Enhanced independent component analysis and fuzzy C-mean clustering based on novel bat algorithm for noisy image segmentation

Fuzzy c-means clustering is widely recognized as one of the most effective methods for image segmentation and achieving accurate classification. However, this method has two significant drawbacks: its sensitivity to noise and its convergence to local minimum clusters’ centroids. In this paper, we pr...

Full description

Saved in:
Bibliographic Details
Published in:Engineering Research Express Vol. 5; no. 4; pp. 45041 - 45058
Main Authors: Chetih, Nabil, Thelaidjia, Tawfik, Boudani, Fatma Zohra
Format: Journal Article
Language:English
Published: IOP Publishing 01.12.2023
Subjects:
ISSN:2631-8695, 2631-8695
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Fuzzy c-means clustering is widely recognized as one of the most effective methods for image segmentation and achieving accurate classification. However, this method has two significant drawbacks: its sensitivity to noise and its convergence to local minimum clusters’ centroids. In this paper, we proposed a novel model called EIFCMNB, which incorporates enhanced independent component analysis (EICA), fuzzy c-means clustering (FCMC) and novel bat algorithm (NBA) for noise image segmentation. The suggested model consists of two main phases: image denoising and extraction of the regions of interest (ROIs). In the first phase, the enhanced independent component analysis (EICA) algorithm is used for recovering a good quality image, from a noisy image of poor quality. Several noisy images, with noise variances ranging from 5 to 20, were filtered. The resulting images were then evaluated based on several criteria viz: Peak Signal to Noise Ratio (PSNR), Relative Norm Error (RE), Normalized Cross-Correlation (NCC), and Structural Similarity index measure (SSIM). In the second phase, the fuzzy c-means clustering based on a novel bat algorithm is adopted to calculate optimal clusters’ centroids and extract the ROIs. By incorporating the new bat algorithm, we aim to overcome the problem of converging to local minimums and achieve improved segmentation accuracy. Promising experimental results have been obtained by applying the proposed model to MRI brain images and x-ray welding images. Two criteria viz: VPE end VPC have been employed to evaluate the suggested approach. The experiments clearly demonstrate that our suggested model effectively addresses the sensitivity to noise problem and provides optimal clusters’ centroids. Moreover, it outperforms several FCMC-based algorithms, exhibiting superior performance in terms of image segmentation and classification.
AbstractList Fuzzy c-means clustering is widely recognized as one of the most effective methods for image segmentation and achieving accurate classification. However, this method has two significant drawbacks: its sensitivity to noise and its convergence to local minimum clusters’ centroids. In this paper, we proposed a novel model called EIFCMNB, which incorporates enhanced independent component analysis (EICA), fuzzy c-means clustering (FCMC) and novel bat algorithm (NBA) for noise image segmentation. The suggested model consists of two main phases: image denoising and extraction of the regions of interest (ROIs). In the first phase, the enhanced independent component analysis (EICA) algorithm is used for recovering a good quality image, from a noisy image of poor quality. Several noisy images, with noise variances ranging from 5 to 20, were filtered. The resulting images were then evaluated based on several criteria viz: Peak Signal to Noise Ratio (PSNR), Relative Norm Error (RE), Normalized Cross-Correlation (NCC), and Structural Similarity index measure (SSIM). In the second phase, the fuzzy c-means clustering based on a novel bat algorithm is adopted to calculate optimal clusters’ centroids and extract the ROIs. By incorporating the new bat algorithm, we aim to overcome the problem of converging to local minimums and achieve improved segmentation accuracy. Promising experimental results have been obtained by applying the proposed model to MRI brain images and x-ray welding images. Two criteria viz: VPE end VPC have been employed to evaluate the suggested approach. The experiments clearly demonstrate that our suggested model effectively addresses the sensitivity to noise problem and provides optimal clusters’ centroids. Moreover, it outperforms several FCMC-based algorithms, exhibiting superior performance in terms of image segmentation and classification.
Author Chetih, Nabil
Boudani, Fatma Zohra
Thelaidjia, Tawfik
Author_xml – sequence: 1
  givenname: Nabil
  orcidid: 0009-0008-9706-003X
  surname: Chetih
  fullname: Chetih, Nabil
  organization: Research Center in Industrial Technologies CRTI, PO Box 64, Cheraga 16014, Algiers, Algeria
– sequence: 2
  givenname: Tawfik
  surname: Thelaidjia
  fullname: Thelaidjia, Tawfik
  organization: Larbi Tebessi University LABGET Laboratory, Department of Electrical Engineering, Faculty of Science and Technology, Tebessa, Algeria
– sequence: 3
  givenname: Fatma Zohra
  surname: Boudani
  fullname: Boudani, Fatma Zohra
  organization: Faculty of Electrical Engineering, USTHB, BP 32 El-Alia, 16111 Bab Ezzouar, Algiers, Algeria
BookMark eNp9kM1LAzEQxYMoWGvvHnPy5NpkN_t1lFI_oOBFzyGbTLaR3WRJtuIW_N9NqYgH8TLzMsx7E34X6NQ6CwhdUXJLSVUt0yKjSVXU-VJIrUV5gmY_o9Nf-hwtQjANYUVBi5KWM_S5tlthJShsrIIBYrEjlq4f4oWohBXdFEyIQmG92-8nvEp6EBbLbhdG8Ma2uBEhBjiLrXuHLj6jr2udN-O2x9r5ODdhwqYXLeAAbR-TxWicvURnWnQBFt99jl7v1y-rx2Tz_PC0utskMiPFmKRpyigFWbA0BUF0k-uqIKKSRFelYkIyXSvaZKysQSoQwEBpkdW6bFSmWJXNETnmSu9C8KD54ONv_MQp4QeC_ICIHxDxI8FouTlajBv4m9v5CCL8t379xzr4D55zxgnLCaN8UDr7AsIAhhs
CODEN ERENBL
Cites_doi 10.1007/s10044-019-00806-2
10.1016/j.asoc.2015.12.022
10.1016/j.eswa.2015.04.026
10.1016/j.compmedimag.2021.102026
10.1049/iet-ipr.2016.0271
10.1109/CEIT.2015.7233031
10.1007/s11042-020-08699-8
10.1504/IJAMECHS.2020.111309
10.1109/ICAEE47123.2019.9015093
10.1007/s11042-020-09635-6
10.1049/iet-ipr.2017.0399
10.1016/j.compbiomed.2012.10.002
10.1109/ACCESS.2019.2901680
10.1007/s00170-020-05299-6
10.1504/IJCAT.2013.054352
10.12785/ijcds/090415
10.1016/j.eswa.2020.114121
10.1007/s11042-023-15142-1
10.1016/j.cviu.2020.103044
10.1016/j.bspc.2013.10.007
10.1007/s10921-015-0315-7
10.1080/01969727308546046
10.5120/8250-1766
10.5120/234-388
10.1109/TII.2021.3127188
10.1007/978-3-030-89691-1_39
10.1109/TIP.2003.819861
10.5370/JEET.2012.7.6.1001
10.1007/s12046-022-01936-w
10.1109/TSP.2023.3255546
10.1007/s13369-017-3031-z
10.1118/1.597000
10.1155/2017/5892039
10.34028/iajit/17/6/16
10.1007/978-1-4757-0450-1_3
10.3934/mbe.2022089
10.1186/s12860-022-00408-7
ContentType Journal Article
Copyright 2023 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2023 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
DOI 10.1088/2631-8695/acffa7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2631-8695
ExternalDocumentID 10_1088_2631_8695_acffa7
erxacffa7
GroupedDBID ABJNI
ALMA_UNASSIGNED_HOLDINGS
AAYXX
CITATION
ID FETCH-LOGICAL-c306t-222411ec6422ea0fb5f860a8c0f87d4ac4f9d1b3479ecdeae4edfa39f7bd3d483
IEDL.DBID O3W
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001093266200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2631-8695
IngestDate Thu Oct 16 04:41:32 EDT 2025
Sat Oct 18 23:06:15 EDT 2025
Tue Aug 20 22:14:52 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-222411ec6422ea0fb5f860a8c0f87d4ac4f9d1b3479ecdeae4edfa39f7bd3d483
Notes ERX-103078.R2
ORCID 0009-0008-9706-003X
OpenAccessLink https://doi.org/10.1088/2631-8695/acffa7
PageCount 18
ParticipantIDs iop_journals_10_1088_2631_8695_acffa7
crossref_primary_10_1088_2631_8695_acffa7
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering Research Express
PublicationTitleAbbrev ERX
PublicationTitleAlternate Eng. Res. Express
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Kannan (erxacffa7bib18) 2013; 43
Bezdek (erxacffa7bib33) 1981
Boudani (erxacffa7bib14) 2019
Thelaidjia (erxacffa7bib25) 2020; 8
Dhanachandra (erxacffa7bib17) 2020; 79
Xian-Bing (erxacffa7bib26) 2015; 42
Kies (erxacffa7bib9) 2020; 17
Kakumani (erxacffa7bib24) 2010; 1
Biju (erxacffa7bib27) 2012; 52
Niu (erxacffa7bib3) 2021; 18
Song (erxacffa7bib16) 2022; 19
Larbi Boulanouar (erxacffa7bib30) 2020; 9
Fang (erxacffa7bib13) 2020; 200
Bezdek (erxacffa7bib10) 1993; 20
Boudani (erxacffa7bib12) 2021; vol 13055
Salman (erxacffa7bib11) 2006; 3
Halimi (erxacffa7bib35) 2012; 7
Sethuraman (erxacffa7bib2) 2022; 47
Verma (erxacffa7bib20) 2016; 46
Mohan (erxacffa7bib15) 2014; 9
Chen (erxacffa7bib21) 2016; 10
Chen (erxacffa7bib22) 2017; 2017
Bi (erxacffa7bib23) 2019; 7
Kumar (erxacffa7bib5) 2021; 80
Habi (erxacffa7bib38) 2023; 71
Larbi Boulanouar (erxacffa7bib31) 2019
Wang (erxacffa7bib39) 2004; 13
BrainWeb (erxacffa7bib34) 2022
Mery (erxacffa7bib36) 2015; 34
Rafi (erxacffa7bib7) 2019; 16
Li (erxacffa7bib6) 2020; 107
Ramou (erxacffa7bib8) 2018; 43
Kamarujjaman (erxacffa7bib40) 2019; 22
Yeung (erxacffa7bib1) 2022; 95
Hanuman (erxacffa7bib28) 2021; 167
Kaur (erxacffa7bib19) 2013; 47
Chetih (erxacffa7bib37) 2015
Maryam (erxacffa7bib29) 2022; 23
Chetih (erxacffa7bib41) 2023; 82
Chetih (erxacffa7bib4) 2018; 12
Dunn (erxacffa7bib32) 1973; 3
References_xml – volume: 22
  start-page: 1561
  year: 2019
  ident: erxacffa7bib40
  article-title: 3D unsupervised modified spatial fuzzy c-means method for segmentation of 3D brain MR image
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-019-00806-2
– volume: 46
  start-page: 543
  year: 2016
  ident: erxacffa7bib20
  article-title: an improved intuitionistic fuzzy Cmeans clustering algorithm incorporating local information for brain image segmentation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.12.022
– volume: 42
  start-page: 6350
  year: 2015
  ident: erxacffa7bib26
  article-title: A novel bat algorithm with habitat selection and doppler effect in echoes for optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.04.026
– volume: 95
  year: 2022
  ident: erxacffa7bib1
  article-title: Unified focal loss: Generalising dice and cross entropy-based losses to handle class imbalanced medical image segmentation
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2021.102026
– volume: 10
  start-page: 865
  year: 2016
  ident: erxacffa7bib21
  article-title: Non-local-based spatially constrained hierarchical fuzzy C-means method for brain magnetic resonance imaging segmentation
  publication-title: IET Image Process
  doi: 10.1049/iet-ipr.2016.0271
– start-page: 1
  year: 2015
  ident: erxacffa7bib37
  article-title: Tomographic image reconstruction using filtered back projection (FBP) and algebraic reconstruction technique (ART)
  doi: 10.1109/CEIT.2015.7233031
– volume: 79
  start-page: 18839
  year: 2020
  ident: erxacffa7bib17
  article-title: An image segmentation approach based on fuzzy c-means and dynamic particle swarm optimization algorithm
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-08699-8
– volume: 8
  start-page: 116
  year: 2020
  ident: erxacffa7bib25
  article-title: Optimal wavelet analysis and enhanced independent component analysis for isolated and combined mechanical faults diagnosis
  publication-title: International Journal of Advanced Mechatronic Systems
  doi: 10.1504/IJAMECHS.2020.111309
– start-page: 1
  year: 2019
  ident: erxacffa7bib14
  article-title: Diffusion in the wavelet domain for denoising radiographic images of welding defects
  doi: 10.1109/ICAEE47123.2019.9015093
– volume: 80
  start-page: 6939
  year: 2021
  ident: erxacffa7bib5
  article-title: An improved gabor wavelet transform and rough K-means clustering algorithm for MRI brain tumor image segmentation
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-09635-6
– volume: 12
  start-page: 652
  year: 2018
  ident: erxacffa7bib4
  article-title: Robust fuzzy c-means clustering algorithm using non-parametric Bayesian estimation in wavelet transform domain for noisy MR brain image segmentation
  publication-title: IET Image Proc.
  doi: 10.1049/iet-ipr.2017.0399
– volume: 43
  start-page: 73
  year: 2013
  ident: erxacffa7bib18
  article-title: Effective FCM noise clustering algorithms in medical images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2012.10.002
– volume: 7
  start-page: 27756
  year: 2019
  ident: erxacffa7bib23
  article-title: A variety of engine faults detection based on optimized variational mode decomposition-robust independent component analysis and fuzzy C-mean clustering
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2901680
– volume: 107
  start-page: 4273
  year: 2020
  ident: erxacffa7bib6
  article-title: Surface quality improvement and support material reduction in 3D printed shell products based on efficient spectral clustering
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-020-05299-6
– volume: 47
  start-page: 198
  year: 2013
  ident: erxacffa7bib19
  article-title: Image segmentation of noisy digital images using extended fuzzy C-means clustering algorithm
  publication-title: Int. J. Comput. Appl. Technol.
  doi: 10.1504/IJCAT.2013.054352
– start-page: 241
  year: 2019
  ident: erxacffa7bib31
  article-title: A hybrid method for image segmentation based on modified bat algorithm and fuzzy C-means clustering
– volume: 9
  start-page: 677
  year: 2020
  ident: erxacffa7bib30
  article-title: A new hybrid image segmentation method based on fuzzy c-mean and modified bat algorithm
  publication-title: International Journal of Computing and Digital Systems
  doi: 10.12785/ijcds/090415
– volume: 3
  start-page: 104
  year: 2006
  ident: erxacffa7bib11
  article-title: Image segmentation based on watershed and edge detection techniques
  publication-title: International arab journal of information technology
– volume: 167
  start-page: 114
  year: 2021
  ident: erxacffa7bib28
  article-title: A population based hybrid FCM-PSO algorithm for clustering analysis and segmentation of brain image
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114121
– volume: 82
  start-page: 31775
  year: 2023
  ident: erxacffa7bib41
  article-title: Efficient and robust level set model for extracting regions of interest in x-ray welding images and MRI brain images
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-023-15142-1
– volume: 200
  year: 2020
  ident: erxacffa7bib13
  article-title: Learning deep edge prior for image denoising
  publication-title: Comput. Vision Image Understanding
  doi: 10.1016/j.cviu.2020.103044
– volume: 9
  start-page: 56
  year: 2014
  ident: erxacffa7bib15
  article-title: A survey on the magnetic resonance image denoising methods
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.10.007
– volume: 34
  start-page: 1
  year: 2015
  ident: erxacffa7bib36
  article-title: GDXray: the database of x-ray images for nondestructive testing
  publication-title: J. Nondestr. Eval.
  doi: 10.1007/s10921-015-0315-7
– volume: 3
  start-page: 32
  year: 1973
  ident: erxacffa7bib32
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact, well separated clusters
  publication-title: J. Cybern.
  doi: 10.1080/01969727308546046
– volume: 52
  start-page: 42
  year: 2012
  ident: erxacffa7bib27
  article-title: A genetic algorithm based fuzzy C mean clustering model for segmenting microarray images
  publication-title: International Journal of Computer Applications
  doi: 10.5120/8250-1766
– volume: 1
  start-page: 87
  year: 2010
  ident: erxacffa7bib24
  article-title: Microarray image denoising using independent component analysis
  publication-title: International Journal of computer applications
  doi: 10.5120/234-388
– volume: 18
  start-page: 4531
  year: 2021
  ident: erxacffa7bib3
  article-title: Region-and strength-controllable GAN for defect generation and segmentation in industrial images
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2021.3127188
– volume: vol 13055
  year: 2021
  ident: erxacffa7bib12
  article-title: Content-based image retrieval for surface defects of hot rolled steel strip using wavelet-based LBP
  doi: 10.1007/978-3-030-89691-1_39
– volume: 13
  start-page: 600
  year: 2004
  ident: erxacffa7bib39
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 7
  start-page: 1001
  year: 2012
  ident: erxacffa7bib35
  article-title: Segmentation of welding defects using level set methods
  publication-title: Journal of Electrical Engineering & Technology
  doi: 10.5370/JEET.2012.7.6.1001
– volume: 47
  start-page: 191
  year: 2022
  ident: erxacffa7bib2
  article-title: Staircase-net: a deep learning based architecture for retinal blood vessel segmentation
  publication-title: Sādhanā
  doi: 10.1007/s12046-022-01936-w
– volume: 71
  start-page: 1216
  year: 2023
  ident: erxacffa7bib38
  article-title: Learning to bound: a generative Cramér-Rao bound
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2023.3255546
– volume: 43
  start-page: 7167
  year: 2018
  ident: erxacffa7bib8
  article-title: A bayesian mumford–shah model for radiography image segmentation
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-017-3031-z
– volume: 20
  start-page: 1033
  year: 1993
  ident: erxacffa7bib10
  article-title: Review of MR image segmentation techniques using pattern recognition
  publication-title: Med. Phys.
  doi: 10.1118/1.597000
– volume: 2017
  start-page: 21
  year: 2017
  ident: erxacffa7bib22
  article-title: Medical image segmentation using independent component analysis-based kernelized fuzzy-means clustering
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2017/5892039
– volume: 17
  start-page: 976
  year: 2020
  ident: erxacffa7bib9
  article-title: A Dynamic particle swarm optimisation and fuzzy clustering means algorithm for segmentation of multimodal brain magnetic resonance image data
  publication-title: International arab journal of information technology
  doi: 10.34028/iajit/17/6/16
– year: 1981
  ident: erxacffa7bib33
  article-title: Objective function clustering
  doi: 10.1007/978-1-4757-0450-1_3
– volume: 19
  start-page: 1891
  year: 2022
  ident: erxacffa7bib16
  article-title: Brain tissue segmentation via non-local fuzzy c-means clustering combined with markov random field
  publication-title: Mathematical Biosciences and Engineering
  doi: 10.3934/mbe.2022089
– year: 2022
  ident: erxacffa7bib34
– volume: 16
  start-page: 737
  year: 2019
  ident: erxacffa7bib7
  article-title: Texture segmentation from non-textural background using enhanced MTC
  publication-title: International arab journal of information technology
– volume: 23
  year: 2022
  ident: erxacffa7bib29
  article-title: Optimization of fuzzy c-means (FCM) clustering in cytology image segmentation using the gray wolf algorithm
  publication-title: BMC Molecular and Cell Biology
  doi: 10.1186/s12860-022-00408-7
SSID ssib046616717
ssib037096498
ssib052001916
Score 2.2465281
Snippet Fuzzy c-means clustering is widely recognized as one of the most effective methods for image segmentation and achieving accurate classification. However, this...
SourceID crossref
iop
SourceType Index Database
Enrichment Source
Publisher
StartPage 45041
SubjectTerms enhanced independent component analysis
fuzzy c-means clustering
image segmentation
noisy images
novel bat algorithm
regions of interest
Title Enhanced independent component analysis and fuzzy C-mean clustering based on novel bat algorithm for noisy image segmentation
URI https://iopscience.iop.org/article/10.1088/2631-8695/acffa7
Volume 5
WOSCitedRecordID wos001093266200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 2631-8695
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib037096498
  issn: 2631-8695
  databaseCode: O3W
  dateStart: 20190711
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60evDiAxXrcw968BDNY5vd4EmKxZN6UOxt2WcbaJLSpqIF_7uzTaoWRARvmzBZhmF3vvmyszMInYJjVEEsXPt2AgRF0Mhzvxo84RuSaGpjlchZswl6d8e63eRhCV193oUphrXrv4BhVSi4MmGdEMcuwzgKPBYnrUuhrBV0Ga1EDGAcFvN99DxfTBGF4Jx8cQkCQBR_4y6u3BBwlfnR5U8TL0DVMqjzDXk6G__SeROt1wEnvq5Et9CSybfR-03enx394_SzDW6JXXp5kbuRqEuVwEBjO5lO33Dby4zIsRpMXGkFADzsAFDjIsd58WIG8AjfDXrFKC37GYZYGN6n4zecZuCy8Nj0svqaU76Dnjo3j-1br27E4ClgFKUXOpwPjAKuEhrhW9myLPYFU75lVBOhiE10IN2lVKO0EYYYbUWUWCp1pAmLdlEjB_33EJaKShCXyg8FYdKXwHdCC2GGVYJSaZrofG5zPqzqbfDZOTlj3BmROyPyyohNdAb25vWmG_8id7IgZ0avvMUJh2jWJwEfarv_x5kO0JprN1-lsxyiRjmamCO0ql7KdDw6nq2_D7qs3lY
linkProvider IOP Publishing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF58IV58oOLbPejBQ2we2-zmKGpRlOpB0duyTw20SWlTsQX_u7NJ6gNEBG-TMFmWyWRmvuw8EDoAw6iCWLjx7QQAiqCR5341eMI3JNHUxiqR5bAJ2m6zx8fktp5zWtbC5L3a9B8DWTUKrkRYJ8SxRhhHgcfipNkQylpBGz1tp9Gs61Pi1PomepgoVEQhQCefeIKAM4q_4BfXcgjwyuT48qfFv7mradjSF-_TWvr3vpfRYh144pOKfQVNmWwVvZ1nz2UKAE4_xuEW2KWZ55mjRN2yBAiN7XA8HuFTr2tEhlVn6FosgOPDzhFqnGc4y19MBy7huc5T3k-L5y6GmBjup4MRTrtguvDAPHXrcqdsDd23zu9OL7x6IIOnAFkUXuj8fWAUYJbQCN_KpmWxL5jyLaOaCEVsogPpilON0kYYYrQVUWKp1JEmLFpHMxnsfwNhqagEdqn8UBAmfQm4J7QQblglKJVmEx1N5M57Vd8NXp6XM8adILkTJK8EuYkOQea8_vgGv_Dtf-Mz_Vfe5IRDVOuTgMPr2PrjSvto_vasxa8v21fbaMFNoK8yXHbQTNEfml00p16KdNDfK9XxHXf1474
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+independent+component+analysis+and+fuzzy+C-mean+clustering+based+on+novel+bat+algorithm+for+noisy+image+segmentation&rft.jtitle=Engineering+Research+Express&rft.au=Chetih%2C+Nabil&rft.au=Thelaidjia%2C+Tawfik&rft.au=Boudani%2C+Fatma+Zohra&rft.date=2023-12-01&rft.pub=IOP+Publishing&rft.eissn=2631-8695&rft.volume=5&rft.issue=4&rft_id=info:doi/10.1088%2F2631-8695%2Facffa7&rft.externalDocID=erxacffa7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-8695&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-8695&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-8695&client=summon