A semi-supervised autoencoder for autism disease diagnosis
Autism spectrum disorder (ASD) is a neurological developmental disorder that typically causes impaired communication and compromised social interactions. The current clinical assessment of ASD is typically based on behavioral observations and lack of the understanding of the neurological mechanism a...
Saved in:
| Published in: | Neurocomputing (Amsterdam) Vol. 483; pp. 140 - 147 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
28.04.2022
|
| Subjects: | |
| ISSN: | 0925-2312, 1872-8286 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Autism spectrum disorder (ASD) is a neurological developmental disorder that typically causes impaired communication and compromised social interactions. The current clinical assessment of ASD is typically based on behavioral observations and lack of the understanding of the neurological mechanism and the progression of the brain development. The functional magnetic resonance imaging (fMRI) data is one of the commonly-used imaging modalities for understanding human brain mechanisms as well as the diagnosis and treatment of brain disorders such as ASD. In this paper, we proposed a semi-supervised autoencoder (AE) for autism diagnosis using functional connectivity (FC) pattern obtained from resting-state fMRI. An unsupervised autoencoder in combination with the supervised classification networks enables semi-supervised learning in which an autoencoder for learning hidden features and a neural network based classifier are trained together. Compared to train the autoencoder and classifier in separate phases, the proposed semi-supervised learning essentially helps tune the latent feature representation learning towards the goal of classification, and thus leads to improvements in autism diagnosis performance. The proposed model is evaluated by using cross-validation methods on ABIDE I database. Experimental results demonstrate that the proposed model achieves improved classification performance, and that the proposed semi-supervised learning framework can integrate unlabelled fMRI data for better feature learning and improved classification accuracy. |
|---|---|
| AbstractList | Autism spectrum disorder (ASD) is a neurological developmental disorder that typically causes impaired communication and compromised social interactions. The current clinical assessment of ASD is typically based on behavioral observations and lack of the understanding of the neurological mechanism and the progression of the brain development. The functional magnetic resonance imaging (fMRI) data is one of the commonly-used imaging modalities for understanding human brain mechanisms as well as the diagnosis and treatment of brain disorders such as ASD. In this paper, we proposed a semi-supervised autoencoder (AE) for autism diagnosis using functional connectivity (FC) pattern obtained from resting-state fMRI. An unsupervised autoencoder in combination with the supervised classification networks enables semi-supervised learning in which an autoencoder for learning hidden features and a neural network based classifier are trained together. Compared to train the autoencoder and classifier in separate phases, the proposed semi-supervised learning essentially helps tune the latent feature representation learning towards the goal of classification, and thus leads to improvements in autism diagnosis performance. The proposed model is evaluated by using cross-validation methods on ABIDE I database. Experimental results demonstrate that the proposed model achieves improved classification performance, and that the proposed semi-supervised learning framework can integrate unlabelled fMRI data for better feature learning and improved classification accuracy. |
| Author | Li, Longhai Yin, Wutao Wu, Fang-Xiang |
| Author_xml | – sequence: 1 givenname: Wutao surname: Yin fullname: Yin, Wutao email: wutao.yin@usask.ca organization: Division of Biomedical Engineering, 57 Campus Dr., Saskatoon, SK S7N 5A9 Canada – sequence: 2 givenname: Longhai surname: Li fullname: Li, Longhai email: longhai@math.usask.ca organization: Department of Mathematics and Statistics, University of Saskatchewan, 106 Wiggins Road, MCLN 219 Saskatoon, Saskatchewan S7N 5E6 Canada – sequence: 3 givenname: Fang-Xiang surname: Wu fullname: Wu, Fang-Xiang email: fangxiang.wu@usask.ca organization: Department of Mechanical Engineering, Division of Biomedical Engineering, and Department of Computer Science, 57 Campus Dr., Saskatoon, SK S7N 5A9 Canada |
| BookMark | eNqFkE9LAzEQxYNUsK1-Aw_7BXZNJtl_PQilaBUKXvQcpsmspHQ3JdkW_Pam1JMHhQePYeY9mN-MTQY_EGP3gheCi-phVwx0NL4vgAMUPEnUV2wqmhryBppqwqa8hTIHKeCGzWLc8XQhoJ2yxTKL1Ls8Hg8UTi6SzfA4ehqMtxSyzofz7GKf2bTESMnxc_DRxVt23eE-0t2Pz9nH89P76iXfvK1fV8tNbiSvxhyUFGSrxihA0YmSeMdBEYJs2s7Ksm5hW3bWEHIkQKmwMlusSrK1UKpt5ZwtLr0m-BgDddq4EUfnhzGg22vB9ZmC3ukLBX2moHmSqFNY_QofgusxfP0Xe7zEKD12chR0NC5BIesCmVFb7_4u-AbLW3v2 |
| CitedBy_id | crossref_primary_10_1016_j_rasd_2023_102228 crossref_primary_10_3389_fnins_2022_1046268 crossref_primary_10_1016_j_jaacop_2024_03_005 crossref_primary_10_1155_2022_4464603 crossref_primary_10_1038_s41398_024_03024_5 crossref_primary_10_1007_s10278_024_01002_3 crossref_primary_10_3390_brainsci13050725 crossref_primary_10_3390_app14073053 crossref_primary_10_1016_j_jtice_2023_105098 crossref_primary_10_1097_PR9_0000000000001044 crossref_primary_10_1038_s41598_024_68749_1 crossref_primary_10_1016_j_eclinm_2025_103452 crossref_primary_10_1016_j_neucom_2023_03_008 crossref_primary_10_1177_14759217231200096 crossref_primary_10_1016_j_cmpb_2024_108114 crossref_primary_10_1016_j_neucom_2023_126520 crossref_primary_10_1049_cit2_12340 crossref_primary_10_3390_s24113601 crossref_primary_10_3389_fnmol_2022_999605 crossref_primary_10_1371_journal_pone_0286137 crossref_primary_10_3389_fphys_2025_1593965 crossref_primary_10_1038_s44387_025_00020_y crossref_primary_10_1016_j_asoc_2022_109773 |
| Cites_doi | 10.1016/j.procs.2018.10.129 10.1016/j.zemedi.2018.11.002 10.1016/j.neuron.2011.09.006 10.1007/978-3-030-00755-3_9 10.1016/j.nicl.2017.08.017 10.1097/WCO.0b013e328306f2c5 10.1371/journal.pone.0206351 10.1089/cmb.2020.0252 10.1146/annurev-bioeng-071516-044442 10.1038/nrn2575 10.1016/j.neuroimage.2012.01.022 10.1126/science.1127647 10.1016/j.neuroimage.2015.05.018 10.1016/j.jneumeth.2019.108319 10.1192/bjp.bp.114.160192 10.3389/fnins.2017.00460 10.3389/conf.fninf.2013.09.00041 10.1016/j.euroneuro.2010.03.008 10.1109/TASLP.2017.2759338 10.3389/fnhum.2013.00599 10.1016/j.ebiom.2018.03.017 10.1109/ACCESS.2019.2940198 10.3389/fnins.2014.00229 10.1016/j.neucom.2018.04.080 10.1016/j.neucom.2021.03.051 10.1002/mrm.22159 10.1006/cbmr.1996.0014 10.1109/TCBB.2017.2776910 10.1109/TNNLS.2019.2955565 10.1016/j.neuroimage.2011.09.015 10.1016/j.neuroimage.2019.05.039 10.3389/fninf.2019.00070 10.1016/j.cmpb.2020.105348 10.1109/MGRS.2018.2853555 10.1007/BF02172145 10.1016/j.mri.2019.05.031 10.3389/fneur.2019.00869 10.1002/hbm.21333 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2022.02.017 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 147 |
| ExternalDocumentID | 10_1016_j_neucom_2022_02_017 S0925231222001606 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-2431ed68c42a1f15e0f024ea2389fd35792b5fdcea0ae2a34a6cba65ed7144993 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000761719500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 07:08:17 EST 2025 Tue Nov 18 21:49:07 EST 2025 Fri Feb 23 02:39:13 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | fMRI Brain disorders diagnosis Semi-supervised learning Autoencoders Artificial intelligence |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-2431ed68c42a1f15e0f024ea2389fd35792b5fdcea0ae2a34a6cba65ed7144993 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2022_02_017 crossref_primary_10_1016_j_neucom_2022_02_017 elsevier_sciencedirect_doi_10_1016_j_neucom_2022_02_017 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-28 |
| PublicationDateYYYYMMDD | 2022-04-28 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Heinsfeld, Franco, Cameron, Buchweitz, Meneguzzi (b0110) 2018; 17 Salimans, Kingma (b0240) 2016 E. Wong, J.S. Anderson, B.A. Zielinski, P.T. Fletcher, Riemannian regression and classification models of brain networks applied to autism, in: Connectomics in NeuroImaging, Springer International Publishing, 2018, pp. 78–87. doi: 10.1007/978-3-030-00755-3_9. A.S. Lundervold, A. Lundervold, An overview of deep learning in medical imaging focusing on mri, Zeitschrift für Medizinische Physik 29 (2019) 102–127. Special Issue: Deep Learning in Medical Physics. Shen, Wu, Suk (b0090) 2017; 19 Kong, Gao, Xu, Pan, Wang, Liu (b0115) 2019; 324 Dekhil, Hajjdiab, Shalaby, Ali, Ayinde, Switala, Elshamekh, Ghazal, Keynton, Barnes, El-Baz (b0030) 2018; 13 Greicius (b0015) 2008; 21 Zeng, Wang, Hu, Yang, Pu, Shen, Chen, Liu, Yin, Tan, Wang, Hu (b0130) 2018; 30 Tschannen, Bachem, Lucic (b0195) 2018 Dong, Liao, Liu, Kuang (b0140) 2018; 6 S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, ICML’15, JMLR.org, 2015, p. 448–456. Zhu, Jiang, Tong, Xie, Zaharchuk, Wintermark (b0080) 2019; 10 Weston, Ratle, Mobahi, Collobert (b0170) 2012 Hirvikoski, Mittendorfer-Rutz, Boman, Larsson, Lichtenstein, Bölte (b0005) 2016; 208 Guo, Dominick, Minai, Li, Erickson, Lu (b0050) 2017; 11 Yin, Mostafa, Wu (b0200) 2021; 28 Hinton, Salakhutdinov (b0220) 2006; 313 Eslami, Mirjalili, Fong, Laird, Saeed (b0125) 2019; 13 Svanera, Savardi, Benini, Signoroni, Raz, Hendler, Muckli, Goebel, Valente (b0215) 2019; 328 Martí-Juan, Sanroma-Guell, Piella (b0230) 2020; 189 Li, Lin, Chen (b0035) 2020 Yin, Li, Wu (b0070) 2020 Craddock, James, Holtzheimer, Hu, Mayberg (b0020) 2011; 33 Ienco, Pensa (b0180) 2018 Kim, Calhoun, Shim, Lee (b0025) 2016; 124 M. Khosla, K. Jamison, G.H. Ngo, A. Kuceyeski, M.R. Sabuncu, Machine learning in resting-state fmri analysis, Magnetic Resonance Imaging 64 (2019) 101–121. Artificial Intelligence in MRI. Nielsen, Zielinski, Fletcher, Alexander, Lange, Bigler, Lainhart, Anderson (b0045) 2013; 7 N.F. Lori, I. Ramalhosa, P. Marques, V. Alves, Deep learning based pipeline for fingerprinting using brain functional mri connectivity data, Procedia Computer Science 141 (2018) 539–544. The 9th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN-2018)/ The 8th International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH-2018)/ Affiliated Workshops. Ienco, Pensa (b0190) 2020; 31 Xing, Ji, Yao (b0155) 2018 Lord, Rutter, Le Couteur (b0010) 1994; 24 Ju, Hu, Zhou, Li (b0150) 2019; 16 Hu, Ju, Shen, Zhou, Li (b0145) 2016 Cox (b0255) 1996; 29 Jenkinson, Beckmann, Behrens, Woolrich, Smith (b0260) 2012; 62 Cameron, Yassine, Carlton, Francois, Alan, András, Budhachandra, John, Qingyang, Michael, Chaogan, Pierre (b0100) 2013; 7 Mostafa, Tang, Wu (b0235) 2019; 7 R.C. Craddock, r. Holtzheimer, Paul E, X.P. Hu, H.S. Mayberg, Disease state prediction from resting state functional connectivity, Magnetic resonance in medicine 62 (2009) 1619–1628. 19859933[pmid]. Han, Wen, Shi, Lu, Zhang, Fu, Liu (b0210) 2019; 198 S.M. Smith, The future of fmri connectivity, NeuroImage 62 (2012) 1257–1266. 20 YEARS OF fMRI. P. Baldi, Autoencoders, unsupervised learning, and deep architectures., in: I. Guyon, G. Dror, V. Lemaire, G.W. Taylor, D.L. Silver (Eds.), ICML Unsupervised and Transfer Learning, volume 27 of JMLR Proceedings, JMLR.org, 2012, pp. 37–50. URL:http://dblp.uni-trier.de/db/journals/jmlr/jmlrp27.html#Baldi12. Mostafa, Yin, Wu (b0120) 2019 Power, Cohen, Nelson, Wig, Barnes, Church, Vogel, Laumann, Miezin, Schlaggar, Petersen (b0250) 2011; 72 Bullmore, Sporns (b0225) 2009; 10 Yang, Iencoc, Esposito, Pensa (b0165) 2021 van den Heuvel, Pol (b0055) 2010; 20 Eslami, Saeed (b0105) 2019 Dekhil, Hajjdiab, Shalaby, Ali, Ayinde, Switala, Elshamekh, Ghazal, Keynton, Barnes, El-Baz (b0135) 2018; 13 Deng, Xu, Zhang, Frühholz, Schuller (b0175) 2018; 26 L. Le, A. Patterson, M. White, Supervised autoencoders: Improving generalization performance with unsupervised regularizers, in: S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information Processing Systems, volume 31, Curran Associates Inc, 2018. URL:https://proceedings.neurips.cc/paper/2018/file/2a38a4a9316c49e5a833517c45d31070-Paper.pdf. Plis, Hjelm, Salakhutdinov, Allen, Bockholt, Long, Johnson, Paulsen, Turner, Calhoun (b0075) 2014; 8 Cox (10.1016/j.neucom.2022.02.017_b0255) 1996; 29 Craddock (10.1016/j.neucom.2022.02.017_b0020) 2011; 33 Plis (10.1016/j.neucom.2022.02.017_b0075) 2014; 8 Martí-Juan (10.1016/j.neucom.2022.02.017_b0230) 2020; 189 10.1016/j.neucom.2022.02.017_b0095 Tschannen (10.1016/j.neucom.2022.02.017_b0195) 2018 Ienco (10.1016/j.neucom.2022.02.017_b0190) 2020; 31 Dekhil (10.1016/j.neucom.2022.02.017_b0030) 2018; 13 Ienco (10.1016/j.neucom.2022.02.017_b0180) 2018 Mostafa (10.1016/j.neucom.2022.02.017_b0235) 2019; 7 Hinton (10.1016/j.neucom.2022.02.017_b0220) 2006; 313 Power (10.1016/j.neucom.2022.02.017_b0250) 2011; 72 Eslami (10.1016/j.neucom.2022.02.017_b0105) 2019 Dong (10.1016/j.neucom.2022.02.017_b0140) 2018; 6 Ju (10.1016/j.neucom.2022.02.017_b0150) 2019; 16 Lord (10.1016/j.neucom.2022.02.017_b0010) 1994; 24 10.1016/j.neucom.2022.02.017_b0160 10.1016/j.neucom.2022.02.017_b0040 Nielsen (10.1016/j.neucom.2022.02.017_b0045) 2013; 7 10.1016/j.neucom.2022.02.017_b0085 Dekhil (10.1016/j.neucom.2022.02.017_b0135) 2018; 13 Mostafa (10.1016/j.neucom.2022.02.017_b0120) 2019 Yin (10.1016/j.neucom.2022.02.017_b0070) 2020 Han (10.1016/j.neucom.2022.02.017_b0210) 2019; 198 Bullmore (10.1016/j.neucom.2022.02.017_b0225) 2009; 10 Weston (10.1016/j.neucom.2022.02.017_b0170) 2012 Greicius (10.1016/j.neucom.2022.02.017_b0015) 2008; 21 Jenkinson (10.1016/j.neucom.2022.02.017_b0260) 