Subject sensitive EEG discrimination with fast reconstructable CNN driven by reinforcement learning: A case study of ASD evaluation

Recent Electroencephalogram (EEG) analysis in connection with brain disorders has been tremendously benefiting from the (Deep) Neural Network technology in neuroscience research and neuro-engineering practices. However, the performance of existing hand-crafted models, such as the stability, has larg...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 449; pp. 136 - 145
Main Authors: Dong, Heyou, Chen, Dan, Zhang, Lei, Ke, Hengjin, Li, Xiaoli
Format: Journal Article
Language:English
Published: Elsevier B.V 18.08.2021
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recent Electroencephalogram (EEG) analysis in connection with brain disorders has been tremendously benefiting from the (Deep) Neural Network technology in neuroscience research and neuro-engineering practices. However, the performance of existing hand-crafted models, such as the stability, has largely been refrained. This is the case especially in the paradigms that sensitive to the individuality of subjects and the non-stationarity of cognitive dynamics, such as Autism Spectrum Disorder (ASD) evaluation. Aiming at this problem, this study develops a Q-Learning method to enable fast reconstruction of Convolutional Neural Network (CNN) thus to support EEG discrimination adapting to the individuality of subjects under examination. The proposed method first generates a CNN model with the structure and hyper-parameters determined (i.e., Neural Architecture Search) by the customized Q-Learning algorithm, where the CNN model is treated as a discrete system to be optimized. With the sharp shift of subjects, the Q-Learning algorithm reconstructs the CNN model to reach optimization reusing the tacit knowledge learned from the previous trials. A case study has been performed to check the proposed method versus state-of-the-art counterparts based on resting-state EEG collected from 175 ASD-suspicious children with a diverse geological distribution. The observations in the case study indicate that: 1) the method outperforms the counterparts with an individual/sample accuracy of 92.63%/83.23% achieved; 2) the method can quickly reconstruct the CNN model with the group of subjects shifting from one region to another to maintain an encouraging performance while the counterparts without reconstruction may drop by about 12%.
AbstractList Recent Electroencephalogram (EEG) analysis in connection with brain disorders has been tremendously benefiting from the (Deep) Neural Network technology in neuroscience research and neuro-engineering practices. However, the performance of existing hand-crafted models, such as the stability, has largely been refrained. This is the case especially in the paradigms that sensitive to the individuality of subjects and the non-stationarity of cognitive dynamics, such as Autism Spectrum Disorder (ASD) evaluation. Aiming at this problem, this study develops a Q-Learning method to enable fast reconstruction of Convolutional Neural Network (CNN) thus to support EEG discrimination adapting to the individuality of subjects under examination. The proposed method first generates a CNN model with the structure and hyper-parameters determined (i.e., Neural Architecture Search) by the customized Q-Learning algorithm, where the CNN model is treated as a discrete system to be optimized. With the sharp shift of subjects, the Q-Learning algorithm reconstructs the CNN model to reach optimization reusing the tacit knowledge learned from the previous trials. A case study has been performed to check the proposed method versus state-of-the-art counterparts based on resting-state EEG collected from 175 ASD-suspicious children with a diverse geological distribution. The observations in the case study indicate that: 1) the method outperforms the counterparts with an individual/sample accuracy of 92.63%/83.23% achieved; 2) the method can quickly reconstruct the CNN model with the group of subjects shifting from one region to another to maintain an encouraging performance while the counterparts without reconstruction may drop by about 12%.
Author Ke, Hengjin
Dong, Heyou
Zhang, Lei
Chen, Dan
Li, Xiaoli
Author_xml – sequence: 1
  givenname: Heyou
  surname: Dong
  fullname: Dong, Heyou
  organization: School of Computer Science, Wuhan University, Wuhan 430072, China
– sequence: 2
  givenname: Dan
  surname: Chen
  fullname: Chen, Dan
  email: dan.chen@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan 430072, China
– sequence: 3
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: School of Computer Science, Wuhan University, Wuhan 430072, China
– sequence: 4
  givenname: Hengjin
  surname: Ke
  fullname: Ke, Hengjin
  organization: School of Computer Science, Hubei Polytechnic University, Huangshi 435003, China
– sequence: 5
  givenname: Xiaoli
  surname: Li
  fullname: Li, Xiaoli
  email: xiaoli@bnu.edu.cn
  organization: National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
BookMark eNqFkD1PwzAQQC1UJErhHzD4DyScnTQfHZCqUgoSKgMwW7ZzBlepg2ynqDN_nECZGGC64fSe7t4pGbnOISEXDFIGrLjcpA573W1TDpylkKcA9REZs6rkScWrYkTGUPNpwjPGT8hpCBsAVjJej8nHY682qCMN6IKNdod0uVzRxgbt7dY6GW3n6LuNr9TIEKlH3bkQfa-jVC3SxXpNGz9gjqr9sLXOdF7jFl2kLUrvrHuZ0TnVMiANsW_2tDN0_nhNcSfb_lt_Ro6NbAOe_8wJeb5ZPi1uk_uH1d1ifp_oDIqYsCYrTVlxk4EBrmosp1giqKlRjKPJdaGMQVYDVJLlileoGhygvKghzyqZTcjs4NW-C8GjEdrG7wuil7YVDMRXTrERh5ziK6eAXAw5Bzj_Bb8NgaTf_4ddHTAcHttZ9CJoi05jY4eUUTSd_VvwCQtYloM
CitedBy_id crossref_primary_10_1016_j_neuroscience_2021_07_022
crossref_primary_10_1109_TNSRE_2024_3417210
crossref_primary_10_1016_j_cmpb_2023_107865
crossref_primary_10_3390_brainsci15070684
crossref_primary_10_1016_j_neunet_2023_04_004
crossref_primary_10_1109_TAFFC_2025_3528920
crossref_primary_10_1109_JIOT_2022_3180215
crossref_primary_10_1016_j_brainresbull_2023_110826
crossref_primary_10_1007_s11063_022_11120_0
crossref_primary_10_1186_s40779_023_00502_7
crossref_primary_10_1007_s10462_025_11302_x
crossref_primary_10_1109_JBHI_2022_3227320
crossref_primary_10_1109_TNSRE_2025_3580593
crossref_primary_10_1016_j_eswa_2025_129453
crossref_primary_10_21015_vtse_v13i2_2089
crossref_primary_10_1016_j_compbiomed_2024_108075
crossref_primary_10_1007_s10791_025_09539_9
crossref_primary_10_1016_j_compbiomed_2021_104949
crossref_primary_10_1016_j_neucom_2025_130353
crossref_primary_10_1016_j_cmpb_2024_108196
crossref_primary_10_1016_j_compbiomed_2025_109926
crossref_primary_10_1177_09544119221135714
crossref_primary_10_3389_fnhum_2021_656578
crossref_primary_10_1016_j_neucom_2022_10_038
crossref_primary_10_1016_j_jneumeth_2022_109732
crossref_primary_10_1016_j_rcim_2023_102610
crossref_primary_10_1109_TCE_2023_3328479
crossref_primary_10_3389_fnins_2022_967116
crossref_primary_10_1016_j_neunet_2025_107337
Cites_doi 10.1088/1741-2552/aace8c
10.3389/fninf.2018.00095
10.1007/BF01531728
10.1155/2017/9816591
10.1109/TKDE.2019.2931687
10.3390/s18113993
10.1016/j.jneumeth.2003.10.009
10.1186/1741-7015-9-18
10.1109/MCI.2015.2501545
10.1177/1460458218824711
10.1016/j.neucom.2018.04.080
10.1186/s12883-015-0355-8
10.1016/j.cmpb.2017.02.002
10.1016/j.neucom.2019.04.058
10.1109/TKDE.2009.191
10.1088/1741-2560/14/1/016003
10.1007/BF01447662
10.1109/ACCESS.2020.3040185
10.1186/1741-7015-10-64
10.1109/TSC.2019.2962673
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2021.04.009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 145
ExternalDocumentID 10_1016_j_neucom_2021_04_009
S0925231221005270
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-1d37f782f30f02b9e75e7e0b5fb12ef4c6bffe19008a14b28ebde1d34690438a3
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000652818400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 20:33:51 EST 2025
Sat Nov 29 07:10:58 EST 2025
Fri Feb 23 02:44:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Autism spectrum disorder evaluation
Q-learning
Neural architecture search
Electroencephalogram
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-1d37f782f30f02b9e75e7e0b5fb12ef4c6bffe19008a14b28ebde1d34690438a3
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2021_04_009
crossref_primary_10_1016_j_neucom_2021_04_009
elsevier_sciencedirect_doi_10_1016_j_neucom_2021_04_009
PublicationCentury 2000
PublicationDate 2021-08-18
PublicationDateYYYYMMDD 2021-08-18
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-18
  day: 18
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Djemal, AlSharabi, Ibrahim, Alsuwailem (b0050) 2017
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b0125) 2018; 15
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0130) 2014; 15
X. Gu, Z. Cao, A. Jolfaei, P. Xu, D. Wu, T.-P. Jung, C.-T. Lin, EEG-based brain-computer interfaces (bcis): a survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications, IEEE/ACM Trans. Comput. Biol. Bioinf.
Bosl, Tierney, Tagerflusberg, Nelson (b0015) 2011; 9
Chen, Song, Li (b0055) 2019; 356
Matlis, Boric, Chu, Kramer (b0075) 2015; 15
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller, Playing atari with deep reinforcement learning, arXiv preprint arXiv:1312.5602.
He, Zhang, Ren, Sun (b0165) 2016
B. Zoph, Q.V. Le, Neural architecture search with reinforcement learning, arXiv preprint arXiv:1611.01578.
Chen, Tang, Zhang, Wang, Li (b0060) 2021; 33
Ke, Chen, Shi, Zhang, Liu, Zhang, Li (b0085) 2020; 13
Zhou, Tian, Cao, Wang, Niu, Hu, Guo, Xiang (b0120) 2018; 12
Ke, Chen, Shah, Liu, Zhang, Zhang, Li (b0025) 2020; 50
Jayaram, Alamgir, Altun, Schlkopf, Grosse-Wentrup (b0065) 2015; 11
Watkins, Dayan (b0090) 1992; 8
Delorme, Makeig (b0145) 2004; 134
D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv preprint arXiv:1412.6980.
Dawson, Klinger, Panagiotides, Lewy, Castelloe (b0070) 1995; 23
Pan, Yang (b0140) 2009; 22
Hu, Shen, Sun (b0180) 2018
Cantor, Thatcher, Hrybyk, Kaye (b0105) 1986; 16
S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: International Conference on Machine Learning, PMLR, 2015, pp. 448–456.
Huang, Liu, Van Der Maaten, Weinberger (b0170) 2017
Thabtah, Peebles (b0030) 2020; 26
Grossi, Olivieri, Buscema (b0045) 2017; 142
Tabar, Halici (b0115) 2016; 14
Kong, Gao, Xu, Pan, Wang, Liu (b0040) 2019; 324
Leo, Carcagnı̀, Distante, Spagnolo, Mazzeo, Rosato, Petrocchi, Pellegrino, Levante, De Lumè (b0035) 2018; 18
Duffy, Als (b0020) 2012; 10
Ge, Runeson, Lam (b0110) 2003
Radac, Lala (b0100) 2020; 8
S. Sabour, N. Frosst, G.E. Hinton, Dynamic routing between capsules, arXiv preprint arXiv:1710.09829.
Sushkova, Obukhov, Kershner, Karabanov, Gabova (b0010) 2016; 22
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (b0160) 2015
Z. Jie, D. Meng, T. Zhen, H. Junxia, L. Xiaoli, K. Jiannan, Feature exaction and classification of autism spectrum disorder children related electroencephalographic signals based on entropy, J. Biomed. Eng.
10.1016/j.neucom.2021.04.009_b0135
10.1016/j.neucom.2021.04.009_b0155
10.1016/j.neucom.2021.04.009_b0175
Ke (10.1016/j.neucom.2021.04.009_b0025) 2020; 50
Watkins (10.1016/j.neucom.2021.04.009_b0090) 1992; 8
10.1016/j.neucom.2021.04.009_b0095
10.1016/j.neucom.2021.04.009_b0150
Dawson (10.1016/j.neucom.2021.04.009_b0070) 1995; 23
Tabar (10.1016/j.neucom.2021.04.009_b0115) 2016; 14
Ke (10.1016/j.neucom.2021.04.009_b0085) 2020; 13
Bosl (10.1016/j.neucom.2021.04.009_b0015) 2011; 9
Kong (10.1016/j.neucom.2021.04.009_b0040) 2019; 324
Hu (10.1016/j.neucom.2021.04.009_b0180) 2018
Jayaram (10.1016/j.neucom.2021.04.009_b0065) 2015; 11
Leo (10.1016/j.neucom.2021.04.009_b0035) 2018; 18
Srivastava (10.1016/j.neucom.2021.04.009_b0130) 2014; 15
10.1016/j.neucom.2021.04.009_b0005
Grossi (10.1016/j.neucom.2021.04.009_b0045) 2017; 142
Duffy (10.1016/j.neucom.2021.04.009_b0020) 2012; 10
Huang (10.1016/j.neucom.2021.04.009_b0170) 2017
Chen (10.1016/j.neucom.2021.04.009_b0060) 2021; 33
Szegedy (10.1016/j.neucom.2021.04.009_b0160) 2015
Radac (10.1016/j.neucom.2021.04.009_b0100) 2020; 8
Ge (10.1016/j.neucom.2021.04.009_b0110) 2003
Lawhern (10.1016/j.neucom.2021.04.009_b0125) 2018; 15
Djemal (10.1016/j.neucom.2021.04.009_b0050) 2017
Cantor (10.1016/j.neucom.2021.04.009_b0105) 1986; 16
Pan (10.1016/j.neucom.2021.04.009_b0140) 2009; 22
Matlis (10.1016/j.neucom.2021.04.009_b0075) 2015; 15
10.1016/j.neucom.2021.04.009_b0080
Thabtah (10.1016/j.neucom.2021.04.009_b0030) 2020; 26
Chen (10.1016/j.neucom.2021.04.009_b0055) 2019; 356
Sushkova (10.1016/j.neucom.2021.04.009_b0010) 2016; 22
He (10.1016/j.neucom.2021.04.009_b0165) 2016
Zhou (10.1016/j.neucom.2021.04.009_b0120) 2018; 12
Delorme (10.1016/j.neucom.2021.04.009_b0145) 2004; 134
References_xml – volume: 8
  start-page: 214153
  year: 2020
  end-page: 214165
  ident: b0100
  article-title: Robust control of unknown observable nonlinear systems solved as a zero-sum game
  publication-title: IEEE Access
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: b0145
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
– reference: Z. Jie, D. Meng, T. Zhen, H. Junxia, L. Xiaoli, K. Jiannan, Feature exaction and classification of autism spectrum disorder children related electroencephalographic signals based on entropy, J. Biomed. Eng.
– volume: 33
  start-page: 569
  year: 2021
  end-page: 584
  ident: b0060
  article-title: Incremental factorization of big time series data with blind factor approximation
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 1
  year: 2015
  end-page: 9
  ident: b0160
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 18
  start-page: 3993
  year: 2018
  ident: b0035
  article-title: Computational assessment of facial expression production in ASD children
  publication-title: Sensors
– volume: 22
  start-page: 1345
  year: 2009
  end-page: 1359
  ident: b0140
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 23
  start-page: 569
  year: 1995
  end-page: 583
  ident: b0070
  article-title: Subgroups of autistic children based on social behavior display distinct patterns of brain activity
  publication-title: J. Abnorm. Child Psychol.
– volume: 22
  year: 2016
  ident: b0010
  article-title: Classification of early stage parkinson’s disease in EEG and tremor time-frequency features space
  publication-title: Parkinsonism Rel. Disorders
– volume: 142
  start-page: 73
  year: 2017
  end-page: 79
  ident: b0045
  article-title: Diagnosis of autism through EEG processed by advanced computational algorithms
  publication-title: Comput. Methods Programs Biomed.
– start-page: 7132
  year: 2018
  end-page: 7141
  ident: b0180
  article-title: Squeeze-and-excitation networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 50
  start-page: 596
  year: 2020
  end-page: 610
  ident: b0025
  article-title: Cloud-aided online EEG classification system for brain healthcare: a case study of depression evaluation with a lightweight CNN
  publication-title: Software: Practice Experience
– volume: 11
  start-page: 20
  year: 2015
  end-page: 31
  ident: b0065
  article-title: Transfer learning in brain-computer interfaces
  publication-title: IEEE Comput. Intell. Mag.
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0165
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 356
  start-page: 83
  year: 2019
  end-page: 96
  ident: b0055
  article-title: A deep learning framework for identifying children with ADHD using an EEG-based brain network
  publication-title: Neurocomputing
– volume: 10
  start-page: 64
  year: 2012
  ident: b0020
  article-title: A stable pattern of EEG spectral coherence distinguishes children with autism from neuro-typical controls – a large case control study
  publication-title: BMC Med.
– volume: 12
  start-page: 95
  year: 2018
  ident: b0120
  article-title: Epileptic seizure detection based on EEG signals and CNN
  publication-title: Front. Neuroinf.
– volume: 14
  year: 2016
  ident: b0115
  article-title: A novel deep learning approach for classification of EEG motor imagery signals
  publication-title: J. Neural Eng.
– volume: 15
  start-page: 97
  year: 2015
  ident: b0075
  article-title: Robust disruptions in electroencephalogram cortical oscillations and large-scale functional networks in autism
  publication-title: BMC Neurol.
– volume: 8
  start-page: 279
  year: 1992
  end-page: 292
  ident: b0090
  article-title: Q-learning
  publication-title: Mach. Learn.
– reference: B. Zoph, Q.V. Le, Neural architecture search with reinforcement learning, arXiv preprint arXiv:1611.01578.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b0130
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– year: 2003
  ident: b0110
  article-title: Forecasting hong kong housing prices: an artificial neural network approach
  publication-title: International Conference on Methodologies in Housing Research
– reference: S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: International Conference on Machine Learning, PMLR, 2015, pp. 448–456.
– reference: S. Sabour, N. Frosst, G.E. Hinton, Dynamic routing between capsules, arXiv preprint arXiv:1710.09829.
– reference: V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller, Playing atari with deep reinforcement learning, arXiv preprint arXiv:1312.5602.
– volume: 16
  start-page: 169
  year: 1986
  end-page: 187
  ident: b0105
  article-title: Computerized EEG analyses of autistic children
  publication-title: J. Autism Dev. Disord.
– volume: 324
  start-page: 63
  year: 2019
  end-page: 68
  ident: b0040
  article-title: Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier
  publication-title: Neurocomputing
– volume: 9
  start-page: 18
  year: 2011
  ident: b0015
  article-title: EEG complexity as a biomarker for autism spectrum disorder risk
  publication-title: BMC Med.
– volume: 26
  start-page: 264
  year: 2020
  end-page: 286
  ident: b0030
  article-title: A new machine learning model based on induction of rules for autism detection
  publication-title: Health Inf. J.
– volume: 15
  year: 2018
  ident: b0125
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
– volume: 13
  start-page: 696
  year: 2020
  end-page: 708
  ident: b0085
  article-title: Improving brain e-health services via high-performance EEG classification with grouping bayesian optimization
  publication-title: IEEE Trans. Serv. Comput.
– reference: X. Gu, Z. Cao, A. Jolfaei, P. Xu, D. Wu, T.-P. Jung, C.-T. Lin, EEG-based brain-computer interfaces (bcis): a survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications, IEEE/ACM Trans. Comput. Biol. Bioinf.
– reference: D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv preprint arXiv:1412.6980.
– year: 2017
  ident: b0050
  article-title: EEG-based computer aided diagnosis of autism spectrum disorder using wavelet, entropy, and ANN
  publication-title: BioMed Res. Int.
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: b0170
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 15
  issue: 5
  year: 2018
  ident: 10.1016/j.neucom.2021.04.009_b0125
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– start-page: 4700
  year: 2017
  ident: 10.1016/j.neucom.2021.04.009_b0170
  article-title: Densely connected convolutional networks
– volume: 12
  start-page: 95
  year: 2018
  ident: 10.1016/j.neucom.2021.04.009_b0120
  article-title: Epileptic seizure detection based on EEG signals and CNN
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2018.00095
– volume: 16
  start-page: 169
  issue: 2
  year: 1986
  ident: 10.1016/j.neucom.2021.04.009_b0105
  article-title: Computerized EEG analyses of autistic children
  publication-title: J. Autism Dev. Disord.
  doi: 10.1007/BF01531728
– year: 2017
  ident: 10.1016/j.neucom.2021.04.009_b0050
  article-title: EEG-based computer aided diagnosis of autism spectrum disorder using wavelet, entropy, and ANN
  publication-title: BioMed Res. Int.
  doi: 10.1155/2017/9816591
– start-page: 7132
  year: 2018
  ident: 10.1016/j.neucom.2021.04.009_b0180
  article-title: Squeeze-and-excitation networks
– volume: 33
  start-page: 569
  issue: 2
  year: 2021
  ident: 10.1016/j.neucom.2021.04.009_b0060
  article-title: Incremental factorization of big time series data with blind factor approximation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2931687
– volume: 18
  start-page: 3993
  issue: 11
  year: 2018
  ident: 10.1016/j.neucom.2021.04.009_b0035
  article-title: Computational assessment of facial expression production in ASD children
  publication-title: Sensors
  doi: 10.3390/s18113993
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  ident: 10.1016/j.neucom.2021.04.009_b0145
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– start-page: 1
  year: 2015
  ident: 10.1016/j.neucom.2021.04.009_b0160
  article-title: Going deeper with convolutions
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2021.04.009_b0130
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 18
  issue: 1
  year: 2011
  ident: 10.1016/j.neucom.2021.04.009_b0015
  article-title: EEG complexity as a biomarker for autism spectrum disorder risk
  publication-title: BMC Med.
  doi: 10.1186/1741-7015-9-18
– volume: 11
  start-page: 20
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2021.04.009_b0065
  article-title: Transfer learning in brain-computer interfaces
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2015.2501545
– volume: 26
  start-page: 264
  issue: 1
  year: 2020
  ident: 10.1016/j.neucom.2021.04.009_b0030
  article-title: A new machine learning model based on induction of rules for autism detection
  publication-title: Health Inf. J.
  doi: 10.1177/1460458218824711
– volume: 324
  start-page: 63
  year: 2019
  ident: 10.1016/j.neucom.2021.04.009_b0040
  article-title: Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.080
– volume: 15
  start-page: 97
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2021.04.009_b0075
  article-title: Robust disruptions in electroencephalogram cortical oscillations and large-scale functional networks in autism
  publication-title: BMC Neurol.
  doi: 10.1186/s12883-015-0355-8
– ident: 10.1016/j.neucom.2021.04.009_b0155
– volume: 142
  start-page: 73
  year: 2017
  ident: 10.1016/j.neucom.2021.04.009_b0045
  article-title: Diagnosis of autism through EEG processed by advanced computational algorithms
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.02.002
– ident: 10.1016/j.neucom.2021.04.009_b0080
– year: 2003
  ident: 10.1016/j.neucom.2021.04.009_b0110
  article-title: Forecasting hong kong housing prices: an artificial neural network approach
– ident: 10.1016/j.neucom.2021.04.009_b0135
– volume: 356
  start-page: 83
  year: 2019
  ident: 10.1016/j.neucom.2021.04.009_b0055
  article-title: A deep learning framework for identifying children with ADHD using an EEG-based brain network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.04.058
– volume: 22
  start-page: 1345
  issue: 10
  year: 2009
  ident: 10.1016/j.neucom.2021.04.009_b0140
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– ident: 10.1016/j.neucom.2021.04.009_b0005
– volume: 14
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2021.04.009_b0115
  article-title: A novel deep learning approach for classification of EEG motor imagery signals
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/14/1/016003
– volume: 23
  start-page: 569
  issue: 5
  year: 1995
  ident: 10.1016/j.neucom.2021.04.009_b0070
  article-title: Subgroups of autistic children based on social behavior display distinct patterns of brain activity
  publication-title: J. Abnorm. Child Psychol.
  doi: 10.1007/BF01447662
– volume: 8
  start-page: 214153
  year: 2020
  ident: 10.1016/j.neucom.2021.04.009_b0100
  article-title: Robust control of unknown observable nonlinear systems solved as a zero-sum game
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3040185
– volume: 50
  start-page: 596
  issue: 5
  year: 2020
  ident: 10.1016/j.neucom.2021.04.009_b0025
  article-title: Cloud-aided online EEG classification system for brain healthcare: a case study of depression evaluation with a lightweight CNN
  publication-title: Software: Practice Experience
– ident: 10.1016/j.neucom.2021.04.009_b0095
– volume: 10
  start-page: 64
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2021.04.009_b0020
  article-title: A stable pattern of EEG spectral coherence distinguishes children with autism from neuro-typical controls – a large case control study
  publication-title: BMC Med.
  doi: 10.1186/1741-7015-10-64
– start-page: 770
  year: 2016
  ident: 10.1016/j.neucom.2021.04.009_b0165
  article-title: Deep residual learning for image recognition
– volume: 22
  year: 2016
  ident: 10.1016/j.neucom.2021.04.009_b0010
  article-title: Classification of early stage parkinson’s disease in EEG and tremor time-frequency features space
  publication-title: Parkinsonism Rel. Disorders
– ident: 10.1016/j.neucom.2021.04.009_b0150
– volume: 13
  start-page: 696
  issue: 4
  year: 2020
  ident: 10.1016/j.neucom.2021.04.009_b0085
  article-title: Improving brain e-health services via high-performance EEG classification with grouping bayesian optimization
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2019.2962673
– volume: 8
  start-page: 279
  issue: 3–4
  year: 1992
  ident: 10.1016/j.neucom.2021.04.009_b0090
  article-title: Q-learning
  publication-title: Mach. Learn.
– ident: 10.1016/j.neucom.2021.04.009_b0175
SSID ssj0017129
Score 2.4707341
Snippet Recent Electroencephalogram (EEG) analysis in connection with brain disorders has been tremendously benefiting from the (Deep) Neural Network technology in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 136
SubjectTerms Autism spectrum disorder evaluation
Electroencephalogram
Neural architecture search
Q-learning
Title Subject sensitive EEG discrimination with fast reconstructable CNN driven by reinforcement learning: A case study of ASD evaluation
URI https://dx.doi.org/10.1016/j.neucom.2021.04.009
Volume 449
WOSCitedRecordID wos000652818400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF7cpIdemj5pmrbMoTejspJWWik3k7hNSzCFpOCb0K52Q0wqB9sJyTn_KL8wsw89Upe-oBdhhNde_H2emR3NfEPIe42sUQhsIFJdBQxdTJAzDOQSkVWpxK0nlZ1acsgnk2w6zb8OBrdNL8zlGa_r7OoqP_-vUOM9BNu0zv4F3O2H4g18jaDjFWHH6x8Bj6bA5FaGS1OabguDxuNP5kGMdBO8LOA2_arL5WpoT8RORdZ2Ue1NJsNqYWygiUwXyiqrSptEbEZMnLh2dokO0MnT2nD2aL8nHd6Pea3-h7TTI3xeYvTdyDNUhottHmLf1wYfqOv5RVd04K1ix-E2w32oTjtv4VbWJzMvJO7zGJFNzHrTa5Nraw02LksZJQGGoM5gK2ejMx7Z7ve-EWdO-NSb4TBOex49dIKVa87C5S1mH2p1YSqHzKas7C3NO-fYliwema2YneAZmSYRpw_IZsSTHC3p5ujzePqlfXbFw8gpPPqtNw2btqpw_bt-HhD1gpzjJ-SxP53AyLHqKRmo-hnZaiZ_gHcEz8mNJxm0JAMkGdwnGRiSgSEZ_EAyQJKBIxmIa7hHMmhItgsjMBQDSzGYa0CKQUexF-Tbx_Hx3kHgx3kEEs-lqyCsYq4xINUx1TQSueKJ4oqKRIswUprJVGitMEClWRkyEWVKVAoXmQQOi7Myfkk26nmtXhHINBWxDNOUacaU5EIpWbKkzPMyEyGNt0nc_KaF9Fr3ZuTKWdEUNc4Kh0RhkCgoKxCJbRK0q86d1stv3s8buAofr7o4tECG_XLl639euUMedX-eN2QDkVNvyUN5uTpdLt55Kt4BKE-_aw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject+sensitive+EEG+discrimination+with+fast+reconstructable+CNN+driven+by+reinforcement+learning%3A+A+case+study+of+ASD+evaluation&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Dong%2C+Heyou&rft.au=Chen%2C+Dan&rft.au=Zhang%2C+Lei&rft.au=Ke%2C+Hengjin&rft.date=2021-08-18&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=449&rft.spage=136&rft.epage=145&rft_id=info:doi/10.1016%2Fj.neucom.2021.04.009&rft.externalDocID=S0925231221005270
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon