Enhanced independent component analysis and fuzzy C-mean clustering based on novel bat algorithm for noisy image segmentation
Fuzzy c-means clustering is widely recognized as one of the most effective methods for image segmentation and achieving accurate classification. However, this method has two significant drawbacks: its sensitivity to noise and its convergence to local minimum clusters’ centroids. In this paper, we pr...
Uloženo v:
| Vydáno v: | Engineering Research Express Ročník 5; číslo 4; s. 45041 - 45058 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IOP Publishing
01.12.2023
|
| Témata: | |
| ISSN: | 2631-8695, 2631-8695 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Fuzzy c-means clustering is widely recognized as one of the most effective methods for image segmentation and achieving accurate classification. However, this method has two significant drawbacks: its sensitivity to noise and its convergence to local minimum clusters’ centroids. In this paper, we proposed a novel model called EIFCMNB, which incorporates enhanced independent component analysis (EICA), fuzzy c-means clustering (FCMC) and novel bat algorithm (NBA) for noise image segmentation. The suggested model consists of two main phases: image denoising and extraction of the regions of interest (ROIs). In the first phase, the enhanced independent component analysis (EICA) algorithm is used for recovering a good quality image, from a noisy image of poor quality. Several noisy images, with noise variances ranging from 5 to 20, were filtered. The resulting images were then evaluated based on several criteria viz: Peak Signal to Noise Ratio (PSNR), Relative Norm Error (RE), Normalized Cross-Correlation (NCC), and Structural Similarity index measure (SSIM). In the second phase, the fuzzy c-means clustering based on a novel bat algorithm is adopted to calculate optimal clusters’ centroids and extract the ROIs. By incorporating the new bat algorithm, we aim to overcome the problem of converging to local minimums and achieve improved segmentation accuracy. Promising experimental results have been obtained by applying the proposed model to MRI brain images and x-ray welding images. Two criteria viz: VPE end VPC have been employed to evaluate the suggested approach. The experiments clearly demonstrate that our suggested model effectively addresses the sensitivity to noise problem and provides optimal clusters’ centroids. Moreover, it outperforms several FCMC-based algorithms, exhibiting superior performance in terms of image segmentation and classification. |
|---|---|
| AbstractList | Fuzzy c-means clustering is widely recognized as one of the most effective methods for image segmentation and achieving accurate classification. However, this method has two significant drawbacks: its sensitivity to noise and its convergence to local minimum clusters’ centroids. In this paper, we proposed a novel model called EIFCMNB, which incorporates enhanced independent component analysis (EICA), fuzzy c-means clustering (FCMC) and novel bat algorithm (NBA) for noise image segmentation. The suggested model consists of two main phases: image denoising and extraction of the regions of interest (ROIs). In the first phase, the enhanced independent component analysis (EICA) algorithm is used for recovering a good quality image, from a noisy image of poor quality. Several noisy images, with noise variances ranging from 5 to 20, were filtered. The resulting images were then evaluated based on several criteria viz: Peak Signal to Noise Ratio (PSNR), Relative Norm Error (RE), Normalized Cross-Correlation (NCC), and Structural Similarity index measure (SSIM). In the second phase, the fuzzy c-means clustering based on a novel bat algorithm is adopted to calculate optimal clusters’ centroids and extract the ROIs. By incorporating the new bat algorithm, we aim to overcome the problem of converging to local minimums and achieve improved segmentation accuracy. Promising experimental results have been obtained by applying the proposed model to MRI brain images and x-ray welding images. Two criteria viz: VPE end VPC have been employed to evaluate the suggested approach. The experiments clearly demonstrate that our suggested model effectively addresses the sensitivity to noise problem and provides optimal clusters’ centroids. Moreover, it outperforms several FCMC-based algorithms, exhibiting superior performance in terms of image segmentation and classification. |
| Author | Chetih, Nabil Boudani, Fatma Zohra Thelaidjia, Tawfik |
| Author_xml | – sequence: 1 givenname: Nabil orcidid: 0009-0008-9706-003X surname: Chetih fullname: Chetih, Nabil organization: Research Center in Industrial Technologies CRTI, PO Box 64, Cheraga 16014, Algiers, Algeria – sequence: 2 givenname: Tawfik surname: Thelaidjia fullname: Thelaidjia, Tawfik organization: Larbi Tebessi University LABGET Laboratory, Department of Electrical Engineering, Faculty of Science and Technology, Tebessa, Algeria – sequence: 3 givenname: Fatma Zohra surname: Boudani fullname: Boudani, Fatma Zohra organization: Faculty of Electrical Engineering, USTHB, BP 32 El-Alia, 16111 Bab Ezzouar, Algiers, Algeria |
| BookMark | eNp9kM1LAzEQxYMoWGvvHnPy5NpkN_t1lFI_oOBFzyGbTLaR3WRJtuIW_N9NqYgH8TLzMsx7E34X6NQ6CwhdUXJLSVUt0yKjSVXU-VJIrUV5gmY_o9Nf-hwtQjANYUVBi5KWM_S5tlthJShsrIIBYrEjlq4f4oWohBXdFEyIQmG92-8nvEp6EBbLbhdG8Ma2uBEhBjiLrXuHLj6jr2udN-O2x9r5ODdhwqYXLeAAbR-TxWicvURnWnQBFt99jl7v1y-rx2Tz_PC0utskMiPFmKRpyigFWbA0BUF0k-uqIKKSRFelYkIyXSvaZKysQSoQwEBpkdW6bFSmWJXNETnmSu9C8KD54ONv_MQp4QeC_ICIHxDxI8FouTlajBv4m9v5CCL8t379xzr4D55zxgnLCaN8UDr7AsIAhhs |
| CODEN | ERENBL |
| Cites_doi | 10.1007/s10044-019-00806-2 10.1016/j.asoc.2015.12.022 10.1016/j.eswa.2015.04.026 10.1016/j.compmedimag.2021.102026 10.1049/iet-ipr.2016.0271 10.1109/CEIT.2015.7233031 10.1007/s11042-020-08699-8 10.1504/IJAMECHS.2020.111309 10.1109/ICAEE47123.2019.9015093 10.1007/s11042-020-09635-6 10.1049/iet-ipr.2017.0399 10.1016/j.compbiomed.2012.10.002 10.1109/ACCESS.2019.2901680 10.1007/s00170-020-05299-6 10.1504/IJCAT.2013.054352 10.12785/ijcds/090415 10.1016/j.eswa.2020.114121 10.1007/s11042-023-15142-1 10.1016/j.cviu.2020.103044 10.1016/j.bspc.2013.10.007 10.1007/s10921-015-0315-7 10.1080/01969727308546046 10.5120/8250-1766 10.5120/234-388 10.1109/TII.2021.3127188 10.1007/978-3-030-89691-1_39 10.1109/TIP.2003.819861 10.5370/JEET.2012.7.6.1001 10.1007/s12046-022-01936-w 10.1109/TSP.2023.3255546 10.1007/s13369-017-3031-z 10.1118/1.597000 10.1155/2017/5892039 10.34028/iajit/17/6/16 10.1007/978-1-4757-0450-1_3 10.3934/mbe.2022089 10.1186/s12860-022-00408-7 |
| ContentType | Journal Article |
| Copyright | 2023 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
| Copyright_xml | – notice: 2023 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
| DBID | AAYXX CITATION |
| DOI | 10.1088/2631-8695/acffa7 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2631-8695 |
| ExternalDocumentID | 10_1088_2631_8695_acffa7 erxacffa7 |
| GroupedDBID | ABJNI ALMA_UNASSIGNED_HOLDINGS AAYXX CITATION |
| ID | FETCH-LOGICAL-c306t-222411ec6422ea0fb5f860a8c0f87d4ac4f9d1b3479ecdeae4edfa39f7bd3d483 |
| IEDL.DBID | O3W |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001093266200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2631-8695 |
| IngestDate | Thu Oct 16 04:41:32 EDT 2025 Sat Oct 18 23:06:15 EDT 2025 Tue Aug 20 22:14:52 EDT 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | This article is available under the terms of the IOP-Standard License. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-222411ec6422ea0fb5f860a8c0f87d4ac4f9d1b3479ecdeae4edfa39f7bd3d483 |
| Notes | ERX-103078.R2 |
| ORCID | 0009-0008-9706-003X |
| OpenAccessLink | https://doi.org/10.1088/2631-8695/acffa7 |
| PageCount | 18 |
| ParticipantIDs | iop_journals_10_1088_2631_8695_acffa7 crossref_primary_10_1088_2631_8695_acffa7 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering Research Express |
| PublicationTitleAbbrev | ERX |
| PublicationTitleAlternate | Eng. Res. Express |
| PublicationYear | 2023 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Kannan (erxacffa7bib18) 2013; 43 Bezdek (erxacffa7bib33) 1981 Boudani (erxacffa7bib14) 2019 Thelaidjia (erxacffa7bib25) 2020; 8 Dhanachandra (erxacffa7bib17) 2020; 79 Xian-Bing (erxacffa7bib26) 2015; 42 Kies (erxacffa7bib9) 2020; 17 Kakumani (erxacffa7bib24) 2010; 1 Biju (erxacffa7bib27) 2012; 52 Niu (erxacffa7bib3) 2021; 18 Song (erxacffa7bib16) 2022; 19 Larbi Boulanouar (erxacffa7bib30) 2020; 9 Fang (erxacffa7bib13) 2020; 200 Bezdek (erxacffa7bib10) 1993; 20 Boudani (erxacffa7bib12) 2021; vol 13055 Salman (erxacffa7bib11) 2006; 3 Halimi (erxacffa7bib35) 2012; 7 Sethuraman (erxacffa7bib2) 2022; 47 Verma (erxacffa7bib20) 2016; 46 Mohan (erxacffa7bib15) 2014; 9 Chen (erxacffa7bib21) 2016; 10 Chen (erxacffa7bib22) 2017; 2017 Bi (erxacffa7bib23) 2019; 7 Kumar (erxacffa7bib5) 2021; 80 Habi (erxacffa7bib38) 2023; 71 Larbi Boulanouar (erxacffa7bib31) 2019 Wang (erxacffa7bib39) 2004; 13 BrainWeb (erxacffa7bib34) 2022 Mery (erxacffa7bib36) 2015; 34 Rafi (erxacffa7bib7) 2019; 16 Li (erxacffa7bib6) 2020; 107 Ramou (erxacffa7bib8) 2018; 43 Kamarujjaman (erxacffa7bib40) 2019; 22 Yeung (erxacffa7bib1) 2022; 95 Hanuman (erxacffa7bib28) 2021; 167 Kaur (erxacffa7bib19) 2013; 47 Chetih (erxacffa7bib37) 2015 Maryam (erxacffa7bib29) 2022; 23 Chetih (erxacffa7bib41) 2023; 82 Chetih (erxacffa7bib4) 2018; 12 Dunn (erxacffa7bib32) 1973; 3 |
| References_xml | – volume: 22 start-page: 1561 year: 2019 ident: erxacffa7bib40 article-title: 3D unsupervised modified spatial fuzzy c-means method for segmentation of 3D brain MR image publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-019-00806-2 – volume: 46 start-page: 543 year: 2016 ident: erxacffa7bib20 article-title: an improved intuitionistic fuzzy Cmeans clustering algorithm incorporating local information for brain image segmentation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.12.022 – volume: 42 start-page: 6350 year: 2015 ident: erxacffa7bib26 article-title: A novel bat algorithm with habitat selection and doppler effect in echoes for optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.04.026 – volume: 95 year: 2022 ident: erxacffa7bib1 article-title: Unified focal loss: Generalising dice and cross entropy-based losses to handle class imbalanced medical image segmentation publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2021.102026 – volume: 10 start-page: 865 year: 2016 ident: erxacffa7bib21 article-title: Non-local-based spatially constrained hierarchical fuzzy C-means method for brain magnetic resonance imaging segmentation publication-title: IET Image Process doi: 10.1049/iet-ipr.2016.0271 – start-page: 1 year: 2015 ident: erxacffa7bib37 article-title: Tomographic image reconstruction using filtered back projection (FBP) and algebraic reconstruction technique (ART) doi: 10.1109/CEIT.2015.7233031 – volume: 79 start-page: 18839 year: 2020 ident: erxacffa7bib17 article-title: An image segmentation approach based on fuzzy c-means and dynamic particle swarm optimization algorithm publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-020-08699-8 – volume: 8 start-page: 116 year: 2020 ident: erxacffa7bib25 article-title: Optimal wavelet analysis and enhanced independent component analysis for isolated and combined mechanical faults diagnosis publication-title: International Journal of Advanced Mechatronic Systems doi: 10.1504/IJAMECHS.2020.111309 – start-page: 1 year: 2019 ident: erxacffa7bib14 article-title: Diffusion in the wavelet domain for denoising radiographic images of welding defects doi: 10.1109/ICAEE47123.2019.9015093 – volume: 80 start-page: 6939 year: 2021 ident: erxacffa7bib5 article-title: An improved gabor wavelet transform and rough K-means clustering algorithm for MRI brain tumor image segmentation publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-020-09635-6 – volume: 12 start-page: 652 year: 2018 ident: erxacffa7bib4 article-title: Robust fuzzy c-means clustering algorithm using non-parametric Bayesian estimation in wavelet transform domain for noisy MR brain image segmentation publication-title: IET Image Proc. doi: 10.1049/iet-ipr.2017.0399 – volume: 43 start-page: 73 year: 2013 ident: erxacffa7bib18 article-title: Effective FCM noise clustering algorithms in medical images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2012.10.002 – volume: 7 start-page: 27756 year: 2019 ident: erxacffa7bib23 article-title: A variety of engine faults detection based on optimized variational mode decomposition-robust independent component analysis and fuzzy C-mean clustering publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2901680 – volume: 107 start-page: 4273 year: 2020 ident: erxacffa7bib6 article-title: Surface quality improvement and support material reduction in 3D printed shell products based on efficient spectral clustering publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-020-05299-6 – volume: 47 start-page: 198 year: 2013 ident: erxacffa7bib19 article-title: Image segmentation of noisy digital images using extended fuzzy C-means clustering algorithm publication-title: Int. J. Comput. Appl. Technol. doi: 10.1504/IJCAT.2013.054352 – start-page: 241 year: 2019 ident: erxacffa7bib31 article-title: A hybrid method for image segmentation based on modified bat algorithm and fuzzy C-means clustering – volume: 9 start-page: 677 year: 2020 ident: erxacffa7bib30 article-title: A new hybrid image segmentation method based on fuzzy c-mean and modified bat algorithm publication-title: International Journal of Computing and Digital Systems doi: 10.12785/ijcds/090415 – volume: 3 start-page: 104 year: 2006 ident: erxacffa7bib11 article-title: Image segmentation based on watershed and edge detection techniques publication-title: International arab journal of information technology – volume: 167 start-page: 114 year: 2021 ident: erxacffa7bib28 article-title: A population based hybrid FCM-PSO algorithm for clustering analysis and segmentation of brain image publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114121 – volume: 82 start-page: 31775 year: 2023 ident: erxacffa7bib41 article-title: Efficient and robust level set model for extracting regions of interest in x-ray welding images and MRI brain images publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-023-15142-1 – volume: 200 year: 2020 ident: erxacffa7bib13 article-title: Learning deep edge prior for image denoising publication-title: Comput. Vision Image Understanding doi: 10.1016/j.cviu.2020.103044 – volume: 9 start-page: 56 year: 2014 ident: erxacffa7bib15 article-title: A survey on the magnetic resonance image denoising methods publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.10.007 – volume: 34 start-page: 1 year: 2015 ident: erxacffa7bib36 article-title: GDXray: the database of x-ray images for nondestructive testing publication-title: J. Nondestr. Eval. doi: 10.1007/s10921-015-0315-7 – volume: 3 start-page: 32 year: 1973 ident: erxacffa7bib32 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact, well separated clusters publication-title: J. Cybern. doi: 10.1080/01969727308546046 – volume: 52 start-page: 42 year: 2012 ident: erxacffa7bib27 article-title: A genetic algorithm based fuzzy C mean clustering model for segmenting microarray images publication-title: International Journal of Computer Applications doi: 10.5120/8250-1766 – volume: 1 start-page: 87 year: 2010 ident: erxacffa7bib24 article-title: Microarray image denoising using independent component analysis publication-title: International Journal of computer applications doi: 10.5120/234-388 – volume: 18 start-page: 4531 year: 2021 ident: erxacffa7bib3 article-title: Region-and strength-controllable GAN for defect generation and segmentation in industrial images publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2021.3127188 – volume: vol 13055 year: 2021 ident: erxacffa7bib12 article-title: Content-based image retrieval for surface defects of hot rolled steel strip using wavelet-based LBP doi: 10.1007/978-3-030-89691-1_39 – volume: 13 start-page: 600 year: 2004 ident: erxacffa7bib39 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 7 start-page: 1001 year: 2012 ident: erxacffa7bib35 article-title: Segmentation of welding defects using level set methods publication-title: Journal of Electrical Engineering & Technology doi: 10.5370/JEET.2012.7.6.1001 – volume: 47 start-page: 191 year: 2022 ident: erxacffa7bib2 article-title: Staircase-net: a deep learning based architecture for retinal blood vessel segmentation publication-title: Sādhanā doi: 10.1007/s12046-022-01936-w – volume: 71 start-page: 1216 year: 2023 ident: erxacffa7bib38 article-title: Learning to bound: a generative Cramér-Rao bound publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2023.3255546 – volume: 43 start-page: 7167 year: 2018 ident: erxacffa7bib8 article-title: A bayesian mumford–shah model for radiography image segmentation publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-017-3031-z – volume: 20 start-page: 1033 year: 1993 ident: erxacffa7bib10 article-title: Review of MR image segmentation techniques using pattern recognition publication-title: Med. Phys. doi: 10.1118/1.597000 – volume: 2017 start-page: 21 year: 2017 ident: erxacffa7bib22 article-title: Medical image segmentation using independent component analysis-based kernelized fuzzy-means clustering publication-title: Mathematical Problems in Engineering doi: 10.1155/2017/5892039 – volume: 17 start-page: 976 year: 2020 ident: erxacffa7bib9 article-title: A Dynamic particle swarm optimisation and fuzzy clustering means algorithm for segmentation of multimodal brain magnetic resonance image data publication-title: International arab journal of information technology doi: 10.34028/iajit/17/6/16 – year: 1981 ident: erxacffa7bib33 article-title: Objective function clustering doi: 10.1007/978-1-4757-0450-1_3 – volume: 19 start-page: 1891 year: 2022 ident: erxacffa7bib16 article-title: Brain tissue segmentation via non-local fuzzy c-means clustering combined with markov random field publication-title: Mathematical Biosciences and Engineering doi: 10.3934/mbe.2022089 – year: 2022 ident: erxacffa7bib34 – volume: 16 start-page: 737 year: 2019 ident: erxacffa7bib7 article-title: Texture segmentation from non-textural background using enhanced MTC publication-title: International arab journal of information technology – volume: 23 year: 2022 ident: erxacffa7bib29 article-title: Optimization of fuzzy c-means (FCM) clustering in cytology image segmentation using the gray wolf algorithm publication-title: BMC Molecular and Cell Biology doi: 10.1186/s12860-022-00408-7 |
| SSID | ssib046616717 ssib037096498 ssib052001916 |
| Score | 2.2464285 |
| Snippet | Fuzzy c-means clustering is widely recognized as one of the most effective methods for image segmentation and achieving accurate classification. However, this... |
| SourceID | crossref iop |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 45041 |
| SubjectTerms | enhanced independent component analysis fuzzy c-means clustering image segmentation noisy images novel bat algorithm regions of interest |
| Title | Enhanced independent component analysis and fuzzy C-mean clustering based on novel bat algorithm for noisy image segmentation |
| URI | https://iopscience.iop.org/article/10.1088/2631-8695/acffa7 |
| Volume | 5 |
| WOSCitedRecordID | wos001093266200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 2631-8695 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib037096498 issn: 2631-8695 databaseCode: O3W dateStart: 20190711 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4gevDiI2rE5x704KFSuku7jSdDIJ7Qg0Zum-0-oAm0BAoREv-7s7QgJMaYeOq2mW42k9n55svuzCB0A5hvqFGRo-sUCAoJpROGRjg6Ajxj4DalrxbNJoJ2m3U64UsJPaxyYdJh4frvYZgXCs5VWFyIY1XPJzWH-WG9KqQxIthC24QBjIMxP5P3pTGRAIJz-s0lKACRv8ZdbLkh4CrLo8ufJt6Aqi1YzhrytPb_teYDtFcEnPgxFz1EJZ0coc9m0lsc_eN41QY3w_Z6eZrYkShKlcBAYTOZz2e44Qy0SLDsT2xpBQA8bAFQ4TTBSTrVfXiF__rddBRnvQGGWBi-x-MZjgfgsvBYdwdFmlNyjN5azdfGk1M0YnAkMIrM8SzO17QEruJp4ZqobpjvCiZdwwJFhaQmVLXIJqVqqbTQVCsjSGiCSBFFGTlB5QTWf4qwF_ki0Npz7e6EJwSARAJnsgl3LshW0N1S53yY19vgi3NyxrhVIrdK5LkSK-gW9M2LTTf-Re56Q06PPnidUw7RrEtrfKjM2R9nOke7tt18fp3lApWz0URfoh05zeLx6Gphf1_bqd1E |
| linkProvider | IOP Publishing |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RXzxgorzmgd98KGul6xNH2VuKMrcg6JvIc1FC1s7tm64gf_dk7bTDUQEn5qG0xBOk3znI-eC0BlgviZaRpaqEyAoXiisMNTcUhHgGYVjU_gyLzYRtNv05SXslHVO81iYtF8e_ZfQLBIFFyosHeJozfU9x6J-WK9xoTUPan2pl9GKyVNilvWD9zxbUF4ABjr55hMEwMif4y8m5RDwldn15U-DL8DVMkxpDn1am_-e9xbaKA1PfFWIb6Mlleygj2bylrsA4PirHG6GjZt5mpgWL1OWQENiPZpOJ7hh9RRPsOiOTIoFAD5sgFDiNMFJOlZdeIXvuq_pIM7eehhsYuiPhxMc9-DowkP12ivDnZJd9NRqPjZurLIggyWAWWSWa_DeUQI4i6u4raO6pr7NqbA1DSThguhQOpEJTlVCKq6Ikpp7oQ4i6UlCvT1USWD--wi7kc8DpVzb7FJ4giHoCeBOJvDOBtkqupjpnfWLvBssvy-nlBlFMqNIViiyis5B56zcfMNf5E4X5NTgndUZYWDV2sRh8DsO_jjSKVrrXLfY_W377hCtmwr0hYfLEapkg5E6RqtinMXDwUm-HD8BkMzirA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+independent+component+analysis+and+fuzzy+C-mean+clustering+based+on+novel+bat+algorithm+for+noisy+image+segmentation&rft.jtitle=Engineering+Research+Express&rft.au=Chetih%2C+Nabil&rft.au=Thelaidjia%2C+Tawfik&rft.au=Boudani%2C+Fatma+Zohra&rft.date=2023-12-01&rft.pub=IOP+Publishing&rft.eissn=2631-8695&rft.volume=5&rft.issue=4&rft_id=info:doi/10.1088%2F2631-8695%2Facffa7&rft.externalDocID=erxacffa7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-8695&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-8695&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-8695&client=summon |