2012; 62 Heinsfeld (10.1016/j.neucom.2022.02.017_b0110) 2018; 17 10.1016/j.neucom.2022.02.017_b0205 Yang (10.1016/j.neucom.2022.02.017_b0165) 2021 van den Heuvel (10.1016/j.neucom.2022.02.017_b0055) 2010; 20 Deng (10.1016/j.neucom.2022.02.017_b0175) 2018; 26 10.1016/j.neucom.2022.02.017_b0245 Zhu (10.1016/j.neucom.2022.02.017_b0080) 2019; 10 Guo (10.1016/j.neucom.2022.02.017_b0050) 2017; 11 Li (10.1016/j.neucom.2022.02.017_b0035) 2020 Svanera (10.1016/j.neucom.2022.02.017_b0215) 2019; 328 Kim (10.1016/j.neucom.2022.02.017_b0025) 2016; 124 10.1016/j.neucom.2022.02.017_b0060 Cameron (10.1016/j.neucom.2022.02.017_b0100) 2013; 7 Xing (10.1016/j.neucom.2022.02.017_b0155) 2018 Kong (10.1016/j.neucom.2022.02.017_b0115) 2019; 324 Zeng (10.1016/j.neucom.2022.02.017_b0130) 2018; 30 Shen (10.1016/j.neucom.2022.02.017_b0090) 2017; 19 Salimans (10.1016/j.neucom.2022.02.017_b0240) 2016 Hirvikoski (10.1016/j.neucom.2022.02.017_b0005) 2016; 208 10.1016/j.neucom.2022.02.017_b0185 10.1016/j.neucom.2022.02.017_b0065 Yin (10.1016/j.neucom.2022.02.017_b0200) 2021; 28 Eslami (10.1016/j.neucom.2022.02.017_b0125) 2019; 13 Hu (10.1016/j.neucom.2022.02.017_b0145) 2016 |
| References_xml | – year: 2021 ident: b0165 article-title: Esa: A generic framework for semi-supervised publication-title: Neurocomputing – volume: 8 start-page: 229 year: 2014 ident: b0075 article-title: Deep learning for neuroimaging: a validation study publication-title: Frontiers in Neuroscience – volume: 7 start-page: 128474 year: 2019 end-page: 128486 ident: b0235 article-title: Diagnosis of autism spectrum disorder based on eigenvalues of brain networks publication-title: IEEE Access – volume: 21 start-page: 424 year: 2008 end-page: 430 ident: b0015 article-title: Resting-state functional connectivity in neuropsychiatric disorders publication-title: Current Opinion in Neurology – reference: M. Khosla, K. Jamison, G.H. Ngo, A. Kuceyeski, M.R. Sabuncu, Machine learning in resting-state fmri analysis, Magnetic Resonance Imaging 64 (2019) 101–121. Artificial Intelligence in MRI. – volume: 328 year: 2019 ident: b0215 article-title: Transfer learning of deep neural network representations for fmri decoding publication-title: Journal of Neuroscience Methods – reference: S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, ICML’15, JMLR.org, 2015, p. 448–456. – volume: 10 start-page: 869 year: 2019 ident: b0080 article-title: Applications of deep learning to neuro-imaging techniques publication-title: Frontiers in Neurology – volume: 7 year: 2013 ident: b0045 article-title: Multisite functional connectivity MRI classification of autism: ABIDE results publication-title: Frontiers in Human Neuroscience – volume: 26 start-page: 31 year: 2018 end-page: 43 ident: b0175 article-title: Semisupervised autoencoders for speech emotion recognition publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing – volume: 30 start-page: 74 year: 2018 end-page: 85 ident: b0130 article-title: Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity mri publication-title: EBioMedicine – start-page: 780 year: 2018 end-page: 783 ident: b0155 article-title: Convolutional neural network with element-wise filters to extract hierarchical topological features for brain networks publication-title: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) – volume: 31 start-page: 5014 year: 2020 end-page: 5020 ident: b0190 article-title: Enhancing graph-based semisupervised learning via knowledge-aware data embedding publication-title: IEEE Trans. Neural Networks Learn. Syst. – year: 2020 ident: b0035 article-title: Detecting alzheimer’s disease based on 4d fmri: An exploration under deep learning framework publication-title: Neurocomputing – reference: R.C. Craddock, r. Holtzheimer, Paul E, X.P. Hu, H.S. Mayberg, Disease state prediction from resting state functional connectivity, Magnetic resonance in medicine 62 (2009) 1619–1628. 19859933[pmid]. – reference: S.M. Smith, The future of fmri connectivity, NeuroImage 62 (2012) 1257–1266. 20 YEARS OF fMRI. – reference: N.F. Lori, I. Ramalhosa, P. Marques, V. Alves, Deep learning based pipeline for fingerprinting using brain functional mri connectivity data, Procedia Computer Science 141 (2018) 539–544. The 9th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN-2018)/ The 8th International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH-2018)/ Affiliated Workshops. – volume: 124 start-page: 127 year: 2016 end-page: 146 ident: b0025 article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia publication-title: NeuroImage – start-page: 639 year: 2012 end-page: 655 ident: b0170 article-title: Deep learning via semi-supervised embedding publication-title: Neural Networks: Tricks of the Trade – volume: 11 year: 2017 ident: b0050 article-title: Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method publication-title: Frontiers in Neuroscience – start-page: 1 year: 2016 end-page: 6 ident: b0145 article-title: Clinical decision support for alzheimer’s disease based on deep learning and brain network publication-title: 2016 IEEE International Conference on Communications (ICC) – volume: 17 start-page: 16 year: 2018 end-page: 23 ident: b0110 article-title: Identification of autism spectrum disorder using deep learning and the abide dataset publication-title: NeuroImage: Clinical – volume: 6 start-page: 44 year: 2018 end-page: 68 ident: b0140 article-title: A review of the autoencoder and its variants: A comparative perspective from target recognition in synthetic-aperture radar images publication-title: IEEE Geoscience and Remote Sensing Magazine – year: 2020 ident: b0070 article-title: Deep learning for brain disorder diagnosis based on fMRI images publication-title: Neurocomputing – volume: 19 start-page: 221 year: 2017 end-page: 248 ident: b0090 article-title: Deep learning in medical image analysis publication-title: Annual Review of Biomedical Engineering – volume: 10 start-page: 186 year: 2009 end-page: 198 ident: b0225 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nature Reviews Neuroscience – year: 2018 ident: b0195 article-title: Recent advances in autoencoder-based representation learning publication-title: Bayesian Deep Learning Workshop, NeurIPS – volume: 13 start-page: e0206351 year: 2018 ident: b0135 article-title: Using resting state functional mri to build a personalized autism diagnosis system publication-title: PloS one – volume: 28 start-page: 146 year: 2021 end-page: 165 ident: b0200 article-title: Diagnosis of autism spectrum disorder based on functional brain networks with deep learning publication-title: Journal of Computational Biology – volume: 189 year: 2020 ident: b0230 article-title: A survey on machine and statistical learning for longitudinal analysis of neuroimaging data in alzheimer’s disease publication-title: Computer Methods and Programs in Biomedicine – volume: 33 start-page: 1914 year: 2011 end-page: 1928 ident: b0020 article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering publication-title: Human Brain Mapping – volume: 13 start-page: e0206351 year: 2018 ident: b0030 article-title: Using resting state functional mri to build a personalized autism diagnosis system publication-title: PloS one – volume: 7 year: 2013 ident: b0100 article-title: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives publication-title: Frontiers in Neuroinformatics – reference: E. Wong, J.S. Anderson, B.A. Zielinski, P.T. Fletcher, Riemannian regression and classification models of brain networks applied to autism, in: Connectomics in NeuroImaging, Springer International Publishing, 2018, pp. 78–87. doi: 10.1007/978-3-030-00755-3_9. – volume: 20 start-page: 519 year: 2010 end-page: 534 ident: b0055 article-title: Exploring the brain network: A review on resting-state fmri functional connectivity publication-title: European Neuropsychopharmacology – volume: 208 start-page: 232 year: 2016 end-page: 238 ident: b0005 article-title: Premature mortality in autism spectrum disorder publication-title: British Journal of Psychiatry – reference: L. Le, A. Patterson, M. White, Supervised autoencoders: Improving generalization performance with unsupervised regularizers, in: S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information Processing Systems, volume 31, Curran Associates Inc, 2018. URL:https://proceedings.neurips.cc/paper/2018/file/2a38a4a9316c49e5a833517c45d31070-Paper.pdf. – start-page: 901 year: 2016 end-page: 909 ident: b0240 article-title: Weight normalization: A simple reparameterization to accelerate training of deep neural networks publication-title: Proceedings of the 30th International Conference on Neural Information Processing Systems – volume: 24 start-page: 659 year: 1994 end-page: 685 ident: b0010 article-title: Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders publication-title: Journal of Autism and Developmental Disorders – year: 2018 ident: b0180 article-title: Semi-supervised clustering with multiresolution autoencoders publication-title: International Joint Conference on Neural Network (IJCNN) – start-page: 39 year: 2019 end-page: 51 ident: b0120 article-title: Autoencoder based methods for diagnosis of autism spectrum disorder publication-title: ICCABS 2019: Computational Advances in Bio and Medical Sciences – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b0220 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – start-page: 646 year: 2019 end-page: 651 ident: b0105 article-title: Auto-asd-network: A technique based on deep learning and support vector machines for diagnosing autism spectrum disorder using fmri data publication-title: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, BCB ’19 – volume: 72 start-page: 665 year: 2011 end-page: 678 ident: b0250 article-title: Functional network organization of the human brain publication-title: Neuron – reference: P. Baldi, Autoencoders, unsupervised learning, and deep architectures., in: I. Guyon, G. Dror, V. Lemaire, G.W. Taylor, D.L. Silver (Eds.), ICML Unsupervised and Transfer Learning, volume 27 of JMLR Proceedings, JMLR.org, 2012, pp. 37–50. URL:http://dblp.uni-trier.de/db/journals/jmlr/jmlrp27.html#Baldi12. – volume: 198 start-page: 125 year: 2019 end-page: 136 ident: b0210 article-title: Variational autoencoder: An unsupervised model for encoding and decoding fmri activity in visual cortex publication-title: NeuroImage – volume: 29 start-page: 162 year: 1996 end-page: 173 ident: b0255 article-title: AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Computers and Biomedical Research – volume: 62 start-page: 782 year: 2012 end-page: 790 ident: b0260 publication-title: FSL, NeuroImage – volume: 16 start-page: 244 year: 2019 end-page: 257 ident: b0150 article-title: Early diagnosis of alzheimer’s disease based on resting-state brain networks and deep learning publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – reference: A.S. Lundervold, A. Lundervold, An overview of deep learning in medical imaging focusing on mri, Zeitschrift für Medizinische Physik 29 (2019) 102–127. Special Issue: Deep Learning in Medical Physics. – volume: 324 start-page: 63 year: 2019 end-page: 68 ident: b0115 article-title: Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier publication-title: Neurocomputing – volume: 13 start-page: 70 year: 2019 ident: b0125 article-title: Asd-diagnet: A hybrid learning approach for detection of autism spectrum disorder using fmri data publication-title: Frontiers in Neuroinformatics – start-page: 646 year: 2019 ident: 10.1016/j.neucom.2022.02.017_b0105 article-title: Auto-asd-network: A technique based on deep learning and support vector machines for diagnosing autism spectrum disorder using fmri data – ident: 10.1016/j.neucom.2022.02.017_b0085 doi: 10.1016/j.procs.2018.10.129 – ident: 10.1016/j.neucom.2022.02.017_b0205 – ident: 10.1016/j.neucom.2022.02.017_b0095 doi: 10.1016/j.zemedi.2018.11.002 – start-page: 780 year: 2018 ident: 10.1016/j.neucom.2022.02.017_b0155 article-title: Convolutional neural network with element-wise filters to extract hierarchical topological features for brain networks – volume: 72 start-page: 665 year: 2011 ident: 10.1016/j.neucom.2022.02.017_b0250 article-title: Functional network organization of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2011.09.006 – ident: 10.1016/j.neucom.2022.02.017_b0160 doi: 10.1007/978-3-030-00755-3_9 – volume: 17 start-page: 16 year: 2018 ident: 10.1016/j.neucom.2022.02.017_b0110 article-title: Identification of autism spectrum disorder using deep learning and the abide dataset publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2017.08.017 – volume: 21 start-page: 424 year: 2008 ident: 10.1016/j.neucom.2022.02.017_b0015 article-title: Resting-state functional connectivity in neuropsychiatric disorders publication-title: Current Opinion in Neurology doi: 10.1097/WCO.0b013e328306f2c5 – year: 2018 ident: 10.1016/j.neucom.2022.02.017_b0195 article-title: Recent advances in autoencoder-based representation learning – volume: 13 start-page: e0206351 year: 2018 ident: 10.1016/j.neucom.2022.02.017_b0030 article-title: Using resting state functional mri to build a personalized autism diagnosis system publication-title: PloS one doi: 10.1371/journal.pone.0206351 – start-page: 901 year: 2016 ident: 10.1016/j.neucom.2022.02.017_b0240 article-title: Weight normalization: A simple reparameterization to accelerate training of deep neural networks – volume: 28 start-page: 146 year: 2021 ident: 10.1016/j.neucom.2022.02.017_b0200 article-title: Diagnosis of autism spectrum disorder based on functional brain networks with deep learning publication-title: Journal of Computational Biology doi: 10.1089/cmb.2020.0252 – volume: 19 start-page: 221 year: 2017 ident: 10.1016/j.neucom.2022.02.017_b0090 article-title: Deep learning in medical image analysis publication-title: Annual Review of Biomedical Engineering doi: 10.1146/annurev-bioeng-071516-044442 – volume: 10 start-page: 186 year: 2009 ident: 10.1016/j.neucom.2022.02.017_b0225 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn2575 – year: 2020 ident: 10.1016/j.neucom.2022.02.017_b0070 article-title: Deep learning for brain disorder diagnosis based on fMRI images publication-title: Neurocomputing – ident: 10.1016/j.neucom.2022.02.017_b0065 doi: 10.1016/j.neuroimage.2012.01.022 – volume: 313 start-page: 504 year: 2006 ident: 10.1016/j.neucom.2022.02.017_b0220 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 124 start-page: 127 year: 2016 ident: 10.1016/j.neucom.2022.02.017_b0025 article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.05.018 – volume: 328 year: 2019 ident: 10.1016/j.neucom.2022.02.017_b0215 article-title: Transfer learning of deep neural network representations for fmri decoding publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2019.108319 – volume: 208 start-page: 232 year: 2016 ident: 10.1016/j.neucom.2022.02.017_b0005 article-title: Premature mortality in autism spectrum disorder publication-title: British Journal of Psychiatry doi: 10.1192/bjp.bp.114.160192 – volume: 11 year: 2017 ident: 10.1016/j.neucom.2022.02.017_b0050 article-title: Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2017.00460 – volume: 7 year: 2013 ident: 10.1016/j.neucom.2022.02.017_b0100 article-title: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives publication-title: Frontiers in Neuroinformatics doi: 10.3389/conf.fninf.2013.09.00041 – year: 2020 ident: 10.1016/j.neucom.2022.02.017_b0035 article-title: Detecting alzheimer’s disease based on 4d fmri: An exploration under deep learning framework publication-title: Neurocomputing – year: 2018 ident: 10.1016/j.neucom.2022.02.017_b0180 article-title: Semi-supervised clustering with multiresolution autoencoders – volume: 20 start-page: 519 year: 2010 ident: 10.1016/j.neucom.2022.02.017_b0055 article-title: Exploring the brain network: A review on resting-state fmri functional connectivity publication-title: European Neuropsychopharmacology doi: 10.1016/j.euroneuro.2010.03.008 – volume: 26 start-page: 31 year: 2018 ident: 10.1016/j.neucom.2022.02.017_b0175 article-title: Semisupervised autoencoders for speech emotion recognition publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASLP.2017.2759338 – volume: 7 year: 2013 ident: 10.1016/j.neucom.2022.02.017_b0045 article-title: Multisite functional connectivity MRI classification of autism: ABIDE results publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2013.00599 – volume: 30 start-page: 74 year: 2018 ident: 10.1016/j.neucom.2022.02.017_b0130 article-title: Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity mri publication-title: EBioMedicine doi: 10.1016/j.ebiom.2018.03.017 – volume: 7 start-page: 128474 year: 2019 ident: 10.1016/j.neucom.2022.02.017_b0235 article-title: Diagnosis of autism spectrum disorder based on eigenvalues of brain networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2940198 – ident: 10.1016/j.neucom.2022.02.017_b0245 – volume: 8 start-page: 229 year: 2014 ident: 10.1016/j.neucom.2022.02.017_b0075 article-title: Deep learning for neuroimaging: a validation study publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2014.00229 – volume: 324 start-page: 63 year: 2019 ident: 10.1016/j.neucom.2022.02.017_b0115 article-title: Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.04.080 – year: 2021 ident: 10.1016/j.neucom.2022.02.017_b0165 article-title: Esa: A generic framework for semi-supervised publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.051 – ident: 10.1016/j.neucom.2022.02.017_b0040 doi: 10.1002/mrm.22159 – volume: 29 start-page: 162 year: 1996 ident: 10.1016/j.neucom.2022.02.017_b0255 article-title: AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Computers and Biomedical Research doi: 10.1006/cbmr.1996.0014 – volume: 16 start-page: 244 year: 2019 ident: 10.1016/j.neucom.2022.02.017_b0150 article-title: Early diagnosis of alzheimer’s disease based on resting-state brain networks and deep learning publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2017.2776910 – volume: 31 start-page: 5014 year: 2020 ident: 10.1016/j.neucom.2022.02.017_b0190 article-title: Enhancing graph-based semisupervised learning via knowledge-aware data embedding publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2019.2955565 – start-page: 639 year: 2012 ident: 10.1016/j.neucom.2022.02.017_b0170 article-title: Deep learning via semi-supervised embedding – start-page: 39 year: 2019 ident: 10.1016/j.neucom.2022.02.017_b0120 article-title: Autoencoder based methods for diagnosis of autism spectrum disorder – start-page: 1 year: 2016 ident: 10.1016/j.neucom.2022.02.017_b0145 article-title: Clinical decision support for alzheimer’s disease based on deep learning and brain network – volume: 62 start-page: 782 year: 2012 ident: 10.1016/j.neucom.2022.02.017_b0260 publication-title: FSL, NeuroImage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 198 start-page: 125 year: 2019 ident: 10.1016/j.neucom.2022.02.017_b0210 article-title: Variational autoencoder: An unsupervised model for encoding and decoding fmri activity in visual cortex publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.05.039 – volume: 13 start-page: 70 year: 2019 ident: 10.1016/j.neucom.2022.02.017_b0125 article-title: Asd-diagnet: A hybrid learning approach for detection of autism spectrum disorder using fmri data publication-title: Frontiers in Neuroinformatics doi: 10.3389/fninf.2019.00070 – ident: 10.1016/j.neucom.2022.02.017_b0185 – volume: 189 year: 2020 ident: 10.1016/j.neucom.2022.02.017_b0230 article-title: A survey on machine and statistical learning for longitudinal analysis of neuroimaging data in alzheimer’s disease publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2020.105348 – volume: 6 start-page: 44 year: 2018 ident: 10.1016/j.neucom.2022.02.017_b0140 article-title: A review of the autoencoder and its variants: A comparative perspective from target recognition in synthetic-aperture radar images publication-title: IEEE Geoscience and Remote Sensing Magazine doi: 10.1109/MGRS.2018.2853555 – volume: 24 start-page: 659 year: 1994 ident: 10.1016/j.neucom.2022.02.017_b0010 article-title: Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders publication-title: Journal of Autism and Developmental Disorders doi: 10.1007/BF02172145 – ident: 10.1016/j.neucom.2022.02.017_b0060 doi: 10.1016/j.mri.2019.05.031 – volume: 10 start-page: 869 year: 2019 ident: 10.1016/j.neucom.2022.02.017_b0080 article-title: Applications of deep learning to neuro-imaging techniques publication-title: Frontiers in Neurology doi: 10.3389/fneur.2019.00869 – volume: 33 start-page: 1914 year: 2011 ident: 10.1016/j.neucom.2022.02.017_b0020 article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering publication-title: Human Brain Mapping doi: 10.1002/hbm.21333 – volume: 13 start-page: e0206351 year: 2018 ident: 10.1016/j.neucom.2022.02.017_b0135 article-title: Using resting state functional mri to build a personalized autism diagnosis system publication-title: PloS one doi: 10.1371/journal.pone.0206351 |
| SSID | ssj0017129 |
| Score | 2.4806116 |
| Snippet | Autism spectrum disorder (ASD) is a neurological developmental disorder that typically causes impaired communication and compromised social interactions. The... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 140 |
| SubjectTerms | Artificial intelligence Autoencoders Brain disorders diagnosis fMRI Semi-supervised learning |
| Title | A semi-supervised autoencoder for autism disease diagnosis |
| URI | https://dx.doi.org/10.1016/j.neucom.2022.02.017 |
| Volume | 483 |
| WOSCitedRecordID | wos000761719500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELWgcODCjtjlAzdk1KyOuUUIBBwQBxDlFDmOXYpoWjUN4vMZx04Ii1gOSFVURY3dZl7Hz5OZNwgdeDKARZeFJPO5R3wvdQiL4O_OqExFpASXKq2aTdCrq6jXY9e2Z2tRtROgeR69vLDxv5oazoGxdensH8zdDAon4D0YHY5gdjj-yvDxYSGHA1KUY-0GCiCUvJyOtF6llo2okiZh9mJYP5vR4VedbTco2kS1Eu0QVcsHG0yIh1pTIdMAaoIH90aB4K6c8lGT2mPqrUd5_4EPGp9fViyZ533SA0D228EG2Kd2_bp420YN3YAAJXznQP3Ia7lAx8gv2dXUMXqanxy1iRk8HuWy1Fk7eq5KO9UUcr7Xxf6wXjVZhHWC2mNiRkn0KEkXXg6dRXMuDVjUQXPxxWnvsnmyRB3X6C_aH1KXU1Y5f5-_zdd0pUVBbpbRot074NjYfAXNyHwVLdV9ObB102voOMYfIIBbEMAAAWwggC0EcAOBdXR7dnpzck5sjwwiYLM3JS4QQJmFkfBd7ignkF0FrEtyYGJMZV5AmZsGKhOSd7l0uefzUKQ8DGRGYSsN5HQDdfJRLjcR9hSQv4DqkIWCURmXIlMsVTCcCKkIt5BX34pEWAF53cfkKfnOEFuINFeNjYDKD5-n9V1OLAk05C4B6Hx75fYfZ9pBC28Q30Wd6aSUe2hePIMBJvsWN69scn-O |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+semi-supervised+autoencoder+for+autism+disease+diagnosis&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Yin%2C+Wutao&rft.au=Li%2C+Longhai&rft.au=Wu%2C+Fang-Xiang&rft.date=2022-04-28&rft.issn=0925-2312&rft.volume=483&rft.spage=140&rft.epage=147&rft_id=info:doi/10.1016%2Fj.neucom.2022.02.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2022_02_017 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |