011; 33
Ienco, Pensa (b0180) 2018
Kim, Calhoun, Shim, Lee (b0025) 2016; 124
M. Khosla, K. Jamison, G.H. Ngo, A. Kuceyeski, M.R. Sabuncu, Machine learning in resting-state fmri analysis, Magnetic Resonance Imaging 64 (2019) 101–121. Artificial Intelligence in MRI.
Nielsen, Zielinski, Fletcher, Alexander, Lange, Bigler, Lainhart, Anderson (b0045) 2013; 7
N.F. Lori, I. Ramalhosa, P. Marques, V. Alves, Deep learning based pipeline for fingerprinting using brain functional mri connectivity data, Procedia Computer Science 141 (2018) 539–544. The 9th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN-2018)/ The 8th International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH-2018)/ Affiliated Workshops.
Ienco, Pensa (b0190) 2020; 31
Xing, Ji, Yao (b0155) 2018
Lord, Rutter, Le Couteur (b0010) 1994; 24
Ju, Hu, Zhou, Li (b0150) 2019; 16
Hu, Ju, Shen, Zhou, Li (b0145) 2016
Cox (b0255) 1996; 29
Jenkinson, Beckmann, Behrens, Woolrich, Smith (b0260) 2012; 62
Cameron, Yassine, Carlton, Francois, Alan, András, Budhachandra, John, Qingyang, Michael, Chaogan, Pierre (b0100) 2013; 7
Mostafa, Tang, Wu (b0235) 2019; 7
R.C. Craddock, r. Holtzheimer, Paul E, X.P. Hu, H.S. Mayberg, Disease state prediction from resting state functional connectivity, Magnetic resonance in medicine 62 (2009) 1619–1628. 19859933[pmid].
Han, Wen, Shi, Lu, Zhang, Fu, Liu (b0210) 2019; 198
S.M. Smith, The future of fmri connectivity, NeuroImage 62 (2012) 1257–1266. 20 YEARS OF fMRI.
P. Baldi, Autoencoders, unsupervised learning, and deep architectures., in: I. Guyon, G. Dror, V. Lemaire, G.W. Taylor, D.L. Silver (Eds.), ICML Unsupervised and Transfer Learning, volume 27 of JMLR Proceedings, JMLR.org, 2012, pp. 37–50. URL:http://dblp.uni-trier.de/db/journals/jmlr/jmlrp27.html#Baldi12.
Mostafa, Yin, Wu (b0120) 2019
Power, Cohen, Nelson, Wig, Barnes, Church, Vogel, Laumann, Miezin, Schlaggar, Petersen (b0250) 2011; 72
Bullmore, Sporns (b0225) 2009; 10
Yang, Iencoc, Esposito, Pensa (b0165) 2021
van den Heuvel, Pol (b0055) 2010; 20
Eslami, Saeed (b0105) 2019
Dekhil, Hajjdiab, Shalaby, Ali, Ayinde, Switala, Elshamekh, Ghazal, Keynton, Barnes, El-Baz (b0135) 2018; 13
Deng, Xu, Zhang, Frühholz, Schuller (b0175) 2018; 26
L. Le, A. Patterson, M. White, Supervised autoencoders: Improving generalization performance with unsupervised regularizers, in: S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information Processing Systems, volume 31, Curran Associates Inc, 2018. URL:https://proceedings.neurips.cc/paper/2018/file/2a38a4a9316c49e5a833517c45d31070-Paper.pdf.
Plis, Hjelm, Salakhutdinov, Allen, Bockholt, Long, Johnson, Paulsen, Turner, Calhoun (b0075) 2014; 8
Cox (10.1016/j.neucom.2022.02.017_b0255) 1996; 29
Craddock (10.1016/j.neucom.2022.02.017_b0020) 2011; 33
Plis (10.1016/j.neucom.2022.02.017_b0075) 2014; 8
Martí-Juan (10.1016/j.neucom.2022.02.017_b0230) 2020; 189
10.1016/j.neucom.2022.02.017_b0095
Tschannen (10.1016/j.neucom.2022.02.017_b0195) 2018
Ienco (10.1016/j.neucom.2022.02.017_b0190) 2020; 31
Dekhil (10.1016/j.neucom.2022.02.017_b0030) 2018; 13
Ienco (10.1016/j.neucom.2022.02.017_b0180) 2018
Mostafa (10.1016/j.neucom.2022.02.017_b0235) 2019; 7
Hinton (10.1016/j.neucom.2022.02.017_b0220) 2006; 313
Power (10.1016/j.neucom.2022.02.017_b0250) 2011; 72
Eslami (10.1016/j.neucom.2022.02.017_b0105) 2019
Dong (10.1016/j.neucom.2022.02.017_b0140) 2018; 6
Ju (10.1016/j.neucom.2022.02.017_b0150) 2019; 16
Lord (10.1016/j.neucom.2022.02.017_b0010) 1994; 24
10.1016/j.neucom.2022.02.017_b0160
10.1016/j.neucom.2022.02.017_b0040
Nielsen (10.1016/j.neucom.2022.02.017_b0045) 2013; 7
10.1016/j.neucom.2022.02.017_b0085
Dekhil (10.1016/j.neucom.2022.02.017_b0135) 2018; 13
Mostafa (10.1016/j.neucom.2022.02.017_b0120) 2019
Yin (10.1016/j.neucom.2022.02.017_b0070) 2020
Han (10.1016/j.neucom.2022.02.017_b0210) 2019; 198
Bullmore (10.1016/j.neucom.2022.02.017_b0225) 2009; 10
Weston (10.1016/j.neucom.2022.02.017_b0170) 2012
Greicius (10.1016/j.neucom.2022.02.017_b0015) 2008; 21
Jenkinson (10.1016/j.neucom.2022.02.017_b0260) 2012; 62
Heinsfeld (10.1016/j.neucom.2022.02.017_b0110) 2018; 17
10.1016/j.neucom.2022.02.017_b0205
Yang (10.1016/j.neucom.2022.02.017_b0165) 2021
van den Heuvel (10.1016/j.neucom.2022.02.017_b0055) 2010; 20
Deng (10.1016/j.neucom.2022.02.017_b0175) 2018; 26
10.1016/j.neucom.2022.02.017_b0245
Zhu (10.1016/j.neucom.2022.02.017_b0080) 2019; 10
Guo (10.1016/j.neucom.2022.02.017_b0050) 2017; 11
Li (10.1016/j.neucom.2022.02.017_b0035) 2020
Svanera (10.1016/j.neucom.2022.02.017_b0215) 2019; 328
Kim (10.1016/j.neucom.2022.02.017_b0025) 2016; 124
10.1016/j.neucom.2022.02.017_b0060
Cameron (10.1016/j.neucom.2022.02.017_b0100) 2013; 7
Xing (10.1016/j.neucom.2022.02.017_b0155) 2018
Kong (10.1016/j.neucom.2022.02.017_b0115) 2019; 324
Zeng (10.1016/j.neucom.2022.02.017_b0130) 2018; 30
Shen (10.1016/j.neucom.2022.02.017_b0090) 2017; 19
Salimans (10.1016/j.neucom.2022.02.017_b0240) 2016
Hirvikoski (10.1016/j.neucom.2022.02.017_b0005) 2016; 208
10.1016/j.neucom.2022.02.017_b0185
10.1016/j.neucom.2022.02.017_b0065
Yin (10.1016/j.neucom.2022.02.017_b0200) 2021; 28
Eslami (10.1016/j.neucom.2022.02.017_b0125) 2019; 13
Hu (10.1016/j.neucom.2022.02.017_b0145) 2016
References_xml – year: 2021
  ident: b0165
  article-title: Esa: A generic framework for semi-supervised
  publication-title: Neurocomputing
– volume: 8
  start-page: 229
  year: 2014
  ident: b0075
  article-title: Deep learning for neuroimaging: a validation study
  publication-title: Frontiers in Neuroscience
– volume: 7
  start-page: 128474
  year: 2019
  end-page: 128486
  ident: b0235
  article-title: Diagnosis of autism spectrum disorder based on eigenvalues of brain networks
  publication-title: IEEE Access
– volume: 21
  start-page: 424
  year: 2008
  end-page: 430
  ident: b0015
  article-title: Resting-state functional connectivity in neuropsychiatric disorders
  publication-title: Current Opinion in Neurology
– reference: M. Khosla, K. Jamison, G.H. Ngo, A. Kuceyeski, M.R. Sabuncu, Machine learning in resting-state fmri analysis, Magnetic Resonance Imaging 64 (2019) 101–121. Artificial Intelligence in MRI.
– volume: 328
  year: 2019
  ident: b0215
  article-title: Transfer learning of deep neural network representations for fmri decoding
  publication-title: Journal of Neuroscience Methods
– reference: S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, ICML’15, JMLR.org, 2015, p. 448–456.
– volume: 10
  start-page: 869
  year: 2019
  ident: b0080
  article-title: Applications of deep learning to neuro-imaging techniques
  publication-title: Frontiers in Neurology
– volume: 7
  year: 2013
  ident: b0045
  article-title: Multisite functional connectivity MRI classification of autism: ABIDE results
  publication-title: Frontiers in Human Neuroscience
– volume: 26
  start-page: 31
  year: 2018
  end-page: 43
  ident: b0175
  article-title: Semisupervised autoencoders for speech emotion recognition
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
– volume: 30
  start-page: 74
  year: 2018
  end-page: 85
  ident: b0130
  article-title: Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity mri
  publication-title: EBioMedicine
– start-page: 780
  year: 2018
  end-page: 783
  ident: b0155
  article-title: Convolutional neural network with element-wise filters to extract hierarchical topological features for brain networks
  publication-title: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– volume: 31
  start-page: 5014
  year: 2020
  end-page: 5020
  ident: b0190
  article-title: Enhancing graph-based semisupervised learning via knowledge-aware data embedding
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– year: 2020
  ident: b0035
  article-title: Detecting alzheimer’s disease based on 4d fmri: An exploration under deep learning framework
  publication-title: Neurocomputing
– reference: R.C. Craddock, r. Holtzheimer, Paul E, X.P. Hu, H.S. Mayberg, Disease state prediction from resting state functional connectivity, Magnetic resonance in medicine 62 (2009) 1619–1628. 19859933[pmid].
– reference: S.M. Smith, The future of fmri connectivity, NeuroImage 62 (2012) 1257–1266. 20 YEARS OF fMRI.
– reference: N.F. Lori, I. Ramalhosa, P. Marques, V. Alves, Deep learning based pipeline for fingerprinting using brain functional mri connectivity data, Procedia Computer Science 141 (2018) 539–544. The 9th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN-2018)/ The 8th International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH-2018)/ Affiliated Workshops.
– volume: 124
  start-page: 127
  year: 2016
  end-page: 146
  ident: b0025
  article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
  publication-title: NeuroImage
– start-page: 639
  year: 2012
  end-page: 655
  ident: b0170
  article-title: Deep learning via semi-supervised embedding
  publication-title: Neural Networks: Tricks of the Trade
– volume: 11
  year: 2017
  ident: b0050
  article-title: Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method
  publication-title: Frontiers in Neuroscience
– start-page: 1
  year: 2016
  end-page: 6
  ident: b0145
  article-title: Clinical decision support for alzheimer’s disease based on deep learning and brain network
  publication-title: 2016 IEEE International Conference on Communications (ICC)
– volume: 17
  start-page: 16
  year: 2018
  end-page: 23
  ident: b0110
  article-title: Identification of autism spectrum disorder using deep learning and the abide dataset
  publication-title: NeuroImage: Clinical
– volume: 6
  start-page: 44
  year: 2018
  end-page: 68
  ident: b0140
  article-title: A review of the autoencoder and its variants: A comparative perspective from target recognition in synthetic-aperture radar images
  publication-title: IEEE Geoscience and Remote Sensing Magazine
– year: 2020
  ident: b0070
  article-title: Deep learning for brain disorder diagnosis based on fMRI images
  publication-title: Neurocomputing
– volume: 19
  start-page: 221
  year: 2017
  end-page: 248
  ident: b0090
  article-title: Deep learning in medical image analysis
  publication-title: Annual Review of Biomedical Engineering
– volume: 10
  start-page: 186
  year: 2009
  end-page: 198
  ident: b0225
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nature Reviews Neuroscience
– year: 2018
  ident: b0195
  article-title: Recent advances in autoencoder-based representation learning
  publication-title: Bayesian Deep Learning Workshop, NeurIPS
– volume: 13
  start-page: e0206351
  year: 2018
  ident: b0135
  article-title: Using resting state functional mri to build a personalized autism diagnosis system
  publication-title: PloS one
– volume: 28
  start-page: 146
  year: 2021
  end-page: 165
  ident: b0200
  article-title: Diagnosis of autism spectrum disorder based on functional brain networks with deep learning
  publication-title: Journal of Computational Biology
– volume: 189
  year: 2020
  ident: b0230
  article-title: A survey on machine and statistical learning for longitudinal analysis of neuroimaging data in alzheimer’s disease
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 33
  start-page: 1914
  year: 2011
  end-page: 1928
  ident: b0020
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Human Brain Mapping
– volume: 13
  start-page: e0206351
  year: 2018
  ident: b0030
  article-title: Using resting state functional mri to build a personalized autism diagnosis system
  publication-title: PloS one
– volume: 7
  year: 2013
  ident: b0100
  article-title: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives
  publication-title: Frontiers in Neuroinformatics
– reference: E. Wong, J.S. Anderson, B.A. Zielinski, P.T. Fletcher, Riemannian regression and classification models of brain networks applied to autism, in: Connectomics in NeuroImaging, Springer International Publishing, 2018, pp. 78–87. doi: 10.1007/978-3-030-00755-3_9.
– volume: 20
  start-page: 519
  year: 2010
  end-page: 534
  ident: b0055
  article-title: Exploring the brain network: A review on resting-state fmri functional connectivity
  publication-title: European Neuropsychopharmacology
– volume: 208
  start-page: 232
  year: 2016
  end-page: 238
  ident: b0005
  article-title: Premature mortality in autism spectrum disorder
  publication-title: British Journal of Psychiatry
– reference: L. Le, A. Patterson, M. White, Supervised autoencoders: Improving generalization performance with unsupervised regularizers, in: S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information Processing Systems, volume 31, Curran Associates Inc, 2018. URL:https://proceedings.neurips.cc/paper/2018/file/2a38a4a9316c49e5a833517c45d31070-Paper.pdf.
– start-page: 901
  year: 2016
  end-page: 909
  ident: b0240
  article-title: Weight normalization: A simple reparameterization to accelerate training of deep neural networks
  publication-title: Proceedings of the 30th International Conference on Neural Information Processing Systems
– volume: 24
  start-page: 659
  year: 1994
  end-page: 685
  ident: b0010
  article-title: Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders
  publication-title: Journal of Autism and Developmental Disorders
– year: 2018
  ident: b0180
  article-title: Semi-supervised clustering with multiresolution autoencoders
  publication-title: International Joint Conference on Neural Network (IJCNN)
– start-page: 39
  year: 2019
  end-page: 51
  ident: b0120
  article-title: Autoencoder based methods for diagnosis of autism spectrum disorder
  publication-title: ICCABS 2019: Computational Advances in Bio and Medical Sciences
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b0220
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– start-page: 646
  year: 2019
  end-page: 651
  ident: b0105
  article-title: Auto-asd-network: A technique based on deep learning and support vector machines for diagnosing autism spectrum disorder using fmri data
  publication-title: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, BCB ’19
– volume: 72
  start-page: 665
  year: 2011
  end-page: 678
  ident: b0250
  article-title: Functional network organization of the human brain
  publication-title: Neuron
– reference: P. Baldi, Autoencoders, unsupervised learning, and deep architectures., in: I. Guyon, G. Dror, V. Lemaire, G.W. Taylor, D.L. Silver (Eds.), ICML Unsupervised and Transfer Learning, volume 27 of JMLR Proceedings, JMLR.org, 2012, pp. 37–50. URL:http://dblp.uni-trier.de/db/journals/jmlr/jmlrp27.html#Baldi12.
– volume: 198
  start-page: 125
  year: 2019
  end-page: 136
  ident: b0210
  article-title: Variational autoencoder: An unsupervised model for encoding and decoding fmri activity in visual cortex
  publication-title: NeuroImage
– volume: 29
  start-page: 162
  year: 1996
  end-page: 173
  ident: b0255
  article-title: AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Computers and Biomedical Research
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: b0260
  publication-title: FSL, NeuroImage
– volume: 16
  start-page: 244
  year: 2019
  end-page: 257
  ident: b0150
  article-title: Early diagnosis of alzheimer’s disease based on resting-state brain networks and deep learning
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– reference: A.S. Lundervold, A. Lundervold, An overview of deep learning in medical imaging focusing on mri, Zeitschrift für Medizinische Physik 29 (2019) 102–127. Special Issue: Deep Learning in Medical Physics.
– volume: 324
  start-page: 63
  year: 2019
  end-page: 68
  ident: b0115
  article-title: Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier
  publication-title: Neurocomputing
– volume: 13
  start-page: 70
  year: 2019
  ident: b0125
  article-title: Asd-diagnet: A hybrid learning approach for detection of autism spectrum disorder using fmri data
  publication-title: Frontiers in Neuroinformatics
– start-page: 646
  year: 2019
  ident: 10.1016/j.neucom.2022.02.017_b0105
  article-title: Auto-asd-network: A technique based on deep learning and support vector machines for diagnosing autism spectrum disorder using fmri data
– ident: 10.1016/j.neucom.2022.02.017_b0085
  doi: 10.1016/j.procs.2018.10.129
– ident: 10.1016/j.neucom.2022.02.017_b0205
– ident: 10.1016/j.neucom.2022.02.017_b0095
  doi: 10.1016/j.zemedi.2018.11.002
– start-page: 780
  year: 2018
  ident: 10.1016/j.neucom.2022.02.017_b0155
  article-title: Convolutional neural network with element-wise filters to extract hierarchical topological features for brain networks
– volume: 72
  start-page: 665
  year: 2011
  ident: 10.1016/j.neucom.2022.02.017_b0250
  article-title: Functional network organization of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
– ident: 10.1016/j.neucom.2022.02.017_b0160
  doi: 10.1007/978-3-030-00755-3_9
– volume: 17
  start-page: 16
  year: 2018
  ident: 10.1016/j.neucom.2022.02.017_b0110
  article-title: Identification of autism spectrum disorder using deep learning and the abide dataset
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2017.08.017
– volume: 21
  start-page: 424
  year: 2008
  ident: 10.1016/j.neucom.2022.02.017_b0015
  article-title: Resting-state functional connectivity in neuropsychiatric disorders
  publication-title: Current Opinion in Neurology
  doi: 10.1097/WCO.0b013e328306f2c5
– year: 2018
  ident: 10.1016/j.neucom.2022.02.017_b0195
  article-title: Recent advances in autoencoder-based representation learning
– volume: 13
  start-page: e0206351
  year: 2018
  ident: 10.1016/j.neucom.2022.02.017_b0030
  article-title: Using resting state functional mri to build a personalized autism diagnosis system
  publication-title: PloS one
  doi: 10.1371/journal.pone.0206351
– start-page: 901
  year: 2016
  ident: 10.1016/j.neucom.2022.02.017_b0240
  article-title: Weight normalization: A simple reparameterization to accelerate training of deep neural networks
– volume: 28
  start-page: 146
  year: 2021
  ident: 10.1016/j.neucom.2022.02.017_b0200
  article-title: Diagnosis of autism spectrum disorder based on functional brain networks with deep learning
  publication-title: Journal of Computational Biology
  doi: 10.1089/cmb.2020.0252
– volume: 19
  start-page: 221
  year: 2017
  ident: 10.1016/j.neucom.2022.02.017_b0090
  article-title: Deep learning in medical image analysis
  publication-title: Annual Review of Biomedical Engineering
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 10
  start-page: 186
  year: 2009
  ident: 10.1016/j.neucom.2022.02.017_b0225
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn2575
– year: 2020
  ident: 10.1016/j.neucom.2022.02.017_b0070
  article-title: Deep learning for brain disorder diagnosis based on fMRI images
  publication-title: Neurocomputing
– ident: 10.1016/j.neucom.2022.02.017_b0065
  doi: 10.1016/j.neuroimage.2012.01.022
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.neucom.2022.02.017_b0220
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 124
  start-page: 127
  year: 2016
  ident: 10.1016/j.neucom.2022.02.017_b0025
  article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.05.018
– volume: 328
  year: 2019
  ident: 10.1016/j.neucom.2022.02.017_b0215
  article-title: Transfer learning of deep neural network representations for fmri decoding
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2019.108319
– volume: 208
  start-page: 232
  year: 2016
  ident: 10.1016/j.neucom.2022.02.017_b0005
  article-title: Premature mortality in autism spectrum disorder
  publication-title: British Journal of Psychiatry
  doi: 10.1192/bjp.bp.114.160192
– volume: 11
  year: 2017
  ident: 10.1016/j.neucom.2022.02.017_b0050
  article-title: Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2017.00460
– volume: 7
  year: 2013
  ident: 10.1016/j.neucom.2022.02.017_b0100
  article-title: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/conf.fninf.2013.09.00041
– year: 2020
  ident: 10.1016/j.neucom.2022.02.017_b0035
  article-title: Detecting alzheimer’s disease based on 4d fmri: An exploration under deep learning framework
  publication-title: Neurocomputing
– year: 2018
  ident: 10.1016/j.neucom.2022.02.017_b0180
  article-title: Semi-supervised clustering with multiresolution autoencoders
– volume: 20
  start-page: 519
  year: 2010
  ident: 10.1016/j.neucom.2022.02.017_b0055
  article-title: Exploring the brain network: A review on resting-state fmri functional connectivity
  publication-title: European Neuropsychopharmacology
  doi: 10.1016/j.euroneuro.2010.03.008
– volume: 26
  start-page: 31
  year: 2018
  ident: 10.1016/j.neucom.2022.02.017_b0175
  article-title: Semisupervised autoencoders for speech emotion recognition
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2017.2759338
– volume: 7
  year: 2013
  ident: 10.1016/j.neucom.2022.02.017_b0045
  article-title: Multisite functional connectivity MRI classification of autism: ABIDE results
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2013.00599
– volume: 30
  start-page: 74
  year: 2018
  ident: 10.1016/j.neucom.2022.02.017_b0130
  article-title: Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity mri
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2018.03.017
– volume: 7
  start-page: 128474
  year: 2019
  ident: 10.1016/j.neucom.2022.02.017_b0235
  article-title: Diagnosis of autism spectrum disorder based on eigenvalues of brain networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2940198
– ident: 10.1016/j.neucom.2022.02.017_b0245
– volume: 8
  start-page: 229
  year: 2014
  ident: 10.1016/j.neucom.2022.02.017_b0075
  article-title: Deep learning for neuroimaging: a validation study
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2014.00229
– volume: 324
  start-page: 63
  year: 2019
  ident: 10.1016/j.neucom.2022.02.017_b0115
  article-title: Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.080
– year: 2021
  ident: 10.1016/j.neucom.2022.02.017_b0165
  article-title: Esa: A generic framework for semi-supervised
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.051
– ident: 10.1016/j.neucom.2022.02.017_b0040
  doi: 10.1002/mrm.22159
– volume: 29
  start-page: 162
  year: 1996
  ident: 10.1016/j.neucom.2022.02.017_b0255
  article-title: AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Computers and Biomedical Research
  doi: 10.1006/cbmr.1996.0014
– volume: 16
  start-page: 244
  year: 2019
  ident: 10.1016/j.neucom.2022.02.017_b0150
  article-title: Early diagnosis of alzheimer’s disease based on resting-state brain networks and deep learning
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2017.2776910
– volume: 31
  start-page: 5014
  year: 2020
  ident: 10.1016/j.neucom.2022.02.017_b0190
  article-title: Enhancing graph-based semisupervised learning via knowledge-aware data embedding
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2019.2955565
– start-page: 639
  year: 2012
  ident: 10.1016/j.neucom.2022.02.017_b0170
  article-title: Deep learning via semi-supervised embedding
– start-page: 39
  year: 2019
  ident: 10.1016/j.neucom.2022.02.017_b0120
  article-title: Autoencoder based methods for diagnosis of autism spectrum disorder
– start-page: 1
  year: 2016
  ident: 10.1016/j.neucom.2022.02.017_b0145
  article-title: Clinical decision support for alzheimer’s disease based on deep learning and brain network
– volume: 62
  start-page: 782
  year: 2012
  ident: 10.1016/j.neucom.2022.02.017_b0260
  publication-title: FSL, NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 198
  start-page: 125
  year: 2019
  ident: 10.1016/j.neucom.2022.02.017_b0210
  article-title: Variational autoencoder: An unsupervised model for encoding and decoding fmri activity in visual cortex
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.05.039
– volume: 13
  start-page: 70
  year: 2019
  ident: 10.1016/j.neucom.2022.02.017_b0125
  article-title: Asd-diagnet: A hybrid learning approach for detection of autism spectrum disorder using fmri data
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/fninf.2019.00070
– ident: 10.1016/j.neucom.2022.02.017_b0185
– volume: 189
  year: 2020
  ident: 10.1016/j.neucom.2022.02.017_b0230
  article-title: A survey on machine and statistical learning for longitudinal analysis of neuroimaging data in alzheimer’s disease
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2020.105348
– volume: 6
  start-page: 44
  year: 2018
  ident: 10.1016/j.neucom.2022.02.017_b0140
  article-title: A review of the autoencoder and its variants: A comparative perspective from target recognition in synthetic-aperture radar images
  publication-title: IEEE Geoscience and Remote Sensing Magazine
  doi: 10.1109/MGRS.2018.2853555
– volume: 24
  start-page: 659
  year: 1994
  ident: 10.1016/j.neucom.2022.02.017_b0010
  article-title: Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders
  publication-title: Journal of Autism and Developmental Disorders
  doi: 10.1007/BF02172145
– ident: 10.1016/j.neucom.2022.02.017_b0060
  doi: 10.1016/j.mri.2019.05.031
– volume: 10
  start-page: 869
  year: 2019
  ident: 10.1016/j.neucom.2022.02.017_b0080
  article-title: Applications of deep learning to neuro-imaging techniques
  publication-title: Frontiers in Neurology
  doi: 10.3389/fneur.2019.00869
– volume: 33
  start-page: 1914
  year: 2011
  ident: 10.1016/j.neucom.2022.02.017_b0020
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.21333
– volume: 13
  start-page: e0206351
  year: 2018
  ident: 10.1016/j.neucom.2022.02.017_b0135
  article-title: Using resting state functional mri to build a personalized autism diagnosis system
  publication-title: PloS one
  doi: 10.1371/journal.pone.0206351
SSID ssj0017129
Score 2.4805357
Snippet Autism spectrum disorder (ASD) is a neurological developmental disorder that typically causes impaired communication and compromised social interactions. The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 140
SubjectTerms Artificial intelligence
Autoencoders
Brain disorders diagnosis
fMRI
Semi-supervised learning
Title A semi-supervised autoencoder for autism disease diagnosis
URI https://dx.doi.org/10.1016/j.neucom.2022.02.017
Volume 483
WOSCitedRecordID wos000761719500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbppodemvRF80SH3oqKX3o4NxO2tCWEHFK6PRlZkrcbst4lXof8_Iws2fEmJU0OhcUsZi15PR-jb8ajbxD6xLWmQREyQllBSaKZJDKNDdFlwYXUDFaUVsT1hJ-eiskkPfM9W-u2nQCvKnFzky7_q6nhHBjbbp19hrn7QeEEfAejwxHMDscnGT77XJv5jNTN0rqBGgilbFYLq1dpZSPaokmYvZ5372Zs-tVW283qIVFtRTtU2_LBJxOyudVU0BZAffLgt1Mg-NWs5KIv7XH7rRfV9I-c9T6_aVmyrKZkAoCcDpMNEKcGSbd522cNI0qAEq450ETEAxcYOvklv5qGTk_zgaN2OYOLL5VpbNWOnavVTnUbOdd1se-tV30VYVegdpG7UXI7Sh7AJ-Qv0GbEaSpGaDP7Pp786N8s8TBy-ov-j3TbKduav4d383e6MqAg59votY8dcOZs_gZtmOot2ur6cmDvpt-howzfgwAeQAADBLCDAPYQwD0E3qOfX8fnx9-I75FBFAR7KxIBATSaCZVEMixDaoISWJeRwMTSUseUp1FBS62MDKSJZJxIpgrJqNEcQmkgpx_QqFpU5iPC0sbGBginLg3QvEAoppWmcSJYrAItdlDcPYpceQF528fkMn_MEDuI9FctnYDKP37Pu6ecexLoyF0O0Hn0yt1nzrSHXt1BfB-NVleNOUAv1TUY4OrQ4-YW6fh_Lg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+semi-supervised+autoencoder+for+autism+disease+diagnosis&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Yin%2C+Wutao&rft.au=Li%2C+Longhai&rft.au=Wu%2C+Fang-Xiang&rft.date=2022-04-28&rft.issn=0925-2312&rft.volume=483&rft.spage=140&rft.epage=147&rft_id=info:doi/10.1016%2Fj.neucom.2022.02.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2022_02_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon