An approximate backpropagation learning rule for memristor based neural networks using synaptic plasticity
We describe an approximation to backpropagation algorithm for training deep neural networks, which is designed to work with synapses implemented with memristors. The key idea is to represent the values of both the input signal and the backpropagated delta value with a series of pulses that trigger m...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 237; s. 193 - 199 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
10.05.2017
|
| Témata: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!